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Abstract—Uncertainty that arises from measurement error
and parameter estimation can significantly affect the inter-
pretation of musculoskeletal simulations; however, these
effects are rarely addressed. The objective of this study was to
develop an open-source probabilistic musculoskeletal model-
ing framework to assess how measurement error and
parameter uncertainty propagate through a gait simulation.
A baseline gait simulation was performed for a male subject
using OpenSim for three stages: inverse kinematics, inverse
dynamics, and muscle force prediction. A series of Monte
Carlo simulations were performed that considered intrarater
variability in marker placement, movement artifacts in each
phase of gait, variability in body segment parameters, and
variability in muscle parameters calculated from cadaveric
investigations. Propagation of uncertainty was performed by
also using the output distributions from one stage as input
distributions to subsequent stages. Confidence bounds
(5–95%) and sensitivity of outputs to model input parame-
ters were calculated throughout the gait cycle. The combined
impact of uncertainty resulted in mean bounds that ranged
from 2.7� to 6.4� in joint kinematics, 2.7 to 8.1 N m in joint
moments, and 35.8 to 130.8 N in muscle forces. The impact
of movement artifact was 1.8 times larger than any other
propagated source. Sensitivity to specific body segment
parameters and muscle parameters were linked to where in
the gait cycle they were calculated. We anticipate that
through the increased use of probabilistic tools, researchers
will better understand the strengths and limitations of their
musculoskeletal simulations and more effectively use simu-
lations to evaluate hypotheses and inform clinical decisions.
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INTRODUCTION

Simulation of human movement has significantly
impacted approaches to clinical treatment of cerebral
palsy, lower extremity amputees, and osteoarthri-
tis13,14,17,40,41,44 as well as basic science related to the
understanding of movement progression and control
during dynamic tasks.3,33,43,52 Because these simula-
tions often combine human movement data measured
in the laboratory with mathematical models of the
musculoskeletal system, accurate estimations of bio-
mechanical outputs such as intersegmental joint loads,
muscle activation/coordination, and muscle force are
possible.18 The experimental methods used to create
anatomic detail in musculoskeletal models have im-
proved over the past decade through direct measure-
ment of sarcomere length26 and increased cadaveric
sample sizes,48 which has led to enhanced accuracy of
simulations specific to individual patients. As the field
of musculoskeletal simulation progresses, the use of
simulation to create individual and population-based
treatments will increase.

Outputs from musculoskeletal simulations are af-
fected by measurement error and model parameter
uncertainties that are important to consider when
interpreting results. A common approach to muscu-
loskeletal simulations contains three sequential stages
(inverse kinematics, inverse dynamics, and muscle
force prediction); therefore, the uncertainty introduced
at earlier stages can propagate through the process and
produce a range of possible results within subsequent
stages. In the first stage, inverse kinematics are com-
monly calculated from marker-based motion capture,
where placement and motion of markers relative to
anatomic landmarks can introduce measurement
error.8,9,20 In the second stage, inverse dynamics are
influenced by inverse kinematics from the first stage
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and by estimates of body segment parameters (mass,
center of mass, moment of inertia), which are com-
monly calculated from regression equations based on
cadaveric investigations.7,49 In the third stage, muscle
force prediction utilizes the data from inverse kine-
matics, inverse dynamics, and a Hill-type muscle model
that includes anatomic and physiologic parameters
(maximum isometric force, optimal fiber length, ten-
don slack length, pennation angle) that are estimated
from cadaveric investigations.5,48 Because each of these
simulation inputs introduce uncertainty, it is important
that interpretation and clinical decision-making con-
sider that the output taken from a single set of input
parameters lies within a range of possible solutions.

Probabilistic analyses provide comprehensive
methods to simultaneously quantify the impact of
uncertainties that arise from multiple sources. These
techniques were developed in structural reliability
engineering,32 and have been applied in other biome-
chanical applications.28 The primary metrics for used
to quantify the impact of uncertainty from these
analyses are confidence bounds and sensitivity factors.
Confidence bounds provide the output levels associ-
ated with specific probability (e.g., 5 and 95%) and
sensitivity factors24 provide insight on how changing
an input parameter affects the simulation output. The
probabilistic method familiar to most researchers is
Monte Carlo simulation, which is a repeated sampling
method that models inputs according to predetermined
probability distributions and presents the outputs as
distributions.23 Recent musculoskeletal studies have
used repeated sampling methods to quantify output
variability and sensitivity of inverse dynamics and
muscle force prediction to variability in model
parameters.1,22,27,34,39,44 Although these studies pro-
vide insight into factors that affect a particular model
at a single stage in the simulation, the current study
introduces new methodology to musculoskeletal sim-
ulation practices that characterizes the impact and
interaction of multiple sources of uncertainty, and
quantifies the propagation of uncertainty through each
stage of the musculoskeletal simulation process.

