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Abstract—Finite element models of the human head play an
important role in investigating the mechanisms of traumatic
brain injury, including sports concussion. A critical limitation,
however, is that they incur a substantial computational cost to
simulate even a single impact. Therefore, current simulation
schemes significantly hamper brain injury studies based on
model-estimated tissue-level responses. In this study, we present
a pre-computed brain response atlas (pcBRA) to substantially
increase the simulation efficiency in estimating brain strains
using isolated rotational acceleration impulses parameterized
with four independent variables (peakmagnitude and duration,
and rotational axis azimuth and elevation angles) with values
determined from on-field measurements. Using randomly
generated testing datasets, the partially established pcBRA
achieved a 100% success rate in interpolation based on element-
wise differences in accumulated peak strain (ep) according to a
‘‘double-10%’’ criterionoraverage regional ep ingeneric regions
andthe corpus callosum.Asimilarperformancewasmaintained
in extrapolation. The pcBRA performance was further success-
fully validated against directly simulated responses from two
independently measured typical real-world rotational profiles.
The computational cost to estimate element-wise whole-brain
or regional ep was 6 s and <0.01 s, respectively, vs. ~50 min
directly simulating a 40 ms impulse. These findings suggest the
pcBRA could substantially increase the throughput in impact
simulation without significant loss of accuracy from the
estimation itself and, thus, its potential to accelerate the
exploration of the mechanisms of sports concussion in general.
If successful, the pcBRAmay also become a diagnostic adjunct
in conjunction with sensors that measure head impact kinemat-
ics on the field to objectively monitor and identify tissue-level
brain trauma in real-time for ‘‘return-to-play’’ decision-making
on the sideline.

Keywords—Traumatic brain injury, Sports concussion, Rota-

tional acceleration, Pre-computation, Dartmouth Head

Injury Model.

INTRODUCTION

Sports-related concussion is a major public health
and socio-economical problem in the United States
estimated to occur in 1.6–3.8 million individuals
annually, and is particularly common in football and
ice hockey.11 However, concussions are frequently
under- or undiagnosed in a competitive athletic envi-
ronment because signs of cognitive alterations may be
mild and masked, unrecognized, or ignored by the
athletes.35 Both concussive and subconcussive head
impacts have been associated with acute brain injury as
well as chronic neurodegeneration.36 Growing evi-
dence suggests that a substantial group of athletes
without clinically diagnosed concussion also exhibits
measurable neurocognitive and neurophysiological
impairment present on diffusion tensor imaging
(DTI)2,33 and functional magnetic resonance imaging
(fMRI).6,50 In addition, these athletes experience sig-
nificantly more impacts, especially to the top-front of
the head.6,50 A recent study analyzing head impact
exposures (HIEs)15 in a cohort of concussed athletes
suggests that those with delayed diagnosis of concus-
sion sustained significantly more impacts on the day
and within seven days of injury than those with
immediate diagnosis of concussion.3 These studies
underscore the importance of the cumulative effects of
repetitive head impacts on the risk of concussion and
associated neurodegeneration.

To better understand the mechanisms of sports-
related concussion, on-field measurements of HIE have
provided important insights on the kinematics
involved.3–5,15 Various kinematics-based injury metrics
have been proposed to assess the risk of concussion,
including the head injury criterion (HIC), a generalized
acceleration model for brain injury threshold (GAM-
BIT),39 head impact power (HIP),40 and the HIT
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severity profile (HITsp).17 Because many believe rota-
tional acceleration to be a primary mechanism for
diffuse axonal injury (DAI), including loss of con-
sciousness and concussion,21,27 more recent efforts
such as the rotational injury criterion (RIC) and power
rotational head injury criterion (PRHIC) based on the
HIC and HIP counterparts, respectively,26 and the
brain injury criterion (BrIC),48 are solely composed of
head impact rotational components. These efforts are
in-line with the work by Rowson and colleagues who
investigated head rotational kinematics as an injury
risk function in football,45 while later they extended
their work by combining both linear and rotational
kinematics to assess the probability of concussion.44

Despite these efforts, no consensus has been reached
on an appropriate kinematics-based injury metric or a
concussion tolerance threshold to date. In part, this
may be because these injury metrics, alone, do not
provide region-specific brain mechanical responses that
are presumed to be directly responsible for initiating
the injury at the tissue level.

To understand how external energy in head impact is
converted into regional brain mechanical responses
sufficient to initiate the injury at the microstructural
level, finite element (FE) models of the human head play
a unique and important role in estimating tissue-level
brain mechanical responses such as strain, stress, and
pressure that are otherwise infeasible or challenging to
obtain in live humans.57 For example, several research
groups have attempted to establish a concussion
threshold based on model-estimated regional brain
responses from analyses of reconstructed NFL
impacts,29,32,59 pedestrian and motorcycle accidents,55

and instrumented helmets from collegiate football
players.49 Recent work evaluating model-estimated
strain and strain rate in the corpus callosum also
showed promise in correlating regional brain responses
directly with longitudinal changes in neuroimaging
parameters.34 Further, the consistency between model-
estimation and neuroimaging findings was significantly
improved in terms of the spatial distribution and group-
wise extent of potential white matter damage when
using strains along white matter fiber directions instead
of isotropic maximum principal strains.2,24 Because
brain strains are significantly correlated to rotational
(arot) but not linear (alin) acceleration,25 parametric
studies have also investigated the significance of arot
directionality and pulse shapes.28,42,54,58

However, a critical limitation in these head FE
models is that they incur a substantial computational
cost to simulate even a single head impact (hours on a
modern multi-core computer or even a super com-
puter).13,23,24,29,41,48,49,59 In large part, therefore, these
models have been limited to studies that focus on single
head impacts to date, and current FE simulation

schemes are likely impractical to handle the amount of
computations to study the cumulative effects of
repetitive head impacts especially on a large scale (e.g.,
hundreds of players where each athlete typically sus-
tains hundreds of impacts in a single season of
play).3,4,6,52 In addition, the extensive computational
cost and demand in high performance computational
hardware also significantly hamper the establishment
of injury risk metrics based on model-estimated tissue-
level mechanical responses such as strain or stress as
opposed to global kinematic measures or their variants
alone.48 A substantial increase in the efficiency in head
impact simulation is, therefore, necessary and much
desired to address the computational challenges in
model-based brain injury studies in order to accelerate
the exploration of the mechanisms of traumatic brain
injury (sports concussion in particular) in the future.

