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Abstract—The decoding of conscious experience, based on
non-invasive measurements, has become feasible by tailoring
machine learning techniques to analyse neuroimaging data.
Recently, functional connectivity graphs (FCGs) have
entered into the picture. In the related decoding scheme,
FCGs are treated as unstructured data and, hence, their
inherent format is overlooked. To alleviate this, tensor
subspace analysis (TSA) is incorporated for the parsimonious
representation of connectivity data. In addition to the
particular methodological innovation, this work also makes
a contribution at a conceptual level by encoding in FCGs
cross-frequency coupling apart from the conventional fre-
quency-specific interactions. Working memory related tasks,
supported by networks oscillating at different frequencies,
are good candidates for assessing the novel approach. We
employed surface EEG recordings when the subjects were
repeatedly performing a mental arithmetic task of five
cognitive workload levels. For each trial, an FCG was
constructed based on phase interactions within and between
Frontalh and Parieto-Occipitala2 neural activities, which are
considered to reflect the function of two distinct working
memory subsystems. Based on the TSA representation, a
remarkably high correct-recognition-rate (96%) of the task
difficulties was achieved using a standard classifier. The
overall scheme is computational efficient and therefore
potentially useful for real-time and personalized applications.

Keywords—Brain decoding, Cross-frequency coupling

(CFC), Functional connectivity graph (FCG), Phase syn-

chronization, Tensor, Working memory (WM).

INTRODUCTION

Recent advances in neuroengineering have facili-
tated the use of EEG signals or ‘‘brain waves’’ for
establishing efficient communication modes between
humans and machines. There is a rapidly growing
interest, in this meta brain computer interface (BCI)
era, for methodologies that will not only help in
restoring the communication and control capabilities
of disabled people, but also will support novel appli-
cations for healthy subjects (e.g., cognitive monitor-
ing).54 This is a multi-disciplinary research area in
which engineers and computer scientists interact with
experts from medicine, neuroscience and psychology.
Moreover, the convenience of modern EEG machinery
has amplified further the development of far-reaching
applications, that extend well beyond BCI,1,43 such as
neurofeedback systems18,36 and cognitive training.32,35

Neurofeedback-based games could be used for
conserving or even boosting particular cognitive
functions. EEG-monitoring during arithmetic tasks
can be useful for understanding and treating related
disorders like dyscalculia (where the subjects face great
difficulties in learning and comprehending arithmetic
operations),49 attention deficit hyperactivity disorder
(ADHD)6 and autism spectrum disorders (ASD).51 A
neurofeedback system, based on mental arithmetic
tasks, aiming at improving the working performance of
healthy adults has recently appeared.53

There is an important body of literature, in which
emphasis is put on discriminating arithmetic tasks
based on features extracted from the recorded EEG
signal. Among others, fractal dimension (FD)53 and
the coefficients of autoregressive model have been
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reported as efficient features for accomplishing the
classification of mental arithmetic tasks.34 In a previ-
ous study, we attempted to differentiate arithmetic
tasks by deriving network metric time series
(NMTS).13 This was an approach deviating from all
the published work on the topic, and in accordance
with the emerging concept of exploiting functional
connectivity and its dynamics in BCI.4,6,10,35,55

In general, functional connectivity captures devia-
tions from statistical independence between distributed
and often spatially remote neuronal units. Statistical
dependence may be estimated by measuring correlation
or covariance, spectral coherence or phase-locking.
Functional connectivity estimates from any kind of
synchronization measure and between every possible
pair of EEG recording sites are employed to form
functional connectivity graphs (FCGs). Of note, previ-
ous brain decoding studies based on FCGs typically
treated the obtained FCGs as vectors in a high-dimen-
sional space42,46 and handled in a standard pattern-
analytic fashion. Themain drawback of this approach is
that it overlooks the inherent format of FCGs. In fact,
since each FCG has a straightforward tabular repre-
sentation, it can be considered as a second order tensor.
The relationship stored in the corresponding matrix
constitute important features, that reflect ordered
associations between brain areas, and hence should be
faithfully preserved in a low dimensional representa-
tion. To this end, we treat FCGs as tensors and employ
tensor subspace analysis (TSA)23 as a suitable and
convenient feature extraction strategy in this work.