When developing musculoskeletal simulations for
research or clinical decision making, understanding
and reporting the output confidence and sensitivity to
a range of known possible inputs should be standard
practice. However, an accessible toolset and standard
methods to report these results currently do not exist
in the musculoskeletal community. The objective of
this investigation was to develop an open-source
probabilistic musculoskeletal modeling framework to
assess how measurement error and parameter uncer-
tainty propagates through the outputs of each simu-
lation stage: (1) joint angles from inverse kinematics,
(2) joint moments from inverse dynamics, and (3)

muscle forces from static optimization. The probabi-
listic framework was developed for OpenSim,15 a
platform with widespread use among biomechanics
researchers and clinicians and the ability to interact
with the simulation through an open source applica-
tion programming interface (API). The probabilistic
tool developed is available for download at simtk.org/
home/prob_tool. We anticipate that regular use of
systematic uncertainty analysis within the musculo-
skeletal simulation community will allow researchers
to interpret simulation outputs with confidence, refine
new model development, and more effectively trans-
late the results from musculoskeletal simulations to
clinical decision-making and human performance
assessments.

METHODS

Experimental Setup and Baseline Simulation

Following approval from the institutional review
board, a single male participant (mass: 68.2, height:
154.5 cm) walked at a self-selected pace while an 8-
camera motion capture system (Vicon, Centennial,
CO) tracked 40 markers at 100 Hz on the torso, pelvis,
thigh, shank, and foot. Marker clusters were fixed to
each segment and used to define baseline (unperturbed)
segment reference frames throughout the gait cycle,
but were not included in the OpenSim model for
tracking and calculation of joint kinematics. Two force
platforms (Bertec Corp, Columbus, Ohio) captured
ground reaction forces sampled at 1000 Hz for a
complete gait cycle that began and ended with a right
foot heel strike. Body segment parameters (BSPs) and
muscle properties were scaled to the subject for the
baseline simulation using scale factors calculated from
marker positions. OpenSim was used to generate
baseline joint kinematics, moments, and muscle forces
using the gait2392 model.12 A custom interface using
the OpenSim/Matlab API was developed to perturb
the baseline simulation by altering input files within a
Monte Carlo simulation. All input perturbations were
sampled from Gaussian distributions created from
means and variance reported in the relevant experi-
mental literature (Tables 1, 2).6,9,19,37,48 Propagation of
uncertainty was performed by using output files of
results from the previous OpenSim stage as input in the
subsequent stage during each trial of the Monte Carlo
simulation (Fig. 1).

Stage 1: Probabilistic Inverse Kinematics

Marker placement and movement artifact, two
sources of measurement error that influence the results
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of inverse kinematics, were modeled and combined for
each of the 40 markers used in the simulation. This was
accomplished by generating a perturbed trajectory for
each marker (Fig. 2) as input into the Inverse Kine-
matics Tool within each trial of the Monte Carlo
simulation.

Marker placement error results from the inability of
an investigator to locate an anatomic landmark
through palpation. Therefore, the error is a placement
that is constantly offset from the anatomic location it is
intended to mark. This was modeled by sampling the
magnitude of this offset in each plane from a distri-
bution created by previously reported intrarater vari-
ances (Table 1).9 For marker placements in which
intrarater variance was unavailable, the mean variance
for markers on the corresponding segment was used to
define the input distribution. The Monte Carlo simu-
lation generated a random perturbation for each
marker coordinate from the distributions and applied
it as a constant perturbation to every sample during
the gait cycle. Each perturbation was performed in
baseline segment coordinate systems that were consis-

tent with those defined in Della Croce et al.8 The
perturbed trajectory was transformed into the lab
coordinate system to produce a trajectory that was
constantly offset from the original within the segment
(Fig. 2).

Marker movement artifact occurs when skin and
soft tissues move relative to the underlying bone during
limb movement. The magnitude of the marker move-
ment varies with time based on the character of the
motion, location of the marker placement, and the
anatomy of the subject. Movement artifact was mod-
eled by perturbing each marker uniquely within each of
the eight traditional phases of the gait cycle (e.g.,
between ‘heel off’ and ‘opposite initial contact’).36 The
Monte Carlo simulation sampled a perturbation from
a distribution constrained with a maximum resultant
artifact of 15 mm.6,20 Smoothness at the phase transi-
tion was enforced by applying a 4th-order low pass
Butterworth filter with a 20 Hz cutoff frequency to the
trajectory. The movement artifact uncertainty was
combined with the marker placement uncertainty for
each of the 40 markers and a new marker trajectory file

TABLE 1. Maximum amount of variability (6 2 standard deviations) in marker placement expressed in coordinates of a segment
coordinate system based on Della Croce et al.9

Anatomical landmark
Maximum amount of variability (±2SD)

Hip X (mm) Y (mm) Z (mm) 3D (mm)

Left anterior supior iliac spine 3.4 4 11 12.2

Right anterior supior iliac spine 10 11.5 14.5 21

Left posterior superior iliac spine 2.8 8.3 7.5 11.5

Right posterior superior iliac spine 5.7 10.7 4.6 13

Femur X (mm) Y (mm) Z (mm) 3D (mm)