In this study, we present the concept of a pre-com-
puted brain response atlas (pcBRA) to enable an effi-
cient estimation (within seconds or instantaneously as
opposed to hours) of brain strain responses without
significant loss of accuracy from the pcBRA estimation
itself. Critical to its potential success is the ability to
use isolated arot alone instead of full degrees-of-free-
dom (DOFs) head impact as model input to estimate
brain strain responses,25 thereby substantially reducing
the dimensionality of model input parametric space.
Ultimately, the practical utility of the technique
depends on a systematic and quantitative comparison
of pcBRA-estimated brain strain responses with their
counterparts directly simulated from actual full DOFs
head impacts. In our current study, however, we focus
on assessing the pcBRA performance (accuracy and
efficiency) using parameterized or idealized arot
impulses. An initial evaluation of the pcBRA perfor-
mance was also conducted using two independently
measured typical real-world arot profiles as input to
gain important confidence of the technique. If suc-
cessful, the pcBRA could substantially increase the
throughput in head impact simulation and, thus,
accelerate the exploration of the biomechanical mech-
anism of sports-related concussion.

METHODS

The Dartmouth Head Injury Model (DHIM)

All brain responses were simulated using the
recently developed and validated Dartmouth Head
Injury Model (DHIM; Fig. 1).24,25 Briefly, the DHIM
was created with high mesh quality and geometrical
accuracy based on high-resolution magnetic resonance
images (MRI) of an athlete. When neuroimaging is
available for other individuals, the DHIM also allows
the creation of a geometrically accurate subject-specific
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head FE model. The DHIM is composed of solid
hexahedral and surface quadrilateral elements with a
total of 101.4 k nodes and 115.2 k elements (56.6 k
nodes and 55.1 k elements) and a combined mass of
4.562 kg (1.558 kg) for the whole head (brain). The
average element size for the whole head and the brain
is 3.2 ± 0.94 mm and 3.3 ± 0.79 mm, respectively.
The material properties for the brain and other head
components are reported previously.24,25 Because no
consensus has been reached on how best to charac-
terize brain material properties and experimental
observations conflict on the relative stiffness of grey
and white matter,53 the entire brain was modeled as a
homogenous medium without incorporating the pos-
sible inter-regional differences in material properties or
material property anisotropy using a hyperelastic
material model identical to the ‘‘average model’’ in
Kleiven.29 DHIM achieved an overall ‘‘good’’ to
nearly ‘‘excellent’’ validation performance against rel-
ative brain-skull displacement and pressure responses
from cadaveric impacts,19,20,38,51 as well as full-field
brain strains in a live human volunteer,47 as previously
reported.24,60

Reduction in Model Input Parametric Dimension

Conceptually, a head FE model is simply a mathe-
matical function mapping impact kinematic parame-
ters (i.e., time-varying alin and arot accelerations relative
to the head center of gravity, CG) into regional brain
mechanical response variables such as strain, stress and
pressure as well as their derivatives either for an indi-
vidual element or a specific region of interest (ROI;
e.g., the entire white matter, the cerebrum, or the

corpus callosum). The functional mapping for a
response distribution within the FE domain is
abstracted as the following equation:

F ¼ F alin; arotð Þ; ð1Þ

where the model-specific function, F, is composed of
material properties of various components, interfacial
boundary conditions, meshes, element formulations,
and numerical simulation solver, etc. Because a given
head impact leads to a unique set of output responses,
F is deterministic; thus, allowing a set of brain
responses to be pre-computed by systematically vary-
ing the input parameters to build a ‘‘library’’ or ‘‘look-
up table’’ to enable a highly efficient ‘‘interpolation’’
for brain response estimates using solutions already
computed. A similar pre-computation strategy has al-
ready been successfully employed in image-guided
neurosurgery,16 but has not been applied in brain
dynamic simulations before. A brute-force approach is
likely infeasible here because of the input’s high
dimensionality (a total of 12 DOFs since each com-
ponent of the 6-DOFs accelerations can be an inde-
pendent function of time) in head impact that would
require an exponential computational complexity of
O MNð Þ, where N and M are the number of parametric
dimensions and the number of samples along each
dimension, respectively. Therefore, reduction in the
dimension of model input parametric space or the
number of independent variables required to pre-
compute the response atlas is essential.

It is well known that brain strain responses are
significantly correlated to arot but not to alin

23,29,49,59

Using two independently established and validated
head FE models, the DHIM and SIMon, brain

FIGURE 1. The DHIM with color-coded regions of interest showing the head exterior (a) and intracranial components. (b) The
model includes part of the spinal cord to improve its biofidelity in the inferior region, which was excluded from analysis in this
study.
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strain-related responses (strain, strain rate and stress)
are found to be significantly correlated to both the
magnitude and duration of arot, but not to alin,

25

because of brain’s high bulk modulus. These results
establish the feasibility of using isolated arot-only to
estimate brain strain responses, Fstrain, without signifi-
cant loss of accuracy. Therefore the following func-
tional mapping is obtained that effectively halves the
number of parametric dimensions required to establish
the brain strain response atlas:

Fstrain � F arotð Þ: ð2Þ

Further reduction in the parametric dimension is
necessary and possible because the temporal charac-
teristics of on-field head impacts are similar where a
single largest acceleration peak dominates (typically
with much smaller secondary peaks) and is similar to a
triangular waveform.9,10 Using the largest rotational
acceleration peak, arot can be parameterized with four
independent variables including its peak magnitude
(a

p
rot) and duration (Dt), as well as the azimuth and

elevation angles, h and a, characterizing the instanta-
neous rotational axis, X. In practice, X is determined
by the arot components along the three major axes
when the resultant a

p
rot is reached. The strain response

functional mapping is re-written into:

Fstrain � F arotð Þ ¼ F1 a
p
rot;Dt; h; að Þ þ Ferr; ð3Þ

where F1 is the response from the parameterized arot
symbolizing a 1st-order approximation, while Ferr is
the residual error representing the element-wise dif-
ference distribution between pcBRA-estimated
responses and the ground-truth directly from the full
DOF arot. In sum, these idealization and parameteri-
zation of arot allows using four instead of as many as 12

DOFs to generate model inputs, which is the basis of
the pre-computation in this study.

