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Abstract—In recent years, advances in computing power and
computational methods have made it possible to perform
detailed simulations of the coronary artery stenting proce-
dure and of related virtual tests of performance (including
fatigue resistance, corrosion and haemodynamic distur-
bance). Simultaneously, there has been a growth in system-
atic computational optimisation studies, largely exploiting
the suitability of surrogate modelling methods to time-
consuming simulations. To date, systematic optimisation has
focussed on stent shape optimisation and has re-affirmed the
complexity of the multi-disciplinary, multi-objective problem
at hand. Also, surrogate modelling has predominantly
involved the method of Kriging. Interestingly, though,
optimisation tools, particularly those associated with Krig-
ing, haven’t been used as efficiently as they could have been.
This has especially been the case with the way that Kriging
predictor functions have been updated during the search for
optimal designs. Nonetheless, the potential for future,
carefully posed, optimisation strategies has been suitably
demonstrated, as described in this review.

Keywords—Computational, Modelling, Kriging, Multi-

objective optimization.

INTRODUCTION

Impressive engineering innovation and clinical
expertise have made it possible to routinely deliver
stents in narrowed coronary arteries such that these
tubular structures can be expanded into atherosclerotic
plaques to recover arterial flow area. In clinical terms,
the aim is to maximise the minimum lumen area (MLA)
by achieving the optimal minimal stent area (MSA).

Furthermore, considering that stenting (or percutaneous
coronary intervention, PCI) is procedurally successful in
the majority of cases, this suggests that state of the art
stents and delivery systems may have reached close to
design optimality for delivery. Is it possible, or even nec-
essary, therefore, to improve the PCI toolkit, including
stents, delivery systems and/or imaging? A key driver in
answering these questions is that clinical events, repre-
senting later complications (i.e., failures) of the stent, such
as stent thrombosis (ST) or restenosis, are more likely in
circumstances in which stent expansion is suboptimal.
Sub-optimal stent deployment is an independent risk
factor for both restenosis and stent thrombosis. Resteno-
sis, an exaggerated inflammatory healing response to the
vessel injury inherent to PCI, results in recurrent angina or
heart attack. It occurred clinically in around 10% of
patients after bare metal stents and the incidence is now a
few percent in the days of drug-eluting stents (DES). The
minimal stent area is inversely related to the incidence of
these complications.8 Given the millions of stent deploy-
ment procedures being carried out worldwide, even rates
of complications in low single digit percentages of the total
represents a large cohort of patients. In this context, there
is clearly room for improvement in the precision of stent
delivery and optimisation.

If further advances are to be made, how likely is it
that computational engineering will be utilised more
significantly than it has been in the development of
PCI technology to date? Curiously, the earliest simu-
lations of stent expansion performance only began to
appear in the literature14,15,32 at the time that the first
generation of drug eluting stents were undergoing clin-
ical trials.33,36 These early finite element analysis (FEA)
studies focussed on stent structures and neglected the
fundamental interactions that occur during deploy-
ment between the stent, balloon and vessel wall/tissue.
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Even the earliest FEA studies that included idealised
stenotic artery models, didn’t incorporate balloons to
expand the stent, using pressure on the internal surface of
the stent, instead.3 It wasn’t until 2008 that patient-
specific artery reconstructions were first used in simula-
tions of stent deployment.18 The reviewof computational
structural modelling of coronary stent deployment by
Martin and Boyle provided a detailed consideration of
this history and therewas a review of computational fluid
dynamics (CFD) prediction of neo-intimal hyperplasia
(or restenosis) in stented arteries byMurphy andBoyle.37

Subsequently, Morlacchi and Migliavacca34 reviewed
numerical modelling of stented coronary arteries more
generally, including FEA, CFD and drug elution.

At the same time that the first stent deployment
studies were appearing in the literature, Stoeckel
et al.43 published a survey of stent designs in which
approximately 100 different stents were identified.
Whilst commenting that such diversity was largely the
result of commercial drivers, they also acknowledged
that conflicting design requirements underpinned the
competition to optimise scaffolding characteristics,
largely in terms of radial strength and flexibility. Why
is it that, since that time, there has been an increasing
frequency of stent related optimisation studies
appearing in the academic literature?