Greater trocanter 12.2 11.1 7 17.9

Medial epicondyle 5.1 5 6.7 9.8

Lateral epicondyle 3.9 4.9 7.8 10

Lateral patella 3.8 3.9 7.8 9.5

Medial patella 5.2 2.4 10.8 12.2

Most distal point of lateral condyle 4.7 3.4 2.9 6.5

Most distal point of medial condyle 4.4 1.4 4.4 6.4

Tibia X (mm) Y (mm) Z (mm) 3D (mm)

Tibial tuberosity 1.2 1.8 4.3 4.8

Fibula head 3.3 3.3 3.3 5.7

Medial ridge of medial plateau 3.4 4.4 6.6 8.6

Lateral ridge of the lateral plateau 8 2.1 5.6 10

Medial malleolus 2.2 2.6 6.6 7.4

Lateral malleolus 2.6 2.4 5.7 6.7

Foot X (mm) Y (mm) Z (mm) 3D (mm)

Calcaneus 7 4.9 5.7 10.3

First metatarsal head 2.6 3.2 6.9 8

Second metatarsal head 2.2 6.3 6 9

Fifth metatarsal head 0.7 2 6.5 6.8
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FIGURE 1. A gait trial was analyzed using OpenSim across three stages: inverse kinematics, inverse dynamics, and muscle force
optimization. Distributions of sources of uncertainty were inputs to each tool in a probabilistic simulation. To assess the prop-
agation of uncertainty, output distributions from each tool were input into the next tool in the workflow. Output of each tool was
used to calculate 5–95 confidence bounds and the sensitivity of the output to each source of uncertainty.

TABLE 2. Baseline value and (SD) of body segment and muscle parameters for each segment and muscle considered in the
probabilistic analyses.

Body segment parameters
Segment baseline (SD)

Parameter Foot Shank Thigh

COM—Med/Lat (cm) 0 (0.93) 0 (0.37) 0 (0.29)

COM—Ant/Post (cm) 0 (0.93) 0 (0.37) 0 (0.29)

COM—Sup/Inf (cm) 0 (1.86) 221.11 (0.75) 217.91 (0.59)

I—Add/Abd (kg m2) 0.004 (0.0009) 0.050 (0.005) 0.119 (0.026)

I—Int/Ext (kg m2) 0.001 (0.0003) 0.004 (0.0004) 0.023 (0.005)

I—Flex/ext (kg m2) 0.004 (0.0008) 0.049 (0.005) 0.124 (0.027)

Mass (kg) 1.43 (0.100) 3.39 (0.22) 8.50 (1.17)

Muscle parameters
Parameter baseline (SD)

Muscle Maximum isometric force (N) Tendon slack length (m) Pennation angle (rad)

Rectus femoris 1169 (76.7) 0.32426 (0.01479) 0.087 (0.061)

Vastus medialis 1294 (109.9) 0.13229 (0.00485) 0.087 (0.120)

Vastus lateralis 1871 (177.6) 0.16503 (0.00586) 0.087 (0.119)

Semitendinosus 410 (57.2) 0.27522 (0.02461) 0.087 (0.086)

Biceps femoris 896 (65.4) 0.34844 (0.02376) 0 (0.096)

Gastrocnemius 1558 (135.8) 0.43873 (0.031858) 0.297 (0.077)

Gluteus maximus 1 688 (53.0) 0.12730 (0.00981) 0.087 (0.104)

Gluteus maximus 2 983 (64.9) 0.13027 (0.00860) 0 (0.104)

Gluteus maximus 3 662 (45.9) 0.14877 (0.01031) 0.087 (0.104)

Gluteus medius 1 983 (49.4) 0.07898 (0.00397) 0.140 (0.118)

Gluteus medius 2 688 (56.6) 0.05368 (0.00442) 0 (0.118)

Gluteus medius 3 784 (52.0) 0.05382 (0.00357) 0.332 (0.118)
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was generated for use by the Inverse Kinematics Tool.
Joint angles from the right side were analyzed for the
following degrees of freedom: ankle plantarflexion/
dorsiflexion, knee flexion/extension (flex/ext), hip flex/
ext, hip adduction/abduction (add/abd), and hip
internal/external (int/ext) rotation.

Stage 2: Probabilistic Inverse Dynamics

Uncertainties in BSPs were modeled by perturbing
the baseline model inputs for segment mass, moment
of inertia, and center of mass location. The input dis-
tributions were defined using baseline model parame-
ters as the means and variances were defined by
coefficients of variation measured by Rao et al.37 and
Pavol et al.35 (Table 2). Each trial of the Monte Carlo
simulation combined a perturbed model file with ran-
domly generated BSPs with the kinematic output cre-
ated from the inverse kinematics tool and measured
ground reaction forces to generate joint moments at
each degree of freedom.