Although two-way or multi-way tensors have al-
ready been used in neuroscience studies for improving
classification accuracy,31 in most cases the focus was
on extracting consistent patterns in frequency domain
within a recording condition or from a population
based original multichannel signals.8,16,33 To the best
of our knowledge, there is only one fMRI study, in
which dynamic FCGs were modeled via a group-based
3D-tensorial approach and in an attempt to associate
particular connectivity patterns with different brain
states.33 In a preliminary version of this work,17 we
have realized a single-subject study aiming at differ-
entiating deviant workload levels (two levels) based on
connectivity patterns recovered from signals recorded
over parieto-occipital brain areas. Based on the above
promising results, we attempted here to correctly
identify the workload levels among five different cog-
nitive states by incorporating estimates of both intra
and inter-frequency phase coupling within a single
FCG representation.

Motivated by previous experimental findings
regarding working memory (WM) subsystems26,28,44

and a recent modelling study,7 we sought a functional

connectivity description that could encompass both
inter and intra-frequency interactions. WM-involved
tasks (e.g., complex arithmetic operations) require not
only distinct functions such as storage (parieto-occip-
ital regions) and central executive control (frontal
regions), but also the coordination of the individual
subtasks. Hence, it was necessary to adopt an inte-
grated perspective. EEG rhythms (mostly h and a) are
known to appear over distributed brain regions during
WM tasks, but the cross-frequency coupling between
task-relevant regions has not been sufficiently studied.
Here, we examined how h and a2 frequency bands
interact within and between the two WM subsystems
located over frontal (F) and parieto-occipital (PO)
areas correspondingly.26,44,52

In the present paper, we introduce and extensively
evaluate a tensorial approach to encapsulating the
characteristics of WM and describing their modula-
tions induced by different levels of mental workload.
TSA-based learning deduces the essence of functional
connectivity that is hidden within the high-dimensional
domain formed by all the estimates of pairwise cou-
pling. In this way, the reliable quantification of mental
workload can be performed efficiently and with mini-
mal computational complexity.

To enhance both the introduction of tensorial
treatment of FCG and also the incorporation of intra
and inter frequency in a single FCG, we adopted the
below comparison approach. Firstly, TSA based
learning scheme was compared with vectorial treat-
ment of original FCG with and without a feature
extraction approach. Secondly, we compared the
introduced intra/inter format of FCG with: (a) intra-
frequency couplings independently in frontal and pa-
rieto-occipital brain regions in h and a frequency band
correspondingly and (b) with the incorporation of both
subregions in a single FCG which communicate with
either h or a frequency band. The above approach will
reveal the significance of cross-frequency coupling
between the two subregions and the importance of
studying each subsystem oscillating on its prominent
frequency. The objective criterion in the aforemen-
tioned comparative approaches was the classification
performance based on the adopted scheme.

The novelty and contribution of our work can be
summarized via the following features: (1) A novel
representation of intra-frequency and inter-frequency
couplings from multi-site recordings. (2) A tensorial
dimensionality-reduction technique for functional
connectivity patterns that significantly boosts the per-
formance of subsequent classification. (3) A refined
detection of cognitive workload level that can be per-
formed, at single-trial level, very fast and may be
potentially useful in real-time applications.
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MATERIALS AND METHODS

Experimental Data

Subjects

The present study concerned 16 right-handed vol-
unteers [9 males and 7 females, aged: 21–26 years, with
a mean age of 21.5 (SD = 1.5) years], who were re-
cruited from the National University of Singapore. All
of the participants signed an informed consent form
after the procedures were explained to them, had
normal or corrected-to-normal vision and reported no
history of verbal or non-verbal learning disability. The
investigation was approved by the Institutional Review
Board of the National University of Singapore.