This article focuses on answers to the above questions
primarily from the perspectives of what has already been
reported on systematic coronary artery stent design
optimisation and, more especially, that which might now
be possible. There are a number of articles comprising
parametric studies (e.g.,10,23,45) but they haven’t been
considered in detail here due to the focus on systematic
optimisation approaches. It should be acknowledged,
however, that these types of study often help to inform
more detailed searches for optimal designs.11

Starting with a consideration of clinically optimal
stenting, attention is drawn to the causes of PCI failure
and poor outcomes. An overview is then presented of
measures of performance (or objective functions) that
can be evaluated computationally, in preparation for a
review of the design optimisation of coronary artery
stent systems. The article is concluded with some rec-
ommendations for future work.

CLINICALLY OPTIMAL OUTCOMES

In the 2011 ACCF/AHA/SCAI1 PCI guidelines, an
angiographic benchmark for stent results was defined by
a minimum percent diameter stenosis of <10%,

or optimally as close to 0% as possible.27 This is
re-iterated in the 2013 update on clinical competencies
for PCI but with recognition that angiography provides
‘‘an imperfect assessment of coronary structure and
stenosis severity’’.22 Thus, it is recommended that ‘‘other
diagnostic modalities such as intravascular ultrasound
(IVUS) and fractional flow reserve should be available’’
during PCI. Indeed, Yoon and Hur48 highlight four cri-
teria for optimal stent deployment when using IVUS:

(a) Complete stent expansion;
(b) Complete stent apposition to the vessel wall;
(c) Avoidance of edge dissection and
(d) Complete lesion coverage.

Criteria 1–3 are depicted in Fig. 1 as they might
appear in IVUS slices and aligned with a longitudinal
cartoon to show where along a stented segment they
are likely to occur. In practice, sub-optimal perfor-
mance in terms of stent under-expansion and malap-
position can be addressed by post-dilatation in which a
non-compliant balloon is inflated inside the partially
deployed stent so as to overcome the failings of the
original stenting procedure. Whilst it is important for
the interventional cardiologist to have methods such as
post-dilatation to correct shortcomings of an initially
sub-optimal stent expansion, this can introduce other
dangers including tissue dissection, longitudinal stent
deformation and changes to stent fatigue resistance.
An example of malappostion and post-dilatation is
shown in Fig. 2 as obtained using the more recently
developed intravascular imaging technique of optical
coherence tomography (OCT).

Although PCI is now a relatively mature practice,
there are two areas in which computational modelling
might result in improved stent deployment: (1) pre-
clinical testing of modern iterations of stents and (2)
design of novel stent/delivery system characteristics.

COMPUTATIONALLY MEASURABLE

OPTIMALITY

Overview

Procedural optimality as defined above is largely
unequivocal and can be measured using intravascular
imaging methods. However, there are other metrics of
stent performance that are not readily obtained during
PCI but which can have a very significant influence on
PCI outcome. These metrics include:

(a) Radial (and longitudinal) strength;
(b) Fatigue resistance;
(c) Flexibility;
(d) Stent malapposition;
(e) Tissue damage;

1ACCF/AHA/SCAI: American College of Cardiology Foundation/

American Heart Association/Society for Cardiovascular Angiogra-

phy and Interventions.
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(f) Drug distribution (for DESs) and
(g) Flow metrics, particularly related to flow dis-

turbance and the wall shear stress environ-
ment.

Whilst it is possible to selectively combine any of
these metrics in research studies, regulatory guidance
by the Food and Drugs Administration (FDA) on
non-clinical engineering tests provides a long list of
recommendations primarily based on mechanical and
structural attributes.16 Whilst measures of perfor-
mance could be defined and simulated for all of the
FDA recommended tests, the focus here is primarily
on those that have featured in reported optimisation
studies. Indeed, some of these (e.g., tissue damage,
drug distribution and flow disturbance) don’t appear

in the FDA recommendations or in the draft update of
2013.