Stage 3: Probabilistic Muscle Force Prediction

Uncertainties in muscle parameters were modeled by
perturbing the baseline model inputs for maximum iso-
metric force, tendon slack length, and pennation angle.
The input distributions were defined using the baseline
model parameters as the means and variances were de-
fined by coefficients of variation measured by Friederich
and Brand19 and Ward et al.48 (Table 2). Muscle forces
were predicted using static optimization with the objec-
tive function that minimized the sum of muscle activa-
tion squared.2Eight lower-extremitymuscles on the right
side were assessed: gluteus maximus, gluteus medius,
rectus femoris, vastus medialis, vastus lateralis, semi-
tendinosus, biceps femoris long head, and medial gas-
trocnemius. Because the gluteus medius and gluteus
maximus muscles were each modeled using three fasci-
cles with different paths, each fascicle received unique
input parameters for each trial in the Monte Carlo sim-
ulation. The force generated by each muscle fascicle was
summed to obtain a single muscle force output for glu-
teus medius and gluteus maximus, respectively.

FIGURE 2. Representative marker trajectory that illustrates simulation of marker placement uncertainty, movement artifact
uncertainty, and the combination of the two sources. Marker placement uncertainty was modeled as a constant offset throughout
the gait cycle. Movement artifact was modeled using a trajectory that varied within each phase of the gait cycle (each phase
separated by vertical lines). The marker set used for segment tracking is shown on the right.
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Data Analysis

To assess the individual contributions and the
combined effects of the sources of input uncertainty
on simulation outputs, a series of Monte Carlo
simulations of 3000 trials were performed separately
considering all combined sources of uncertainty and
for each individual source of uncertainty.16 The 5
and 95 confidence bounds were calculated for joint
kinematics for each degree of freedom, joint mo-
ments for each degree of freedom, and muscle forces.
These bounds indicate a 90% probability that the
true result of the simulation output lies between the
lower and upper confidence bounds. For joint kine-
matic and joint moment outputs, mean and standard
deviation for the 5–95 confidence bounds were cal-
culated for the entire gait cycle, and separately for
the stance and swing periods. For muscle force
outputs, the mean and standard deviation for the
5–95 confidence bounds were calculated over the
time period(s) when the muscles were active. The
outputs for each simulation stage were reported in
actual units (not normalized) to maintain the inter-
pretability. Mean and standard deviation of peak
muscle force timing was calculated for each muscle.
Using similar methods as Valente et al.,44 Monte
Carlo simulations of 3000 trials were sufficient for
convergence with differences in the mean confidence
bounds of less than 0.1� for joint angles, 0.1 N m for
joint moments, and 0.5 N for muscle force.

Sensitivity of joint moment and muscle force out-
puts to individual BSPs and muscle parameters were
quantified by Pearson Product-Moment Correlation
between the input parameter and the maximum value
of each output. To objectively assess if a correlation
was meaningful, a 95% confidence interval (CI) was
calculated for the correlation coefficient. Correlations
were considered statistically significant when the CI
did not include zero with an alpha level of 0.05.10

Strengths of the correlations that were statistically
significant were categorized as weakly sensitive
(r = 0.2–0.4), moderately sensitive (r = 0.4–0.6), or
highly sensitive (r = 0.6–1.0). The slope of each rela-
tionship was calculated and multiplied by the standard
deviation of the input parameter from Table 2. This
additional scaling places the slope in the context of the
potential variance of the input parameter. To assess if
calculating sensitivity at the maximum value of the
output is a consistent representation of sensitivity
throughout the gait cycle, a Pearson Product-Moment
Correlation was calculated for the input parameter and
the generated range of outputs at each individual time
point.

RESULTS

5–95 Confidence Bounds

The impact of marker placement error and move-
ment artifact on joint kinematics can be observed by
the size of the 5–95 confidence bounds for each joint
angle output (Fig. 3, Stage 1). The knee flex/ext joint
angle exhibited the smallest bounds (2.7 ± 0.3�), but
the largest motion during the gait cycle. The relative
bound sizes for hip angle in add/abd (3.0 ± 0.3�) and
int/ext (5.1 ± 1.0�) were large considering the smaller
motions in these degrees of freedom.

When considering the combined effects of marker
error (marker placement and movement artifact) and
body segment parameter uncertainty, bounds for hip
flex/ext (8.0 ± 2.8 N m) and add/abd (7.4 ± 2.8 N m)
moments were substantially larger than any other de-
gree of freedom (ankle: 2.7 ± 1.8 N m; knee:
4.4 ± 1.4 N m; hip int/ext: 1.8 ± 1.0 N m) (Fig. 3,
Stage 2). Joint moment bound sizes during the swing
period were 81.7% smaller in the ankle and 16.5%
smaller in the knee compared to the stance period;
however, bound sizes in hip degrees of freedom were
42.9% larger on average in the swing period compared
to the stance period.

The combined effect of all sources of uncertainty had
the greatest impact on medial gastrocnemius (142.3 ±

110.8 N) and the gluteus medius (130.8 ± 89.2 N),
which demonstrated the largest bounds for muscle force
output (Fig. 3, Stage 3). Gastrocnemius and gluteus
medius also generated the largest peak forces during the
gait cycle (gastrocnemius: 663.1 ± 105.5 N; gluteus
medius: 1025.4 ± 62.9 N). The average muscle force
bound size for all eight muscles was 83.1 ± 39.6 N.
Variability was present in peak muscle force timing for
each of the eight muscles that was on average
104 ± 112 ms and as high as 402 ms for the gluteus
medius.