Rotational Axis Sampling Space

The rotational axis sampling space can be further
halved because of the head geometrical symmetry rel-
ative to the mid-sagittal plane (i.e., xz-plane in Fig. 2a).
For a given X h; að Þ passing through the head CG, the
head rotates counter clock-wise (CCW) by convention.
A clock-wise (CW) rotation with an identical magni-
tude temporal profile with respect to the xz-plane
mirroring axis, X0 �h; að Þ, or equivalently, a CCW
rotation with respect to the its negative axis,
X00 180� � h;�að Þ, produces a symmetric brain response
relative to the mid-sagittal plane compared to that
using X as the rotational axis. When X traverses
through the shaded hemisphere shown in Figs. 2b and
2c, X00 traverses through the other un-shaded hemi-
sphere. In combination, therefore, X and X00 sample the
entire rotational axis parametric space.

To further illustrate the rotational axis sampling
space, Fig. 3 shows pairs of rotational axes that pro-
duce mirroring or symmetric brain responses when the
head is subjected to rotational impulses of an identical
magnitude temporal profile. The shaded hemisphere in
Figs. 2b and 2c corresponds to the shaded area in
Fig. 3 (i.e., area defined by h range [–90�, 90�] and a
range [–90�, 90�]; including the boundary). For a
rotational axis in the unsampled region (e.g., X00 and
X000 in Fig. 3), the brain responses can be easily
obtained by mirroring the responses from the corre-
sponding rotational axis in the sampled region (e.g., X
and X0, respectively, in Fig. 3) about the mid-sagittal
plane.

FIGURE 2. Schematic of head rotational axes and the sampling space in iso- (a), top (b), and frontal (c) views. Brain responses
using X and X00 (solid), or X0 and X000 (dashed), as the rotational axes are symmetric about the mid-sagittal or xz-plane. When X
traverses through the shaded hemisphere, its counterpart, X00, traverses through the other un-shaded hemisphere. In combination,
they sample the entire rotational axis parametric space. The dark area corresponds to the same identified parametric space in
Fig. 3.
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Generation of pcBRA for Brain Strain Responses

Triangulated arot-only impulses parameterized by
four independent variables, a

p
rot,Dt, h, and a, were gen-

erated as model inputs by combining selected values of
each variable with their respective ranges determined
from on-field measurements. Because higher a

p
rot values

are likely more relevant to potential injury but occur less
frequently,7,43 we have constrained a

p
rot to 1500–

4500 rad/s,2 or approximately between the 50th and the
95th percentile of a

p
rot in on-field ice-hockey.23 The lower

and upper bounds were also comparable to the 75th
percentile subconcussive and (slightly below) the 50th

percentile concussive a
p
rot magnitudes in collegiate

football, respectively (Fig. 4).45 The range of the
impulse duration,Dt, was based on the temporal char-
acteristics of high school football on-field measurements
(mean plus and minus twice the standard deviation
according to the reported duration of 10 ± 3 ms for
alin),

8 which encompassed the average alin impact
duration of 14 ms reported in collegiate football.43 The
full ranges of h and a were both [–90�, 90�], as explained
earlier (Fig. 3). To further limit the amount of compu-
tation in this study, they were restricted to [45�, 90�] and
[–30�, 30�], respectively (dark area in Fig. 3), effectively

FIGURE 3. Schematic of head rotational axis sampling space (left). Each pair of sampling points connected by a line segment
generates brain responses symmetric about the mid-sagittal plane when using an identical resultant arot profile. Brain strain
responses in deformed states are shown for two pairs of rotational axes (right). Symmetric responses about the mid-sagittal plane
were evident for those generated by X and X00, and by X0 and X000, respectively. However, responses generated by X and X0, and by
X00 and X000, were not (see circled regions). Both the shaded area (h range [–90�, 90�] and a range [–90�, 90�]) and the lower half
bounding box (h range [–180�, 180�] and a range [–90�, 0�]) can be used to sample half of the parametric space (the former was
chosen in this study, which is identical to the shaded hemisphere in Fig. 2).

FIGURE 4. Distribution of the training (black dots) and testing (circles, crosses and stars for in-range interpolation and below-
and above-range extrapolation, respectively) datasets as orthogonal 2D projections of the 4D data points on the ap

rot -Dt (a) and h-a
planes (b). Locations for representative ap

rot values that approximately correspond to characteristic on-field measurements are also
shown. Kinematic variable values for one representative interpolation testing data point are: ap

rot 5 2647.1 rad/s2, Dt 5 11.1 ms,
h 5 66.9�, a 5 –11.4� (arrows).
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simulating rotational impulses near a sagittal rotation
corresponding to (oblique) frontal impacts in the para-
metric space. The empirically determined range, step
size, and the number of samples for each variable are
summarized in Table 1. Combining each unique value
for each individual variable, a total of 500
(5 9 5 9 4 9 5) rotational impulses were generated to
serve as the pcBRA training dataset, which effectively
formed a four-dimensional (4D) regular grid data
structure (their orthogonal two-dimensional (2D) pro-
jections are shown in Fig. 4).

For all parameterized arot impulses, an additional
25 ms zero acceleration was appended to ensure
reaching brain peak responses in simulation; Fig. 5).
The resulting arot profile was used to simulate a rigid
skull rotation about the given axis passing through the
head CG (the skull, scalp and face were all simplified as
rigid bodies). Maximum principal engineering strain (e;
Abaqus output variable ‘‘NEP’’) was extracted for
each brain element at every temporal point (resolution
of 1 ms) to obtain the peak value (ep) regardless of the
time of occurrence.

Performance Evaluation Using Idealized arot

Interpolation

A testing dataset of 100 rotational impulses were
created by randomly generating values for each indi-

vidual variable within the corresponding range
(Table 1) following a uniform distribution and then
randomly combining them with the generated values
(Fig. 4).25 The ground-truth ep at each element was
obtained via a direct simulation using each impulse as
model input. By comparison, the pcBRA-interpolated
ep was obtained through a multivariate linear inter-
polation (via Matlab function ‘‘interpn.m’’) operated
independently for each element using values at neigh-
boring 4D grid points in the atlas.18 Element-wise
absolute differences in ep were obtained and further
normalized by the directly simulated ground-truth
counterparts to calculate the relative difference.
Because the resulting normalized, element-wise differ-
ences constituted a spatial distribution within the FE
domain, we reported the volume fractions of brain
experiencing ep element-wise differences relative to the
directly simulated ground-truth above a range of per-
centage levels (varied from 0 to 100% at a step size of
1%) to characterize their response differences.