FEA and CFD are the two principal simulation
disciplines that are employed to generate these mea-
sures of stent performance. Other physical models have
been used (e.g., corrosion modelling by Grogan et al.19

and drug kinetics by Bozsak et al.7) but the majority of
optimisation studies have employed FEA to obtain
structural metrics including recoil, radial strength,
foreshortening, flexibility, malapposition, fatigue
resistance and tissue stress. Others have focussed solely
on CFD simulations to extract and compare wall shear
stress metrics. A small number of articles have
reported multi-disciplinary optimisations wherein a
stent deployment simulation using FEA is followed by
a CFD blood flow simulation through the deformed
vessel and over the expanded stent and/or by a drug
elution simulation using a CFD based scalar transport
model.

FEA and Structural Optimality

One way to characterise the various optimisation
studies is to consider the level of detail included in the
simulation models. For example, the majority of FEA
studies have used single unit stent models, completely
neglecting interaction with arterial tissue. Others have
used high levels of detail including full three-dimen-
sionality and models for a complete balloon delivery
system and a diseased artery with contact interactions
between balloon, stent and tissue.19,39

In addition to the review by Martin and Boyle,31

Migliavacca et al.32 provided a succinct overview of
early FEA studies of stent behaviour and performance.

FIGURE 2. (Fig. 1C in Ref. 24) OCT image of an under-expanded stent (left). The same stent segment seen after post-dilatation,
now completely apposing the vessel wall (right). Reprinted with permission from Springer.

FIGURE 1. (Fig. 2 in Ref. 48) Stent-related complications
after stent deployment. Reprinted with permission from the
Korean Association of Internal Medicine.
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Notable among them was the two-dimensional study by
Rogers et al.40 who focussed on the need to minimise
vascular injury during stenting. This work is particularly
pertinent since it addressed vascular injury induced by
balloon contact forces combined with stent strut lacer-
ations with the aspiration to optimise long-term out-
comes for patients. Whilst Rogers et al.40 focussed on
clinical effects, Migliavacca et al.32 noted that FEA
could be used in the optimisation of coronary stents by
investigating the effects of different geometrical
parameters on mechanical performance. Indeed, nearly
all stent optimisation studies have employed geometry
variation to define the optimisation design parameters
including strut width, strut thickness, strut length,
crown curvature, connector shape and a range of other
shape variables set up to generate more complicated cell
shapes. A detailed consideration of structural metrics as
used in optimisation is provided in Supplementary
Material A but the following key elements are noted
here for certain metrics that: (i) should be checked
globally along the stent and in the tissue but for which,
numerically, single values are needed for optimisation;
(ii) can be obtained numerically and/or experimentally
(e.g., radial strength); (iii) have not been used in opti-
misation studies since they have been only recently de-
fined (e.g., longitudinal stent deformation); (iv) have
been under used (e.g., fatigue resistance) and (v) are
difficult to quantify (e.g., tissue damage).

CFD and Transport: Flow and Drug Optimality

CFD based coronary artery stent optimisation has
featured in six key studies.1,2,5,20,39,41 Similarly to FEA
studies, these can be characterised by simulation detail.
Atherton and Bates2 used a simplified model involving
steady state 3D CFD for single stent units whilst Blouza
et al.5 and Srinivas et al.41 applied steady state 2D CFD
over displaced strut cross-sections. Gundert et al.20 and
Amirjani et al.1 employed pulsatile and steady state 3D
CFD, respectively, but both used idealised vessels and
stents constructed in expanded configurations from a
repeating cell unit. With further complexity, Pant et al.39

performed pulsatile 3D CFD through representative dis-
eased vessels deformed using FEA stent deployment sim-
ulations. Further, Atherton and Bates,2 Srinivas et al.41

and Gundert et al.20 only considered flow optimality
whereas the others adopted amulti-disciplinary approach.

To capture the effect of flow on arterial walls,
metrics are needed that can be minimised with respect
to the flow disturbance caused by the presence of stent
struts embedded in an irregular arterial wall boundary.
This is based on the assumption that an optimal flow
environment exists for a smooth vessel in the absence
of a stenosis. Gundert et al.20 extracted time averaged
wall shear stresses that were averaged over the arterial

surface exposed to flow in the central rings of the
stents. Blouza et al.5 and Srinivas et al.41 considered
multi-objective optimisation, respectively, for two
metrics (steady state wall shear stress and swirl) and
three metrics (vorticity, recirculation distance and
reattachment lengths between struts). Atherton and
Bates2 calculated power dissipation as a surrogate for
wall shear stress.