EEG Recordings

We analysed functional connectivity patterns
derived from EEG recordings in which the subjects
were performing a mental arithmetic task (addition)
with five levels of difficulty. EEG data were recorded
from 64 channels at 256 Hz with an ActiveTwo Bio-
semi system and referenced using average reference.
The experiment was segmented into blocks of 1 min,
with rest periods of 30 s between blocks. Within a
block, the delivered problems were on the same diffi-
culty level. The blocks were presented in randomized
order. The rest period had been introduced to avoid
excessive fatigue, so that differences between block
would be due to workload only. A schematic diagram
of the experimental protocol is presented in Fig. 1.

The task consisted of summing mentally two num-
bers presented on the computer screen, retaining the
result in memory and comparing it to a proposed
answer, also presented on screen.41 There were 5
possible difficulty levels (denoted as Lv1, Lv2, etc.). At
level 1, the problems consisted of summing two

one-digit numbers, and each subsequent level included
an extra digit such that at level 5 the problems con-
sisted of summing two three-digit numbers. After three
repetitions of all the difficulty levels, a slide-show of
landscape pictures (one picture every 30 s) was pre-
sented for 5 min to allow the participant to relax. The
whole session was then repeated [15 blocks (3 blocks
per difficulty level, 3 9 5 = 15) of mental arithmetic
and 5 min of relaxation between them].

With the gradually increased difficulty levels, the
subject would need more time to conduct the calcula-
tion. Given that the duration for each block is constant
across CWLs, the number of trials would significantly
decrease with the increase of CWLs. The average
number of trials across the entire set of subjects, for
each CWL, was as follows (mean ± SD): CWL1 =

225 ± 48, CWL2 = 155 ± 33, CWL3 = 101 ± 32,
CWL4 = 73 ± 24 and CWL5 = 55 ± 19.

Preprocessing

Artifact reduction was performed based on inde-
pendent component analysis (ICA).11 After concate-
nating the responses from the entire set of blocks, we
used EEGLAB11 to zero the components that were
associated with artifactual activity from eyes, muscle,
and cardiac interference. The estimated mixing matrix
was used to reconstruct the multichannel signal from
the rest independent components (ICs).

Determining Frequency-Bands and Recording-Sites
of Interest

Taking into consideration previous works,26–28,38,44,47

which have identified brain waves within particular fre-
quency bands and originated from specific brain regions
to play an instrumental role in WM and mental arith-
metic tasks, we confined our functional connectivity
analysis within selected regions of frequency and spatial
domain.

First, we experimentally verified that higher cognitive
loads aremostly associated: (i) with increased power in h
(5–6 Hz) and a2 (10–13 Hz) bands over frontal sites
bilaterally (Fig. 2a) and (ii) with increased h and a2
power over parieto-occipital (PO) regions (Fig. 2b).
Thenwe selected the corresponding sensors that showed
this tendency for both rhythms (FZ, FP1, AF3, F3, F7,
FC5, FC1, FC6, FC2, F4, F8, FP2, AF4, PZ, P7, P8, P5,
P6, PO7, PO8, PO3, O1, OZ, O2, and PO4).

Within and Cross-Frequency Phase Synchronization

Phase locking value (PLV) estimates of phase syn-
chronization were derived, on a single-trial basis, based
on a time window W that begun with the onset of

Math Task Relaxation
   (5-min) Math Task Relaxation

   (5-min)

Level 2
(1-min)

   Rest
(30-sec)

Level 4
(1-min)

Block1 Block2

26+8
Space bar

33

(15 blocks)

Left arrow

33<34

   Rest
(30-sec)

64+4

FIGURE 1. A schematic depiction of the experimental time-
course. Blocks of stimuli (of same difficulty level) were pre-
sented in random order.
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stimulus (numbers to add appeared onscreen) and
ended with the last peak of theta (6 Hz) cycle.1