By comparing 5–95% bounds with all uncertainty
sources considered vs. the individual sources, relative
contributions of each source can be evaluated (Fig. 4).
For Stage 1, the impact of movement artifact was 1.8
times larger than marker placement on joint kinemat-
ics for all degrees of freedom, with the greatest dif-
ference occurring at the ankle (5.9 ± 0.8� vs.
2.2 ± 0.1�). When this uncertainty was propagated to
joint moment calculation in Stage 2, the relative impact
of movement artifact compared to marker placement
increased to 2.3–4.0 times, with higher impact in swing
period than in the stance period for hip add/abd and
hip int/ext. BSPs had a relatively small impact on joint
moments compared to the impact of marker error. The
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exception was hip flex/ext during the swing period
where BSP uncertainty has the largest impact and was
2.1 times greater during the stance period compared to
the swing period (Fig. 4).

In Stage 3, the impact of muscle parameter uncer-
tainty on muscle force output was 1.7 times greater for
all muscles than movement artifact, which had the
second largest impact. The impact of movement arti-
fact was greater than marker placement and resulted in
a muscle force bound size of 37.2 ± 20.4 N on average
for all muscles. BSP uncertainty had a relatively small
impact on muscle force output in all muscles except the
hamstrings, where BSP uncertainty had the second
largest impact after muscle parameter uncertainty
(Fig. 4).

Input Parameter Sensitivity

Statistically significant correlations existed between
each BSP and hip moments. Hip flex/ext was highly
sensitive to segment mass, with the strongest correla-
tion at the shank (thigh: r = 0.42, CI [0.40–0.45];
shank: r = 0.64, CI [0.62–0.67]; foot: r = 0.11, CI
[0.08–0.22]). Hip add/abd moment was highly sensitive
to segment mass, with the strongest correlation at the
thigh (thigh: r = 0.75, CI [0.72–0.77]; shank: r = 0.33,
CI [0.30–0.38]; foot: r = 0.14, CI [0.11–0.23]). Flex/ext
moment was moderately sensitive to thigh moment of
inertia (r = 0.51, CI [0.45–0.56]); however, add/abd

moment was not sensitive to thigh moment of inertia.
Hip add/abd was moderately sensitive to the medial/
lateral position of the center of mass of the thigh and
weakly sensitive to the center of mass of the shank
(thigh: r = 0.47, CI [0.41–0.56]; shank: r = 0.26,
CI [0.22–0.34]; foot: r = 20.06, CI [20.09–0.11])
(Table 3). The joint moment-segment mass relation-
ship produced the largest impact on joint moment
outputs for a one standard deviation change in seg-
ment mass compared to the other BSPs. For example,
the hip flex/ext moment would change 1.06 N m in
response to a one standard deviation change in shank
mass (Table 4).

In general, muscle force outputs were highly sensi-
tive to changes in maximum isometric force and ten-
don slack length; however, this was not consistent
across muscles (Table 3). The gluteus muscles were
highly sensitive to uncertainty in maximum isometric
force (e.g., gluteus medius3: r = 0.72, CI [0.70–0.74])
and weak to moderately sensitive to uncertainty in
tendon slack length (e.g., gluteus medius3: r = 0.24, CI
[0.20–0.27]). The gluteus muscle force would change
34.82 N in response to a one standard deviation
change in maximum isometric force compared to
16.53 N in response to a one standard deviation
change in tendon slack length. By contrast, the vasti
muscles were highly sensitive to tendon slack length
(e.g., vastus lateralis: r = 20.83, CI [20.84 20.82]),
and would change 13.70 N in response to a one stan-

FIGURE 3. 5–95 confidence bounds for each simulation stage output following inverse kinematics (Stage 1), inverse dynamics
(Stage 2) and static optimization (Stage 3). Values for the calculated mean 5–95 confidence bounds are displayed. Kinematic and
kinetic degrees of freedom were divided into stance and swing periods. The baseline simulation output is represented by the black
line.
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dard deviation change in tendon slack length com-
pared to 3.17 N for maximum isometric force.

For both body segment and muscle parameters, the
strength and sign (±) of correlations were dependent
on where in the gait cycle the sensitivity analysis was
performed. During the initial portion of the gait cycle,
hip flexion moment was most sensitive to uncertainty

in thigh mass with little sensitivity to uncertainty in
shank or foot mass. However, after transitioning to the
swing period, hip flexion moment was most sensitive to
uncertainty in foot mass and least sensitive to uncer-
tainty in thigh mass (Fig. 5). Although muscle force
was consistently sensitive to tendon slack length
throughout the gait cycle, the direction of the rela-

FIGURE 4. Mean 5–95 confidence bounds for each individual source of uncertainty for kinematics, joint moments and muscle
forces. 5–95 confidence bounds calculated for joint moments were divided into stance and swing periods.

Uncertainty Propagation in Musculoskeletal Simulation 1105



tionship (±) changed throughout the gait cycle, par-
ticularly for the medial gastrocnemius and rectus
femoris (Fig. 5).