Pant et al.39 devised a haemodynamic low and re-
versed flow index (HLRFI), as a function of regions
where wall shear stress was below a prescribed level or
reversed relative to the main flow direction. HLRFI was
minimised to reflect the fact that strut distribution can
influence the extent of disturbed flow on the arterial wall.

Similarly to tissuedamage, the efficacyofdrugdelivery
can be defined by a volume averaged concentration,
which needs to bemaximised. Drug concentration can be
calculated within the tissue by solving a CFD-based
transport equation for drug concentration or through
heat transfer equations in FEA solvers. However, opti-
misation of drug delivery has been considered in farmore
significant detail by Bozsak et al.7 Solely focussing on the
drug kinetics of sirolimus and paclitaxel, a singlemeasure
of performance was derived to combine drug efficacy in
the media with an average toxicity metric across the lu-
men, sub-endothelial space and the media and penalised
by a buffer term to avoid drug concentrations close to the
toxicity limit. Notably, optimal paclitaxel-eluting stents
were identified with far lower concentrations than exist-
ing DESs and designed to release the drug either very
rapidly or very slowly (up to 12 months).

Multi-disciplinary Optimality

The procedural and long-term efficacy of PCI is
known to be dependent on a wide range of factors
related to structural performance, haemodynamics and
the bio-chemistry of disease, inflammation, drug
delivery and healing. Patient-specificity with respect to
anatomy and disease is also important. Although no
optimisation study to date has included more than six
separate objectives, obtained from multiple disciplines,
it is encouraging that a small number of studies have
successfully demonstrated that it is possible to conduct
high fidelity multi-disciplinary optimisation.

Pant et al.39 and Amirjani et al.1 conducted FEA
and CFD simulations to generate a range of multi-
disciplinary objectives. Amirjani et al.1 combined stent
and tissue stress metrics with stent recoil and a flow
induced wall shear stress metric in a single aggregated
objective function.

Pant et al.38 used structural deployment and flexibility
objectives with a drug elution metric in a constrained
optimisation study in which optimal designs were found
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for each metric without diminishing any other metric. It
was only in Pant et al.39 that structural (stent recoil and
tissue stress), flow and drug elutionmetrics were used in a
fully multi-disciplinary, multi-objective framework.

Although CFD wasn’t included in the study by Gro-
gan et al.19 , multi-disciplinary optimisation was per-
formed by coupling a corrosion algorithm to FEA of a
stent system that was tested for radial collapse strength.

OPTMIZATION FRAMEWORK: THE STENT

DESIGN CHALLENGE

Overview

Having discussed stent optimality from both clinical
and mechanical engineering perspectives, different
ways of framing stent optimisation studies is now
considered. Whatever method is used, there are four
key, common elements:

(a) Design variables which are the inputs (often
geometry parameters) to be varied;

(b) The objective function comprising one or
more quantified measures of performance that
can be used to compare different designs;

(c) Constraints defining regions of the design
space that cannot be included—lower and
upper bounds are needed for the design vari-
ables and it may be necessary to specify values
of derived quantities that must satisfy pre-
scribed equality or inequality constraints;

d) An optimisation algorithm in which, simply
stated, the optimiser needs to find a combina-
tion of design variables that are optimal with
respect to the objective function subject to
satisfying the specified constraints.

Generally, these separate elements should be con-
sidered simultaneously such that the design variables
and the objective function(s) are defined appropriately
for a given problem and for a particular optimisation
algorithm. For example, if considering flexibility, de-
sign variables for the connectors should be included.
With respect to the optimisation, whilst it might be
possible to have many (>10) design variables when
optimising a single strut using a direct search method
such as a genetic algorithm, it is advisable to reduce the
number of inputs when using computationally expen-
sive full stent deployment simulations within a
response surface modelling approach.