The normalized differences relative to the ground-
truths, alone, however, did not necessarily reflect any
clinical significance relative to injury-causing thresh-
olds (e.g., the relative difference could be large in
percentage but its magnitude may be sufficiently small
and clinically irrelevant).25 Therefore, the element-wise
response differences were further normalized by a
range of injury thresholds (0.05–0.25 with a step size of
0.05) to evaluate their relative differences against each
injury threshold values for potential real-world injury
risk assessment. The range selected virtually encom-
passed thresholds established from an in vivo animal
study (Lagrangian strain range 0.09–0.28 with an
optimal threshold of 0.18, or equivalently, engineering
strain range 0.086–0.249 with an optimal threshold of
0.166)1 and FE-based analyses of real-world injury
cases (e.g., 0.19 in the grey matter,59 0.21 (0.26) in the
corpus callosum (grey matter).29 Similarly, we reported
the volume fractions above a range of percentage dif-
ferences for each injury threshold.

For each testing rotational impulse evaluated, we
defined that the pcBRA-interpolated response was
sufficiently accurate when the volume faction of large
element-wise differences in ep (i.e., >10% relative to
the ground-truth or a given injury threshold) for the
whole-brain was less than 10% (dubbed the ‘‘double-
10%’’ criterion). A success rate as the percentage of the
testing impulses for which the pcBRA-interpolation
was sufficiently accurate was used to evaluate the
overall pcBRA interpolation accuracy.

Finally, because tissue-level regional responses can
be conveniently used to assess region-specific risk of
injury for a given ROI,29,49,59 we also computed the
volume-weighted regional average ep for generic brain
regions (whole-brain, cerebrum, cerebellum and

TABLE 1. Summary of the rotational impulse parameteriza-
tion variables and their ranges, step sizes and numbers of

samples used to establish the pcBRA.

Variable ap
rot (rad/s

2) Dt (ms) h (deg) a (deg)

Range [1500, 4500] [4, 16] [45, 90] [–30, 30]

Step size 750 3 15 15

# of samples 5 5 4 5

FIGURE 5. The normalized, triangulated head rotational
impulse temporal profile (Dt range 4–16 ms).
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brainstem) and the corpus callosum to evaluate the
pcBRA estimation performance. Similarly, the pcBRA
estimate was considered sufficiently accurate when the
absolute difference between the pcBRA-estimated
response and the ground-truth was within 10% relative
to the ground-truth or the same range of injury
thresholds. Analogously, a success rate was used to
assess the overall pcBRA performance in regional
response estimate.

Extrapolation

Because the training dataset input variables were
constrained within their ranges (Table 1) and did not
encompass the entire sampling space, it was necessary to
evaluate the pcBRA extrapolation performance. This
was especially true for a

p
rot because only a relatively

small range of on-field measurements (50–95th percen-
tile values in on-field ice hockey; Table 1) was covered.
We did not evaluate the extrapolation performance for
other variables because for Dt, twice the standard
deviation covered approximately 95.4% of occurrences
(assuming a normal distribution). Although h and a
were also restricted to a small range, they were inten-
tionally limited and could easily be expanded to cover
the entire sampling space in the future.

Two separate testing datasets (N = 50 each) were
randomly generated by constraining a

p
rot to a range either

immediately below (500–1500 rad/s2) or above (4500–
7500 rad/s2) that in the training dataset (Fig. 4) while
maintaining the same ranges for other variables using the
same approach described previously. The lower and
upper end of a

p
rot for the below- and above-range

extrapolation approximately corresponded to the 25th
percentile subconcussive and the 95th percentile con-
cussivea

p
rot values for collegiate football, respectively

(Fig. 4).45 Element-wise whole-brain strain responses
were obtained via a spline-based extrapolation (via
Matlab function ‘‘interpn.m’’) using values at neighbor-
ing grid points in the pcBRA.18 Similarly, we computed
the volume fractions above a range of percentage dif-
ferences in ep relative to the directly simulated ground-
truth and the same range of injury thresholds, and fur-
ther reported the success rates based on the ‘‘double-
10%’’ criterion. In addition, the success rates for
pcBRA-extrapolated regional strain responses for gen-
eric regions and the corpus callosum were also reported.

Performance Evaluation Using Two Typical Real-World
arot Profiles

The pcBRA performance was further assessed by
comparing against the directly simulated results using
two typical arot profiles independently measured from
anthropomorphic test device (ATD) as inputs.10,46

Because only the resultant profiles were available,
mono-axis sagittal rotations were simulated using the
corresponding entire arot profile (Xsag in Fig. 3). By
comparison, the major arot peak was parameterized
into a triangular impulse by maintaining an identical
rotational velocity, v

p
rot, andDt resulting from the cor-

responding major peak, as detailed in Fig. 6 for the
two profiles. The resulting parameterized impulses
were used to interpolate element-wise e over time as
well as ep from the pcBRA. Similarly, we reported the
element-wise ep differences and whole-brain averagee
as a function of time between the two brain responses
for each arot profile.

Significance of arot Parameterization Impulse Shape

Our pcBRA was established based on triangulated
arot impulses. To investigate the significance of arot
parameterization impulse shape, a sine and a haversine
impulse resulting in an identical v

p
rot (of 15 rad/s) from

a typical triangular impulse (a
p
rot = 3000 rad/s2,

Dt = 10 ms) were further generated as model inputs to
simulate a sagittal rotation (Xsag in Fig. 3). The
resulting ep was similarly compared against that from
the triangular impulse.

Data Analysis

For all simulations, brain strain responses were
obtained from the DHIM with the given arot profile as
model input via Abaqus/Explicit (Version 6.12; Das-
sault Systèmes, France). The typical runtime for a
40 ms impulse was ~50 min on a multi-core Linux
cluster using 8 CPUs with available Abaqus tokens
(Intel Xeon X5560, 2.80 GHz, 126 GB memory). Ele-
ment-wise ground-truth ep was obtained for each
impulse simulated. Element-wise ep and regional
average ep for generic brain regions and the corpus
callosum were also interpolated or extrapolated using
the pcBRA. With 12 CPUs executing in parallel, the
computational cost to estimate an element-wise ep and
a regional average ep for one impulse was 6 s and
<0.01 s, respectively. All data analyses were per-
formed in MATLAB (R2014a; Mathworks, Natick,
MA).