DISCUSSION

This study demonstrated a systematic probabilistic
approach to assess the impact of measurement error

and parameter uncertainty on outputs from musculo-
skeletal simulations. Uncertainties in simulation inputs
propagate through the simulation workflow and result
in significant impacts on joint kinematics, joint mo-
ments, and muscle force prediction. Mean 5–95 confi-
dence bounds ranged from 2.7� to 6.4� in joint
kinematics, 2.7 to 8.1 N m in joint moments, and 35.8
to 130.8 N in muscle forces. Muscle parameter uncer-

TABLE 3. Sensitivity (correlation coefficient) calculated between muscle and body segment parameter inputs and the resulting
maximum value of each output.

Body segment parameters
Segment

Center of mass Ankle Knee Hip Flex/Ext HipAdd/Abd Hip Int/Ext

Foot Med/Lat 0.06 20.07 0.06 20.06 0.13

Foot Ant/Post 0.67c 0.43b 0.03 20.04 0.11

Foot Sup/Inf 20.10 20.13 0.19 0.02 20.01

Shank Med/Lat 20.02 20.02 20.03 0.26a 20.33a

Shank Ant/Post 0.00 0.46 0.05 20.02 0.21a

Shank Sup/Inf 0.04 0.13 0.07 20.06 0.05

Thigh Med/Lat 0.00 0.00 0.01 0.47b 20.58b

Thigh Ant/Post 0.00 20.01 0.18 0.00 0.60b

Thigh Sup/Inf 0.03 0.02 20.28 20.14 0.00

Moment of inertia Ankle Knee Hip Flex/Ext HipAdd/Abd Hip Int/Ext

Foot AA 0.00 20.02 0.00 0.02 20.01

Foot IE 20.06 20.01 20.03 0.00 20.05

Foot FE 0.44b 0.07 20.05 0.02 0.03

Shank AA 0.03 20.03 0.03 0.01 20.05

Shank IE 20.01 0.00 0.01 20.01 20.02

Shank FE 0.01 0.29a 20.08 0.02 0.02

Thigh AA 0.01 20.01 0.01 20.09 20.15

Thigh IE 0.00 20.02 20.02 20.01 20.06

Thigh FE 0.04 0.01 0.51b 0.02 0.19

Mass Ankle Knee Hip Flex/Ext HipAdd/Abd Hip Int/Ext

Foot 0.58b 0.29a 0.11 0.14 0.00

Shank 0.03 0.64c 0.64c 0.33a 20.19

Thigh 0.01 0.00 0.42b 0.75c 0.02

Muscle parameters
Parameter

Muscle Maximum isometric force Tendon slack length Pennation angle

Rectus femoris 0.17 0.29a 0.00

Vastus medialis 0.33a 20.63c 20.07

Vastus lateralis 0.28a 20.83c 20.10

Semitendinosus 0.76c 0.51b 20.05

Biceps femoris 0.53b 0.39a 20.03

Gastrocnemius 0.53b 0.51b 20.39a

Gluteus maximus 1 0.59b 20.72c 0.00

Gluteus maximus 2 0.62c 20.70c 20.04

Gluteus maximus 3 0.80c 20.47b 20.05

Gluteus medius 1 0.63c 20.57b 20.15

Gluteus medius 2 0.91c 0.20a 20.12

Gluteus medius 3 0.72c 0.24a 20.44b

Sensitivity is highlighted based on correlation coefficient strength. Weakly sensitive: r = 0.2–0.4a; moderately sensitive: r = 0.4–0.6b; highly

sensitive: r = 0.6–1.0c.
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tainty had the largest impact on muscle force predic-
tion, greater than the uncertainty carried forward from
marker placement and movement artifact. When
measurement error was propagated through inverse
dynamics and muscle force prediction, movement
artifact had the largest impact on joint moment out-
puts and a considerable impact on muscle force pre-
diction. Impact of movement artifact depended on

whether the swing or stance period was considered.
Similarly, sensitivity to specific BSPs and muscle
parameters were varied, and linked to where in the gait
cycle they were calculated. Uncertainty sources also led
to a range of outputs for peak muscle force timing that
reached as high as 402 ms for gluteus medius. The
impact of uncertainty in BSPs and muscle parameters
may be mitigated by measuring and applying in vivo

TABLE 4. The slope of sensitivity relationships calculated between muscle and body segment parameter inputs and the resulting
maximum value of each output.