Design Variables

In the optimisation studies considered here, the
largest number of design variables was seven in

Grogan et al.19 and Wu et al.46 and most reported
research has used three or four variables. Strut width is
the most commonly included design variable and strut
thickness (measured radially), strut length and
parameters to control crown shape are also relatively
common. More detailed control of stent unit shapes
has been considered by Clune et al.9 using a set of
NURBS weights, by Grogan et al.19 with various strut
lengths and heights and by Wu et al.46 with a variety of
strut widths and arc radii. When flexibility has been of
interest, design variables have been used for the con-
nectors as in Pant et al.38,39 In cases when haemody-
namic optimality has been sought, Atherton and
Bates2 and Gundert et al.,20 the angle of struts to the
flow has been included. In contrast to the majority of
studies that employ shape optimisation, Bozsak et al.7

considered only drug kinetics design variables: the
initial drug concentration and the drug release time.

Objective Functions (A Multi-objective,
Multi-disciplinary Problem)

Whilst most optimisation studies have incorporated
multiple objectives, some earlier articles considered a
single objective function. Atherton and Bates used
power dissipation as a surrogate for wall shear stress
and Harewood et al.21 focussed on radial stiffness of a
single ring. More recently, Li et al.28 sought to just
focus on stent dog-boning. When considering multiple
objectives, the majority of studies have either com-
bined them in a single weighted objective func-
tion1,11,29,44 (Bozsak et al.7) or have endeavoured to
construct and search the Pareto fronts generated by
treating each objective separately. One of the earliest
attempts to do this by Blouza et al.5 used the multi-
objective evolutionary optimisation algorithm by Deb
et al.13 to analyse the trade-off between wall shear
stress and swirl within a two-dimensional flow distur-
bance model of stent struts. Similarly, Srinivas et al.41

sought to minimise vorticity and recirculation dis-
tances whilst maximising the reattachment length
between struts.

More advanced incarnations of this approach, using
the non-dominated sorting genetic algorithm, NSGA
II by Deb and Agrawal,12 have been adopted by Pant
et al.39 for six objectives (obtained from multi-disci-
plinary structural, haemodynamic and drug elution
simulations) and by Clune et al.9 for the trade-off
between fracture resistance and flexibility. Finally,
multiple objectives have also been incorporated in
slightly different ways by Wu et al.46 and Pant et al.38

In the former, the dual objectives of maximum prin-
cipal strain and mass of material were treated in a two
stage process of maximising mass once the maximum
principal strain had been minimised. In contrast, Pant
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et al.38 used constrained single objective optimisation
to separately minimise one of four objectives in turn,
constrained by the requirement for the other objectives
not to deteriorate.

A key issue related to the treatment of multiple
objectives concerns the trade-off between measures of
performance that are in competition. When using a
weighted single objective function the balance between
objectives can be controlled by the values of the
weights. This approach is exemplified by Timmins
et al.44 who assessed different weight combinations to
generate stent designs optimised for critical tissue
stress, luminal gain or cyclic radial deflection. Further,
discussion of ‘‘lesion-specific stenting’’ alluded to the
possibility of maximising minimum lumen area at the
expense of high wall stress for stiff, calcific plaque by
having lower distances between stent rings in contrast
to the minimisation of wall stress for softer lipid type
lesions by having wider strut spacing.

Various paradigms for stent selection were consid-
ered by Pant et al.39 Figure 18 from that work is
reproduced in Fig. 3, depicting the trade-off between
recoil and volume averaged stress and how a design
based on the Cypher� platform was predicted to be
biased towards low recoil at the expense of potential
tissue damage. A conservative approach to selection
would seek designs closest to the so-called utopia point
(located at the lowest values of the respective objec-
tives). However, noting that six objectives were con-
sidered (and other important measures of performance
were neglected) a more experiential paradigm would
suitably bias selection to the specificity of a particular
patient and lesion. Indeed, the rigid, closed cell design
of the Cypher� platform is emblematic of the fact that
minimal recoil and maximal radial strength were likely

to have been the prominent considerations when it
became the PCI work-horse in the first generation of
drug-eluting stents.

Constraints

All systematic optimisation studies require con-
straints on the design variables. These constraints are
commonly referred to as bounds and act to define the
design space of the problem. For example, when
varying strut width, the lower and upper bounds
define/constrain the range of variation of strut width
during optimisation. Other constraints are typically
imposed on a problem such that certain requirements
aren’t violated. Most constraints used in coronary
stent optimisation studies have been based on struc-
tural requirements. Harewood et al.21 applied con-
straints on the mean magnitude of the principal tensile
stresses during pressure loading and bending and the
difference between them. In this way, radial stiffness
was maximised without compromising fatigue resis-
tance.