RESULTS

Performance Using Idealized arot

The average volume fraction for the whole-brain at
a difference percentage level of 10% in ep was calcu-
lated for each testing impulse relative to either the
ground-truth or a range of injury thresholds to
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compute an average and a range for the corresponding
interpolation or extrapolation testing dataset.
Regardless of the normalization denominator, the
pcBRA in-range interpolation had a 100% success
rate. When normalized by the ground-truths, an 80%
success rate was achieved for the below-range
extrapolation, and it was nearly 100% for the above-
range extrapolation except for one failed case with
the highest vrot. When normalized by the range of
injury thresholds, higher success rates were achieved
at larger injury thresholds, as expected. The below-
range extrapolation achieved a 100% success rate
except at the lowest threshold of 0.05. For the above-
range extrapolation, however, the accuracy perfor-
mance depended on the magnitude of a

p
rot as nearly a

100% success rate was achieved when a
p
rot was low

even at the lowest threshold (only one case failed),
while it significantly degraded when a

p
rot was high

(Table 2). At the largest threshold of 0.25, however,
all above-range extrapolations achieved a 100%
success rate.

Whole-brain volume fractions for response differ-
ences exceeding the full range of percentage difference
levels (0–100%) are shown in Figs. 7, 8, and 9 when
normalized by either the ground-truths or the range of
injury thresholds for pcBRA in-range interpolation,
below- and above-range extrapolations, respectively.

To investigate the location where large relative dif-
ferences occurred, a Pearson correlation test between
the element-wise differences in ep relative to the directly
simulated ground-truth and the ground-truth ep, itself,
was performed for all impulses. We found a consis-
tently significant negative correlation between the two

(average correlation coefficient of –0.165 (range –0.077
to –0.344); p< 0.0001), suggesting that large differ-
ences mostly occurred in regions with low ep responses.

A representative impulse was chosen to visually
compare the magnitude and distribution of the
ground-truth ep and the nearly identical pcBRA-
interpolated counterpart (Fig. 10, top panel). The
responses at the 16 (24) neighboring grid points are
also shown, which essentially provided the response
‘‘modes’’ for interpolation (Fig. 10, bottom panel).

The pcBRA-estimated regional average ep achieved a
100% success rate regardless of the normalization
denominator or ROI except when a

p
rot was more than 1

krad/s2 larger than the upper bound in the training
dataset (Fig. 11). When normalized by the ground-truth,
a 100% success rate was achieved even for the highest a

p
rot

regardless of the ROI. However, when normalized by the
injury thresholds, the success rate degraded especially for
larger a

p
rot, although a 100% success rate was still main-

tained at threshold levels ‡ 0.2.

Performance Using Typical Real-World arot Profiles

The pcBRA-estimated ep magnitude and distribu-
tion were nearly identical to those generated from the
‘‘ground-truth’’ ep obtained directly from the simula-
tion using each given arot profile as input (Figs. 12, 13;
top panels). The nearly identical ep response was fur-
ther confirmed by the volume fraction of their whole-
brain ep differences (volume fraction of 1.80 and 1.31%
at a difference percentage level of 10%; Figs. 12c, 13c)
and the nearly identical whole-brain average e peak
values (circled regions in Figs. 12d, 13d).

FIGURE 6. Parameterization of two independently measured typical real-world resultant arot profiles into triangular impulses

(dark lines) by maintaining an identical vp
rot and Dt determined from the corresponding major peak (shaded area). Note that the

parameterized ap
rot values in (a)10 and (b)46 were 9.2% lower and 20.2% higher than the corresponding measured counterparts,

respectively. Although the measured ap
rot in (b) was 25.2% lower than that in (a), its vp

rot was 22.7% higher.
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Significance of arot Parameterization Impulse Shape

The three arot profiles (Fig. 14a) of an identical v
p
rot

and Dt led to nearly identical ep responses (a volume
fraction of 0.19% (2.76%) exceeded a 5% difference
percentage level when comparing ep from the sine
(haversine) impulse relative to that from the triangular
impulse; Fig. 14b), which was further confirmed by
their nearly identical ep magnitudes and distributions
(Fig. 14c).

DISCUSSION

A substantial increase in head impact simulation
efficiency is likely critical to ultimate deploy compu-
tational models of the human head for large-scale
brain injury studies, particularly in contact sports.
Using parameterized, triangulated arot impulses as
training dataset (N = 500), we have successfully
established a subset of a pre-computed brain response
atlas (pcBRA) partially sampling the 4D parametric
space based on the DHIM to accurately and efficiently
estimate brain strain responses. Using randomly gen-
erated in- (N = 100), below- (N = 50) and above-
range (N = 50) testing datasets, we have demonstrated
excellent pcBRA accuracy performance for element-
wise response estimation especially for in-range inter-
polation as a 100% success rate was achieved based on
the ‘‘double-10%’’ criterion regardless of the normal-
ization denominator (directly simulated ground-truths
or injury-causing thresholds). An excellent perfor-
mance (100% success rate) was also achieved when
interpolating regional average ep for all generic ROIs
and the corpus callosum, regardless of the normali-
zation denominator. For extrapolation, excellent or
nearly excellent performance was maintained for ele-
ment-wise or regional average ep as long as a

p
rot was

within 1 krad/s2 relative to its bounds in the training
dataset, again, regardless of the normalization
denominator. The slightly lower success rate for the
below-range extrapolation (80%) was likely because of
the rather small ep due to extreme low a

p
rot in input.

Even with much higher a
p
rot for the above-range

extrapolation, excellent or nearly excellent perfor-
mance was still maintained when normalized by the
ground-truth or larger injury-causing thresholds (Ta-
ble 2). Further, relatively larger element-wise differ-
ences were mostly located in regions with low ep values
(i.e., in corridors along the rotational axes), suggesting
more accurate estimates to occur with higher ep values
that are likely more injury-relevant.