Body segment parameters
Expected change in output for a +1 SD change in input

Center of mass Ankle (N m) Knee (N m) Hip Flex/Ext (N m) HipAdd/Abd (N m) Hip Int/Ext (N m)

Foot Med/Lat 0.01 20.02 0.10 20.03 0.01

Foot Ant/Post 0.04c 0.06b 0.02 20.01 0.00

Foot Sup/Inf 20.03 20.07 0.62 0.02 0.00

Shank Med/Lat 0.00 20.01 20.06 0.14a 20.03a

Shank Ant/Post 0.00 0.13 0.09 20.01 0.02a

Shank Sup/Inf 0.00 0.04 0.11 20.03 0.00

Thigh Med/Lat 0.00 0.00 0.02 0.25b 20.05b

Thigh Ant/Post 0.00 0.00 0.30 0.00 0.05b

Thigh Sup/Inf 0.00 0.00 20.46 20.07 0.00

Moment of inertia Ankle (N m) Knee (N m) Hip Flex/Ext (N m) HipAdd/Abd (N m) Hip Int/Ext (N m)

Foot AA 0.00 20.01 20.01 0.01 0.00

Foot IE 20.01 0.00 20.06 0.00 0.00

Foot FE 0.06b 0.02 20.08 0.01 0.00

Shank AA 0.00 20.01 0.04 0.00 0.00

Shank IE 0.00 0.00 0.01 0.00 0.00

Shank FE 0.00 0.08a 20.13 0.01 0.00

Thigh AA 0.00 0.00 0.02 20.05 20.01

Thigh IE 0.00 0.00 20.04 0.00 0.00

Thigh FE 0.01 0.00 0.84b 0.01 0.01

Mass Ankle (N m) Knee (N m) Hip Flex/Ext (N m) HipAdd/Abd (N m) Hip Int/Ext (N m)

Foot 0.08b 0.08a 0.18 0.08 0.00

Shank 0.00 0.18c 1.06c 0.18a 20.02

Thigh 0.00 0.00 0.70b 0.41c 0.00

Muscle parameters

Muscle Maximum isometric force Tendon slack length Pennation angle

Rectus femoris (N) 0.49 0.92a 0.00

Vastus medialis (N) 2.83a 9.83c 21.57

Vastus lateralis (N) 3.53a 216.71c 22.78

Semitendinosus (N) 16.02c 11.22b 21.32

Biceps femoris (N) 29.43b 22.52a 22.98

Gastrocnemius (N) 74.69b 42.30b 227.96a

Gluteus maximus 1 (N) 13.25b 216.01c 0.07

Gluteus maximus 2 (N) 18.17c 219.74c 21.98

Gluteus maximus 3 (N) 8.72c 25.18b 20.73

Gluteus medius 1 (N) 12.35c 210.93b 23.68

Gluteus medius 2 (N) 31.70c 7.01a 27.12

Gluteus medius 3 (N) 20.28c 6.69a 212.19b

Each parameter-output slope relationship was multiplied by one standard deviation of the input parameter. Sensitivity is highlighted based on

correlation coefficient strength. Weakly sensitive: r = 0.2–0.4a; moderately sensitive: r = 0.4–0.6b; highly sensitive: r = 0.6–1.0 c.
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joint moment/joint angle data to subject-specific scal-
ing. Probabilistic analyses can improve understanding
and interpretation of simulation data and can be
applied to musculoskeletal simulations without large
computational expense.

Movement artifact impacted the range of outputs
more than marker placement after each stage of the
simulation. The effect of movement artifact varied
throughout the gait cycle and contributed to the vari-
able size of the 5–95 confidence bounds in both joint
moments and muscle forces. Movement artifact is a
more dynamic form of uncertainty than marker
placement error, and can have a large influence on
calculated segment accelerations. In this investigation,
marker positions were used only for segment tracking;
however, marker position error may result in a sig-
nificant impact on joint kinematics when marker
positions are used to identify joint center locations.
For example, locating the hip joint center based on
marker position can result in errors as high as 22 and
15% in hip flexion/extension moments and adduction/
abduction moments, respectively.42 When evaluating
which sources of uncertainty investigators can influ-
ence, uncertainty due to marker placement error has
been reduced through the development of digital

placement methods and marker sets designed to con-
sider variations in subject populations.29 Reduction of
movement artifact is difficult and not feasible in most
motion capture based experiments because the markers
will always be affixed over the skin, which highlights
the need to understand its impact.

The sensitivity of joint moments and muscle forces
to uncertainty in individual input parameters varied
throughout the gait cycle. Overall, BSP uncertainty
had a greater impact on joint moments during the
swing period compared to stance (Fig. 5). During the
stance period, the foot mass made small contributions
to the range of hip flexion moment values when com-
pared to contributions from the thigh mass. However,
after the transition to the swing period, the foot mass is
the dominant contributor to hip flexion moment out-
put range. This shift corresponds to the role that
ground reaction forces play in joint moment calcula-
tions during each period.46 Without the ground reac-
tion forces in the swing period, the importance of the
BSPs on joint moment predictions are higher com-
pared to the stance period. Although the sensitivity of
muscle forces to tendon slack length was statistically
significant for all muscles, and a one standard devia-
tion change in tendon slack length produced a muscle