PLVs were calculated, in a pairwise fashion, from the
brainwaves recorded at k, l sensor and associated
respectively with the f1, f2 frequency band according to
the following formula (provided in a generic setting):

PLV f1xk;
f2xl

� �

¼ 1

Nw �Ns

XNw

n¼1

XNs

s1;s2

exp i /k s1; nð Þ � /l s2; nð Þð Þð Þ
�����

�����
:
ð1Þ

The xk(n) denotes a single-trial segment of Nw

samples extracted from a single addition. The /k(s1, n)
denotes the corresponding instantaneous phase mea-
surements (for the Ns1 scales associated with the fre-
quency band f1). The phases were calculated by means
of wavelet transform using Morlet function with a
Gaussian envelope in the time domain (characterized
by standard deviation rt) and a complex exponential
located around a centre frequency f and characterized
by resolution rf in frequency domain.50

Within-frequency phase synchronization measures,
PLV(hxk,

hxl) and PLV(a2xk,
a2xl), were computed so

as to estimate functional connectivity among Frontal
(F) brain regions in h band and among Parieto-occip-
ital (PO) brain regions in a2 band. Phase-phase cross-
frequency coupling (CFC) measures, namely PLV(hxk,
a2xk), were computed for every electrode from F and
PO sites. In addition, PLV(hxk,

a2xl) measures were
also computed as indices of coordination between F
and PO regions that would reflect cross-frequency
coupling mechanisms (between distinct WM subsys-
tems). All the aforementioned estimates of phase
interaction were tabulated in a single matrix as shown
in Fig. 3, which was the overall single-trial descriptor
for the task related functional couplings.

The initial formation of functional connectivity
patterns was followed by a statistical refinement step,
which was applied on a single-subject basis and for
each workload level independently. It is common
practice to trim the initial estimates of functional
connectivity so as to null out insignificant couplings
that always appear due to random fluctuations in the
time series. Based on a Rayleigh test for the uniformity
of PLV values, we calculated the significance of
each value (significance is calculated as p =

exp(2NtrialsPLV
2).21 To correct for multiple testing,

the false discovery rate (FDR) method was
adopted.3,15 A threshold of significance was set such
that the expected fraction of false positives was re-
stricted to q £ 0.01. The PLV(xk, xl) values surviving
that thresholding were used to form the final single-
trial FCGs. The percentage of PLV-values survived
from this thesholding across the entire set of subjects,
for each CWL, was as follows (mean ± SD):
CWL1 = 81.09 ± 9.82%, CWL2 = 83.47 ± 10.14%,
CWL3 = 84.54 ± 7.94%, CWL4 = 79.18 ± 10.24%,
and CWL5 = 75.34 ± 7.53%.

TSA Learning of CFC Patterns

The single-trial FCGs were represented based on a
recent methodology that blends ideas from multi-linear
algebra and manifold data learning.23 In a nutshell,
given some FCGs sampled from the space of func-
tional connectivity patterns, we can approximate the
underlying manifold by (i) first building a nearest
neighbour graph that captures the proximity relation-
ships among the FCGs and (ii) then deriving a tensor
subspace that faithfully represents these relationships.
TSA provides an optimal linear approximation to the
FCG manifold.

Linear Dimensionality Reduction Problem in Tensor
Space

Let X 2 <n1�n2 be a FCG of size n1 � n2. Mathe-
matically, X can be thought as a 2nd order tensor (or
2-tensor) in the tensor space <n1 � <n2 . The generic
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FIGURE 2. Signal POWER (averaged across subjects) of brain activity in h band (5–6 Hz) and in a2 band (10–13 Hz) as a function of
workload level. The measurements from individual sensors have been averaged for frontal sites (a) and for parieto-occipital sites (b).
Significant differences between successive levels are denoted with ‘*’ (Wilcoxon rank sum test p < 0.01; Bonferroni corrected
p¢ < 0.01/4).