The pcBRA dramatically reduced the computa-
tional cost required to achieve element-wise whole-
brain responses over that from direct simulation (6 sT
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using 12 CPUs as opposed to ~50 min for a 40 ms
impulse using 8 CPUs (the number of CPUs for
Abaqus simulation was limited by the available license
tokens)). Because regional ep values can be pre-com-
puted for any arbitrary ROI (generic or targeted, e.g.,
corpus callosum) based on the established atlas
responses, an instantaneous pcBRA estimate of brain
regional strain levels is readily achievable (<0.01 s for
each individual interpolation/extrapolation) to assess
region-specific injury risk. These results suggest the
potential for the pre-computation strategy to sub-
stantially increase the throughput in head impact
simulation without significant loss of accuracy relative
to responses directly simulated from the parameterized
impulses. Therefore, the pcBRA could have the capa-
bility to enable a large-scale tissue-level, model-based
investigation of the mechanisms of traumatic brain
injury in the future (e.g., to evaluate brain responses
from repetitive head impacts in contact sports).

While it may be possible to reduce FE model sim-
ulation time via simplified models with coarser meshes,
the degradation in solution accuracy is never desirable
and is against the general trend of model development.
More powerful computers are certainly effective in

reducing simulation time. However, with the ever-
growing model sophistication and mesh resolution, the
computational challenge persists. Regardless, none of
these techniques would be capable of providing an
instantaneous regional response in an arbitrary ROI
that the pcBRA readily offers, even on a low-end
computer. These findings clearly underscore the sig-
nificant advantages of pcBRA over other conven-
tional, alternative approaches.

Essentially, the pcBRA technique is an end-to-end
sampling of a smooth and continuous parametric
hyperspace, which has not been applied to brain
dynamic simulation before. Additional approximation
errors can occur especially for extreme out-of-range
extrapolations. While this may seem undesirable, it is
critical to consider the utility of model simulation from
a system’s perspective in a concerted effort (as opposed
to an isolated technique by itself) for brain injury
studies, especially when (potentially even larger)
uncertainties or variations exist in head impact kine-
matics, neuroimaging, cognitive measures and con-
cussion diagnosis.24 On the other hand, increasing
the training dataset sampling density and range (i.e.,
to avoid ‘‘extrapolation’’) could easily reduce the

FIGURE 7. Volume fractions for element-wise differences in ep relative to the ground-truths and a range of injury thresholds
(0.05–0.25) for in-range pcBRA interpolation. Curves and shaded areas represent the average and the range of volume fractions at
each difference percentage level for all testing impulses. When normalized by the range of injury thresholds, the volume fractions
at each difference percentage level decreased with the increase in the threshold value, as expected.
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unwanted errors. Further, because the accuracy of
each simulated pcBRA solution solely depends on the
head model, any error in kinematic inputs (e.g., under-
or over-estimation of a

p
rot or v

p
rot) could also be easily

compensated for without re-running the pcBRA sim-
ulations. These observations highlight the unique sca-
lability of the pcBRA technique.

It must be recognized that the pcBRA feasibility
comes at the cost of idealizing full DOFs head impact
kinematics into a reduced system by parameterizing
the largest single peak of isolated arot-only with the
minimum number of DOFs (4 as opposed to as many
as 12), which would likely result in further loss of
accuracy. However, our validations against the directly
simulated results using two independently measured
typical real-world arot profiles suggest that the pcBRA
could achieve an excellent performance when simulat-
ing mono-axis rotations, which established important
confidence of our technique. While subsequent sec-
ondary arot peaks did influence brain strain response
history, they did not significantly alter the peak
responses induced by the first major peak (see
Figs. 12a, 12b and 13a, 13b for element-wise ep and
circled regions in Figs. 12d, 13d for whole-brain

average e peaks). Importantly, because current tissue-
level injury metrics including strain, strain rate, their
product,27stress, as well as their variants such as
cumulative strain damage measure (CSDM)49 are all
based on tissue-level accumulated peak responses ra-
ther than their response history during the 40–100 ms
impact, the nearly identical element-wise peak strain
magnitudes between the pcBRA-estimated and the
ground-truth counterparts well justify the use of
pcBRA for any real-world, practical application.

The arot peak parameterization impulse shape (tri-
angular, sine, or haversine) appears unimportant even
when their a

p
rot could differ by as much as 21.5%

(Fig. 14). As long as they maintain an identical v
p
rot and

Dt, they lead to almost the same ep level. This could be
conceptually explained using a dimensional analysis
because the transformed brain strain energy is likely
proportional to the rotational kinetic energy while they
are each proportional to the square of ep and v

p
rot,

respectively.25 Therefore, although the parameterized
a
p
rot was nearly ~10% lower (Fig. 6a) or 20% higher

(Fig. 6b) than the measured counterpart for the two
real-world profiles, the pcBRA-estimated and ground-
truth ep magnitudes and distributions were nearly

FIGURE 8. Volume fractions for element-wise differences in ep relative to the ground-truth and the same range of injury
thresholds for below-range pcBRA extrapolation.
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identical (Figs. 12a, 12b; Figs. 13a, 13b). More inter-
estingly, while the measured real-world a

p
rot in Fig. 6b

was more than 25% lower than that in Fig. 6a, the
corresponding v

p
rot was nevertheless nearly 23% higher,

leading to a ~9% increase in whole-brain average ep

magnitude (Figs. 12b, 13b). While these findings
clearly suggest that v

p
rot as opposed to a

p
rot may be more

informative for injury risk assessment as previously
recognized,20,25,28,29,48,49,58 a longerDt lowers ep (e.g.,
whole-brain average ep magnitude decreased by more
than 15% whenDt was varied from 4 to 16 ms with v

p
rot

of 25 rad/s), as similarly observed before.28 The de-
crease in ep is likely a result of increased energy dissi-
pation over a longerDt due to the brain viscoelastic
property. Therefore, we have chosen to parameterize
a
p
rot andDt separately instead of using v

p
rot directly, al-

beit the latter could allow using three as opposed to
four independent variables to establish the pcBRA
(and hence, to further significantly reduce the compu-
tational cost and atlas storage space).

It should be noted that our current pcBRA perfor-
mance evaluations were limited to mono-axis, mono-
phasic (i.e., acceleration-only) rotations because only
resultant arot profiles were available.10,46 However, a
real-world full-DOF arot profile could be much more

complicated involving multiple rotational axes in time,
or more likely, continuous change of instantaneous
rotational axis during impact. In addition, deceleration
will inevitably follow the acceleration to avoid an
unbounded but unphysical head motion in real world.
Parametric studies using multi-axis, multi-phasic
impulses would be valuable to gain insights into their
significance on brain responses. However, most studies
are limited to mono-axis, mono-phasic rotations to-
date,28,42,54 except for one studying mono-axis,
bi-phasic rotations using an idealized 2D model.58

Nevertheless, it is important to further investigate the
loss of accuracy or the residual error, Ferr in Eq. 3,
against responses from real-world full-DOF arot to
assess the pcBRA utility for real-world injury analysis
in the future.