The application of constraints can be implied as well
as in the two stage process by Wu et al.46 De Beule
et al.11 sought to reduce foreshortening by 20% whilst
maintaining radial stiffness relative to the reference
geometry of a self-expandable braided stent.

Only four studies have been identified that applied
constraints directly during optimisation. In addition to
Pant et al.,38 (i) Wu et al.47 combined a constraint on
the drug holding capacity of a Conor stent (Conor
Medsystems Inc.) with manufacturing constraints re-
lated to the extrusion of strut geometry and minimum
member size control, to optimise strut stiffness;
(ii) Azaouzi et al.4 optimised fatigue resistance of a

FIGURE 3. (Fig. 18 in Pant et al.39). Final Pareto front slice showing the trade-off between volume average stress (VAS) and acute
recoil (Recoil). Reprinted with permission from Elsevier.
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nitinol stent with constraints on the minimum radial
force that it could support and on the maximum strain
amplitude when exposed to a physiological pulse and
(iii) Bozsak et al.7 penalised the objective function by
introducing a term to keep eluted drug concentrations
away from a predefined toxicity level.

Optimization Methods

Due to the long computational times needed to
simulate stent performance, the majority of coronary
artery optimisation studies have adopted a surrogate
modelling approach in which response surface models
(RSMs) have been constructed to represent the rela-
tionship between objective functions and design vari-
ables. Simply stated in the current context, a RSM is a
surface fit of one or more measures of performance
against multiple design variables. Earlier RSM opti-
misations21,29,46 used polynomial based least squares
functions but more recent studies have adopted
Gaussian Process Models, commonly referred to as
Kriging25 after the South African geo-statistician,
Krige.26 Before describing Kriging in more detail be-
low, optimisation using RSMs is described in general,
with reference to Fig. 4.

At the start of a study, it is necessary to setup a
baseline model (1), the definition of the problem

(2) and the simulations that are to be performed (da-
shed box). Then, an initial RSM is constructed (3)
from a sample of design points defined by a design of
experiments (DoE). The DoE may be generated ran-
domly but a number of methods have been developed
with better space filling properties, e.g., optimised
Latin hypercubes17,35 and LPs.

42 For each point, sim-
ulations are performed to evaluate measures of per-
formance (4). The construction of the RSM (5)
involves the derivation of a function from the values of
the objective function obtained for a set of design
variables (defined by the DoE for the initial sample). In
a multi-objective problem, separate RSMs are con-
structed for each objective and, similarly, in a con-
strained optimisation, separate RSMs can be
constructed for each constraint. Importantly, RSMs
only provide a prediction of the complete response of
the system and, since the goal of the optimisation
method is to find optimal designs, it is likely to be
necessary to improve the accuracy of the RSM before
determining an optimum. RSMs are improved (or
updated) by generating new design point data (or up-
dates) at appropriate locations in the design space (6).
Updates are generated by searching the current RSM
and running further simulations at appropriately se-
lected design points to obtain the value(s) of objec-
tive(s) at these new points (7). This process can be

FIGURE 4. Flow-chart of the response surface modelling approach to coronary artery stent optimisation.

Design Optimisation of Coronary Artery Stent Systems 363



repeated until a convergence criterion has been satis-
fied (8) or a computational budget exhausted. The
accuracy/quality of the RSM can be evaluated/vali-
dated using cross-validation methods that sequentially
compare predictions of at least one data point from
RSMs constructed from the data-set with this (these)
point(s) excluded. The use of leave one out and stan-
dard cross validation residual plots was demonstrated
in Pant et al.38 An alternative, brute force approach
can be applied, if affordable, by running additional
simulations to generate new validation data. This was
done by Harewood et al.21 in which a RSM con-
structed from a sixty point DoE was validated (and
enhanced) by a separate twenty point DoE.