FIGURE 5. Upper: Relative sensitivity of flexion/extension and adduction/abduction hip moments to foot, shank, and thigh body
segment parameters for each time point during the gait cycle. Relative sensitivity is presented as the segment correlation coef-
ficient divided by the sum of the foot, shank, and thigh coefficient. Segment mass to hip flexion moment (Left), medial lateral
position of the center of mass and hip adduction moment (Right). Lower: Sensitivity of predicted muscle force to tendon slack
length calculated at each time point throughout the gait cycle for medial gastrocnemius (Left) and rectus femoris (right). Uncer-
tainty in tendon slack length influences the point on the force–length curve that these two biarticular muscles operate on
throughout the gait cycle. Note: no sensitivity reported when the muscle force is 0.
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force change up to 42 N, the strength of sensitivity and
direction of influence (sign of correlation coefficient)
depended on the muscle length at the point of peak
muscle force generation. Changes in tendon slack have
a direct influence on the region of the force–length
curve a muscle operates. Therefore, the sensitivity of
muscle force output to this parameter changes sign
based on whether the muscle is on the ‘‘ascending’’ or
‘‘descending’’ portion of the force–length curve1

(Fig. 5). Representing sensitivity by calculating the
relationship at a single time point in the gait cycle or
over a period (swing and stance) does not fully char-
acterize the relationship over the entire motion. For
the most relevant representation of sensitivity, we
recommend that each investigator assess the strength
of sensitivity at the time point of clinical or scientific
interest.

The highly sensitive nature of outputs to BSPs and
muscle parameters highlights the importance of
applying accurate subject-specific parameters. Param-
eter specification is commonly performed by scaling
each BSP and muscle parameters based on segment
dimensions. However, few parameters reliably scale
based on segment dimensions alone.47 Incorporating
easily measured subject-specific parameters such as
joint moment/angle data into subject-specific models
may limit the impact of uncertainties in BSPs and
muscle parameters, which are difficult to determine.
The joint moment/angle relationship25 and the sarco-
mere length/joint angle relationship30 are not uniform
for all subjects. Functional scaling that relies on in vivo
data has been used to generate subject-specific models
that accurately represent joint moment/angle rela-
tionships.21,31 Another option that results in high
model accuracy is to introduce length constraints that
preserve the normalized muscle fiber length/angle
relationship for each muscle when scaling optimum
fiber length and tendon slack length.51

This study uniquely considered the interaction of
measurement error and parameter estimation, and
systematically followed their impact through the pro-
cessing stages commonly used in musculoskeletal sim-
ulation. Previous investigations have considered the
impact of input uncertainty on results at individual
simulation stages,1,4,11,27,34,38,50 but comparisons
between studies can be difficult. De Groote et al.11 and
Ackland et al.1 demonstrated a high level of sensitivity
of peak force in lower-extremity muscles to tendon
slack length when using Hill-type muscle models.
Confidence bounds for muscles forces have not been
previously reported based on uncertainty; however, the
shape and magnitude of our muscle force predictions
are similar to several studies that modeled healthy gait
with subject-specific models. For example, maximum
force for the gluteus medius has been reported to range

from 900 to 100 N during gait for subjects of similar
size to the one modeled here, and these values are
within the 5–95% confidence bounds calculated for
gluteus medius.2,45 The confidence bounds calculated
for joint moments as a result of uncertainty in BSPs
were 25% smaller than bounds reported by Langen-
derfer et al.27 The differences are attributed to the use
of a different bound size (1–99 vs. 5–95%) and dif-
ferences in the model used to generate joint kinematics
and kinetics. Reinbolt et al.38 demonstrated that
uncertainty in BSPs had only a mild effect on peak
lower-extremity joint moments. Our data demon-
strated that, for most joint moments, the impact of
uncertainty depends on the portion of the gait cycle
that is analyzed.

Several modeling decisions were made in the design
of this study that should be evaluated when performing
similar studies using probabilistic musculoskeletal
simulations. First, outputs at each simulation stage will
be affected by the model used and the number and
location of the markers included in the model. We
chose to use the OpenSim gait2392 model because it is
widely used in gait analysis, and provides a consistent
and accessible platform for investigators to make fu-
ture comparisons. Second, several methods exist to
calculate inverse kinematics, inverse dynamics, and
predict muscle forces. Although the trends in output
bounds and sensitivity will likely be similar, variations
in these components will change the predicted results
and should be evaluated on a problem-specific basis.
Third, specific to the probabilistic musculoskeletal
simulation, the input distributions will influence the
simulation results. We recommend that researchers
base their input distributions on experimental data
whenever possible. Last, there are many more sources
of uncertainty that can influence a simulation than
included here such as model scaling, the muscle model
chosen, and the number and architecture of the mus-
cles included. The purpose of this study was to evalu-
ate recognized sources of uncertainty that affect the
three major stages of the simulation process. The open
source tools developed in this study will enable the
widespread use of probabilistic methods and an im-
proved understanding of the impact of uncertainty in
musculoskeletal simulation.

In conclusion, this study demonstrated a systematic
probabilistic approach to quantify and assess the im-
pact of uncertainty propagation on musculoskeletal
simulation of gait. These tools will enable researchers
to perform these analyses on a variety of models at
minimal computational cost. We anticipate that
assessment of uncertainty will become standard prac-
tice within the musculoskeletal simulation community,
allow researchers and clinicians to better understand
the strengths and limitations of their musculoskeletal
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simulations, and improve use of computational simu-
lations to evaluate hypotheses and inform clinical
decisions.
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