Further, when secondary arot peaks become
increasingly substantial that may violate the assump-
tion of a single major arot peak, the pcBRA may
become invalid (e.g., some brain regions may experi-
ence higher responses at a later time but are not cap-
tured). Interesting, the pcBRA in these cases may still
serve as an upper- or lower-bound of the true
responses (e.g., upper-bound as suggested by a 2D
parametric study58; albeit, further studies using a

FIGURE 9. Volume fractions for element-wise differences in ep relative to the ground-truth and the same range of injury
thresholds for above-range pcBRA extrapolation (all testing impulses clustered).
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validated and realistic 3D head model are still war-
ranted). It must also be recognized that these rather
complicated impact conditions will most likely invali-
date other kinematics-based injury metrics as well that
similarly focus on a single major arot peak. An accurate
direct simulation of the true brain strain responses

(peak and history) will inevitably place a more strin-
gent scrutiny on head impact measurement systems
that provide the required model input in the first place.
These observations, once again, highlight the impor-
tance of a concerted effort necessary to elucidate the
biomechanical etiology of sports-related concussion.

FIGURE 10. Comparison between the pcBRA-interpolated ep and the ground-truth from the directly simulated along with their
absolute difference (top panel; location for largest differences identified) for a representative rotational impulse in the testing
dataset (impulse parameters identified in Fig. 4). The corresponding pcBRA responses at the 16 (24) neighboring grid points are
also shown (bottom panel; variable values are: ap

rot1 5 2250 rad/s2, Dt1 5 10 ms, h1 5 60�, a1 5 –15�; ap
rot2 5 3000 rad/s2,

Dt2 5 13 ms, h2 5 75�, a2 5 0�). Each row of the 4-by-4 grid represents a comparable response magnitude with an identical vp
rot ,

while each column represents a similar distribution pattern with an identical rotational axis.

A Pre-computed Brain Strain Response Atlas 1889



Regardless, to account for these inherent limitations
with the pcBRA strategy (i.e., mono-axis, mono-phasic
rotations that only capture the single major arot peak),
it is possible to further compensate for Ferr due to
model input idealization and parameterization. How-
ever, injecting additional perturbation parameters of
the time-varying arot profile (e.g., mono- vs. biphasic
and mono- vs. multi-axis acceleration profile) into the

model input parametric space is perhaps ill-advised
because it would necessarily increase the pcBRA
computational complexity, exponentially. Instead, it
may be advisable to statistically probe the relationship
between perturbation in input and variation in
response. Analogously, a statistical model could also
be used to probe the relationship between model geo-
metrical/anatomical perturbations and variation in

FIGURE 11. The pcBRA success rates for the above-range extrapolation when ap
rot was within (a) 5.5–6.5 krad/s2 and (b) 6.5–7.5

krad/s2 in terms of regional average ep in generic regions and the corpus callosum using a range of normalization denominators.
The pcBRA achieved a 100% success rate for all other ap

rot values, and are not shown.

FIGURE 12. Comparison of the (a) pcBRA-estimated and (b) the directly simulated ground-truth ep (i.e., element-wise peak
responses during the entire impact regardless of time of occurrence) for a typical real-world arot profile.10 (c) Volume fractions for
ep differences relative to the ground-truth. (d) Comparison of volume-weighted whole-brain average e as a function of time between
the pcBRA-estimated and the ground-truth counterpart. The pcBRA-estimated and ground-truth whole-brain ep averages in (a) and
(b) were 0.116 and 0.114, respectively, which served as upper bounds for the corresponding whole-brain average e peak values,
shown in (d), because not all elements reached their respective peak responses at the same time.
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response to account for brain individual variability. By
statistically quantifying Ferr in element-wise or regional
strain responses (e.g., through a linear regression
model),31 a higher order and hence, a more accurate
approximation of Fstrain is likely attainable. Addition-
ally, individualized pcBRA could also be established if
so desired using subject-specific models that can be
developed with existing techniques.22,24

Despite these accuracy concerns, because the pcBRA
instantly provides regional tissue-level brain strain
responses that are presumed to be directly responsible for
initiating region-specific injury, even the 1st-order approx-
imation appears to be a significant step forward in inves-
tigating themechanisms of sports concussion as compared
to other studies using isolated a

p
lin and/or a

p
rot, alone, for

injury risk assessment that do not otherwise incorporate
regional brain mechanical responses.3,4,7,44,45,52 Because it
is possible to compare model-estimated tissue-level
brain peak responses directly with injury thresholds
established from in vivo and in vitro micro-scale injury
studies to assess the risk of injury,1,37 the pcBRA
potentially offers a unique capability to efficiently
design and evaluate the utility of injury risk metrics
based on regional tissue-level responses as opposed to
solely depending on global kinematic variables or their
variants (e.g., GAMBIT,39 HIP,40 HITsp,17 RIC and

PRHIC,26 and BrIC).48 These findings suggest that the
pcBRA does indeed have the potential to accelerate the
exploration of the biomechanical mechanisms of
traumatic brain injury in the future. Because brain
strain-related responses, including strain itself, are
significantly correlated to the product of a

p
rot and Dt

instead to a
p
rot only,

25 a systematic investigation of how
best to parameterize real-world arot impulses must be
performed in the future to ensure accurate represen-
tation of brain strain responses. Interestingly, our
simple parameterization strategy by maintaining both
the identical v

p
rot and Dt from the major arot peak as

outlined in Fig. 6 appeared to perform sufficiently well
for the two independently measured real-world arot
resultant profiles (albeit, further work is necessary to
verify its utility in real-world full-DOF head rotations).