Kriging

There are a number of advantageous features of
Kriging that make it particularly suitable for surrogate
modelling and optimisation of engineering problems.
Given a set of inputs and experimentally obtained
outputs, the Kriging predictor:

(a) Comprises a linear combination of tuneable
basis functions;

(b) Interpolates the data;
(c) Has a statistical interpretation from which the

mean squared error (MSE) of the predictor
can be formulated and

(d) Yields additional functions, including the ex-
pected improvement (EI), which can be used
to enhance the search for optimal designs.

Both the MSE and the EI are particularly useful for
defining update points when it is necessary to improve
the accuracy of the predictor.

Derivation of the Kriging equations can be found
elsewhere25 but the predictor is described in Supple-
mentary material B.

Srinivas et al.41 performed possibly the first Kriging
based optimisation of coronary stents using a simpli-
fied 2D, steady-state flow model. With a three-dimen-
sional Latin hypercube DoE for strut width, thickness
and spacing, Krigs were constructed for three metrics
from which non-dominated optimal designs were
found. Evidence for the subsequent use of Kriging for
the optimisation of coronary stents is sparse until Pant
et al.39 constructed separate Krigs for six objective
which were used in an NSGA II search of the design
space. A sequence of three parallel updates was per-
formed in which five designs were selected from the
non-dominated Pareto front for each set of updates.
New Krigs were constructed following the generation
of data for each update. Starting from a 15 point LPs

DoE, the three updates produced a total sample size of
thirty points.

Gundert et al.20 determined haemodynamically
optimal stent geometries using the MATLAB DACE2

implementation of Kriging30 within a pattern search
algorithm based on the Surrogate Management
Framework described by Booker et al.6 A single design
parameter (the intra-strut angle) was optimised for a
single objective (the area of low time averaged wall
shear stress) for a range of intra-strut areas and
numbers of circumferential units. Starting with a Latin
hypercube DoE, most runs converged within 10–15
function evaluations and the optimal intra-strut angle
was found to be independent of both vessel size and the
intra-strut area of the stent cell.

Update points in Gundert et al.20 were identified from
the predicted optima following a search of the RSM. The
equivalent to this in themulti-objective problem is to select
non-dominated points on the Pareto front as demon-
strated by Pant et al.39 However, as noted above, Kriging
usefully provides alternative means for generating update
points. Since the EI function blends exploration and
exploitation, used repeatedly, it simultaneously improves
the accuracy of theRSM throughout the design space and
enhances the search for optimum designs. Grogan et al.19

and Li et al.28 used EI updates in their single objective
optimisations formaximum radial strength andminimum
dog-boning, respectively.

Grogan et al.19 performed an impressive number of
simulations, running five separate optimisations, each
starting from a different 28 point Latin hypercube
DoE followed by 122 EI updates. It isn’t clear why the
separate optimisations were performed or whether the
problem warranted so many updates. Multiple runs are
often performed when assessing the mean and variance
of an optimisation strategy but that wasn’t the case in
Grogan et al.19 Experience suggests that approximately
70 simulations would have been sufficient (i.e., ten
times the number of design parameters) even though
there was greater than 6% variation in the optimum
designs found from the five optimisations. It’s possible
that mesh related issues compromised convergence and
it may have been advisable to force the Krig to regress
the potentially noisy data. The DoE size of 28 points
was well judged for seven design variables but it should
be possible to run smaller numbers of updates.

More modest numbers of EI updates were used by
Li et al.28 for four slotted tube design parameters in
four deployment simulation scenarios, the maximum
number of updates being 22. Despite using a simplified
stent model, shape optimisation using Kriging suc-
cessfully led to designs with reduced dog-boning.

Similarly to Gundert et al.,20 Bozsak et al.7 used
Kriging in a surrogate modelling framework but,

2DACE: Design and analysis of computer experiments.
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during the search steps, update points were identified
by maximising the probability of improving a current
optimum by a prescribed margin.

In contrast to the aforementioned approaches toRSM
updating, two other studies, both with a focus on shape
optimisation of a single crown unit for the maximisation
of fatigue resistance, have avoided using updates. Aza-
ouzi et al.4 adopted a trust-region strategy in which suc-
cessive RSMs were constructed for increasingly smaller
design space samples centred on optimal locations found
from each search. Starting from a very large volume de-
sign of a Nitinol strut, five iterations were needed to re-
duce strut volumeby 78%whilst satisfying constraints on
the minimum outward force of the complete structure
and the maximum value of the strain amplitude for all
elements. As one of the few examples of RSM-based
coronary artery stent optimisation studies to directly
apply constraints, it is useful to note that separate Krigs
were constructed for each constraint.