Besides the pcBRA accuracy and efficiency perfor-
mances, the ultimate utility of the technique for real-
world injury studies also relies on model simulation
fidelity because the response approximation function,
F1 in Eq. 3, is model-dependent. The DHIM validation
performance has been categorized as ‘‘good’’ to nearly
‘‘excellent’’ when simulating relative brain-skull dis-
placements and pressure responses in cadaveric head
impacts according to a fidelity rating based on corre-
lation scores.24,25,60 Further, DHIM also achieved an

FIGURE 13. A similar comparison between the pcBRA-estimated result and that directly simulated for another independently
measured arot profile (see Fig. 12 for caption).44 The pcBRA-estimated and the ground-truth whole-brainep averages for this case
were 0.130 and 0.124, respectively. Although ap

rot was 25.2% lower than that in Fig. 12, its vp
rot was 22.7% higher, leading to an 8.8%

increase in whole-brain average ep .
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‘‘excellent’’ performance when validating against full-
field brain strain responses in a live human (as opposed
to discrete displacement data in cadavers) under a mild
head rotational acceleration based on correlation
scores.47 These model response verifications at the low
(~250–300 rad/s2 for a volunteer), mid (~1.9–2.3 krad/
s2 for cadaveric impact tests C755-T2 and C383-T1),
and high (~11.9 krad/s2 for test C393-T4) levels of a

p
rot

provide important insight on the confidence in DHIM-
estimated regional brain strain responses for a large
spectrum of on-field impacts.

The range of a
p
rot evaluated for pcBRA estimation

performance in this study was sufficiently large (500–
7500 rad/s2, approximately from the 25th percentile
subconcussive to 95th percentile concussive a

p
rot in col-

lege football, or up to ~99th percentile in ice-hockey;
Fig. 4). We have limited the a

p
rot sampling range in this

study to evaluate the pcBRA extrapolation accuracy at
higher a

p
rot levels, which is important for its performance

characterization. However, due to the reduced extrap-
olation accuracy when a

p
rot was sufficiently high (e.g.,

>5500 rad/s2), arguably it may be necessary to further
extend the range of a

p
rot in the training dataset to

improve the pcBRA estimation accuracy (i.e., to avoid
extrapolation). On the other hand, it may actually be

computationally more sensible to simply simulate the
few high a

p
rot impulses directly instead because of the

skewed distribution of on-field a
p
rot,

7,43 unless a (near)
real-time feedback is critical (e.g., when possibly using
the model-estimated responses to aid the ‘‘return-to-
play’’ decision-making on the field). Although Dt was
based on measured alin instead of arot, the temporal
characteristics of the two acceleration components are
likely similar,10 and the training dataset covered a large
range of occurrences (~95.4% assuming a normal dis-
tribution). The azimuth and elevation angles, h and a,
were also limited in this study, which can be easily
extended to cover the entire parametric space for the
rotational axis, X (Fig. 3). Because on-field data distri-
bution of X is likely clustered instead of being random
or uniformly distributed (e.g., see for head impact
locations in Breedlove et al.,6 although on-field distri-
bution of X appears not available yet), sampling the X
parametric space accordingly will likely be more eco-
nomical in computation than a simple brute-force
approach. Further, the accuracy of pcBRA estimation
apparently depends on the sampling density of each
parameterization variable; however, we did not inves-
tigate their individual significance on the pcBRA
performance. Regardless, extending the partially estab-

FIGURE 14. (a) Illustration of a triangular, a sine, and a haversine arot impulse with an identical vp
rot and Dt . (b) Volume fractions

for element-wise ep differences relative to that from the triangular impulse. (c) Comparison of the ep distributions from the three
impulses. The sine impulse had an ap

rot 21.5% lower than that of the others.
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lished pcBRA to increase the parametric coverage space
or sampling resolution for any of the independent
variables is straightforward.

While we have only evaluated pcBRA performance for
engineering strain in this study, the technique would most
likely be applicable as well to other strains (e.g.,
Lagrangianor logarithmic strain), straincomponents (e.g.,
white matter fiber strain,24 or alternatively, referred to as
‘‘axonal strain’’),12,14,30,56 or strain-related responses such
as strain rate and stress. Because the pcBRAmodel inputs
were generated using generic kinematic variables that do
not rely on the specific technique used in actual impact
measurement (e.g., through laboratory reconstruction,
instrumented helmet, mouthguard, or ATD),10,17,41 the
pcBRA is applicable as long as it remains feasible to
parameterize the isolated arot profile into a triangular
impulse to estimate brain strain responses. In addition,
once fully established, the pcBRA could also serve as an
efficient engine to conductparametric studies, for example,
to investigate the distribution and extent of potential white
matter damage using randomly generated rotational
impulses based on the distribution of actual on-field
impact measurements.24 These investigations will be the
subjects of future publications.

Finally, an analogous brain pressure response atlas
can also be established. Because brain pressure
responses in a translational/direct head impact are
causally determined by alin itself (magnitude and direc-
tionality), brain size and shape,60 only two (as opposed
to four for the strain response atlas in this study)
independent variables (i.e., the azimuth and elevation
angles, h and a, for the translational axis) are necessary.
However, further study is necessary to assess whether
pressure can be estimated from isolated alin, alone,
without significant loss of accuracy. Nevertheless, it
may be necessary to ultimately combine these brain
response atlases to fully capture the potential risk of
brain injury induced by either alin, arot, or their combi-
nation for practical applications,44 especially given the
rather low correlation found between the two accelera-
tion components that suggests impacts with low arot but
high alin magnitudes are possible on the field.43 These
atlases designed for (near) real-time tissue-level estima-
tion of both strain and pressure responses may provide
the computational tools necessary and critical to accel-
erate the exploration of the biomechanical mechanisms
of traumatic brain injury (including, but not limited to,
sports-related concussion) in the future.

CONCLUSION

We have successfully demonstrated the feasibility of
using a pre-computed brain response atlas (pcBRA) to
substantially increase the efficiency in head impact

simulation for brain strain responses without signifi-
cant loss of accuracy from the estimation itself using
idealized, parameterized rotational impulses as well as
two typical real-world rotational profiles. The typical
computational cost of pcBRA was 6 s and <0.01 s for
element-wise or average regional peak responses,
respectively, vs. ~50 min simulating a 40 ms impulse
directly. Future studies include systematic investiga-
tion of rotational profile parameterization and more
extensive performance evaluation using real-world
data. Once fully established, the pcBRA could have the
potential to accelerate the exploration of the mecha-
nisms of brain injury (sports-related concussion in
particular) in the future. If successful, the pcBRA may
also become a diagnostic adjunct in conjunction with
sensors that measure head impact kinematics on the
field to objectively monitor and identify tissue-level
brain trauma in real-time for ‘‘return-to-play’’ deci-
sion-making on the sideline.
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