Updates can also be completely avoided by com-
mitting to an exhaustive number of points as
undertaken by Clune et al.9 in a randomly generated
Latin hypercube DoE for six geometry design vari-
ables. A Pareto front was successfully generated to
represent the trade-off between fatigue resistance and
flexibility. Using the MATLAB implementation of
NSGA II, a range of designs was depicted along the
front. Although very high accuracy was demonstrated
for the respective RSMs using cross-validation, it
would be interesting to determine the minimum num-
ber of designs that would actually be needed to achieve
a similar level of predictive accuracy.

From this review of the literature, it would appear
that, despite the increasing use of Kriging in coronary
artery stent design, Krig tuning is hidden from and/or
overlooked by many users. Also, there is limited evi-
dence for the efficient use of updating strategies.

FUTURE CHALLENGES AND OPPORTUNITIES

The emergence over the last 10 years of systematic
numerical optimisation of coronary artery stent design
has been catalysed by advances in:

(a) Surrogate modelling using response surface
models, particularly Kriging;

(b) Numerical modelling of structural perfor-
mance using FEA and

(c) Computing power and resources.

Taken together, these three elements have made it
possible to perform multiple, detailed (and computa-
tionally expensive) simulations of stent behaviour as
described by Pant et al.,38 Grogan et al.19 and Bozsak
et al.7 However, the majority of other reported studies

have introduced significant simplifications into the
numerical models, often involving the simulation of
single crown units, that don’t necessarily require high
performance computing resources. Therefore, al-
though it might be technically feasible to design be-
spoke, patient-specific coronary stents using detailed
3D simulations, the required computational run-times
are likely to render such an approach unusable in the
catheter-laboratory for the foreseeable future. Further,
even if simplified models that can be solved quickly
could be used in this way, regulatory approval is likely
to act as a significant barrier. What remains to be seen
is how detailed and simplified approaches to stent
optimisation could be used to address the low per-
centage of PCI cases that have sub-optimal outcomes.
Potentially, novel stent characterisations could be
developed that are optimised for sub-sets of challeng-
ing patient cases. Another area to explore concerns
optimisation of the delivery system wherein, for
example, balloon unpressurised diameter and inflation
pressure could be optimised to balance strut malap-
position against tissue damage. Other biological end-
points could also be targeted through pre-clinical
trials, for example, aiming to minimise inflammation
and/or restenosis. One of the biggest challenges in
these areas concerns the need and value of validating
computational predictions with in vitro experiments,
pre-clinical and clinical findings and, ultimately, with
clinical practice. Finally, since Kriging appears to be
becoming a favoured optimisation technology, the
knowledge gained as applied to coronary artery stents
should be applicable to the design of bifurcation stents
and bifurcation stenting protocols, heart valve frames,
peripheral stents and other biomedical devices.

CONCLUSIONS

Common to the design optimisation of coronary
artery stent systems considered here are the facts that:

(a) The great majority of design variables have
been geometric;

(b) Only a subset of performance measures have
been considered in each case;

(c) Host vessel geometry has been, at best, ide-
alised and often neglected completely;

(d) Surrogate modelling using Kriging has
become the dominant optimisation frame-
work.

It is also clear that the growth in optimisation
studies, often using Kriging, is a relatively recent
phenomenon. Consequently, despite a range of weak-
nesses and limitations, the work to date has revealed a
large array of opportunities for further systematic
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optimisation of coronary artery stenting, including
enhanced accuracy of computational modelling, more
efficient surrogate modelling, patient-specific device
optimisation and the challenges of solving a complex,
multi-disciplinary, multi-objective problem. Using
these methods it will be possible to design new itera-
tions of stents and/or novel stent/delivery system
characteristics. Ultimately, the aim of computational
modelling applied in these ways is to facilitate clinical
optimality for more patients in all interventional pro-
cedures.
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