1The peaks of h (6 Hz) cycles were detected by estimating zero

crossings from positive to negative values of the derivative of neural

activity originating from frontal brain areas and filtered around

6 Hz. The FZ sensor served for deriving a consistent indicator for the

last h cycle in all trials and subjects.
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problem of linear dimensionality reduction in the sec-
ond order space is the following. Given a set of tensors
(i.e., matrices) X1; . . . ;Xm 2 <n1 � <n2 find two trans-
formation matrices U of size n1 � l1 and V of n2 � l2
that maps these m tensors to a set of tensors
Y1; . . . ;Ym 2 <l1 � <l2ðl1<n1; l2<n2Þ, such that Yi

‘‘represents’’ Xi, where Yi ¼ UTXiV. The method is of
particular interest in the special case where X1, X2,…,
Xm 2M and M is a nonlinear sub-manifold embedded
in <n1 � <n2 .

Optimal Linear Embedding

The ‘‘true’’ domain of FCGs most probably forms a
nonlinear sub-manifold embedded in the ambient
space of 2nd order tensors. With the adopted TSA, we
attempt to find a linear subspace approximation to the
sub-manifold in the sense of local isometry. The
adopted technique is actually the tensorial counterpart
of locality preserving projection (LPP).

Given a set ofm tensors Xif gi¼1:m, with eachonebeing
the tabular version of a single-trial FCG and having
associated the cognitive load level as class label, TSA
starts by building an [m 9 m] weight-matrix S that
represents the nearest neighbour graph G among the
tensors. In our implementation, the elementSijwas set as

Sij ¼ exp �jjXi � Xjjj2=t
� �

conditionð1Þ
0 otherwise

( )

ð2Þ

The functional in Eq. (2) is known as heat kernel
(here is employed with frobenius norm); t is a control-
parameter usually referred as ‘‘radius of influence’’ and
condition(1) states that Xi, Xj should share the same
class label and anyone of them is among the j-nearest
neighbors of the other.

Then TSA seeks two transformation matrices U and
V, such that when applied to each tensor to result in a
mapping that would preserve the neighborhood rela-
tions encoded in G. Mathematically this is formulated
in the form of the following objective function:

min
U;V

X

ij

UTXiV�UTXjV
�� ��2Sij; ð3Þ

that incurs a heavy penalty if neighbouring tensors Xi

and Xj of the same class are mapped far apart. By
denoting with D the diagonal matrix with elements
Dii¼

P
j Sij, the above optimization problem is refor-

mulated as two coupled problems of eigenvector ana-
lysis23:

DU � SUð Þv ¼ kDUv
DU ¼

P
i DiiX

T
i UUTXi

SU ¼
P

ij SijX
T
i UUTXj

; ð4Þ

DV � SVð Þu ¼ kDVu
DV ¼

P
i DiiXiVV

TXT
i

SV ¼
P

ij SijXiVV
TXT

j

: ð5Þ

The optimal U should be the generalized eigenvec-
tors of (DV 2 SV, DV) and the optimal V should be
generalized eigenvecrtors of (DU 2 SU, DU). However,
it is difficult to simultaneously compute the optimal U
and V since the matrixes DV, SV, DU, and SU are not
fixed. Both U and V were iteratively compute as fol-
lows. We first fix U, then V can be computed by solving
the Eq. (4). Once V is obtained, U can be updated by
solving the Eq. (5). The optimal U and V can then be
obtained by iteratively computing the generalized
eigenvectors of (4) and (5) (after initializing U with the
identity matrix). Matrices DU, DV, DU 2 SU, and
DV 2 SV are all symmetric and positive semi-definite.
For further details of how to iteratively solve the
objective function an interest reader can see the algo-
rithmic steps in the Appendix.

In the present study, the dimensionality of the re-
duced tensors (i.e., the numbers of eigenvectors for the
mapping Yi = UTXiV) was optimized, via cross-vali-
dation, for each subject independently so as to achieve
the highest classification performance. The numbers of
neighbors and the heat parameter were set in a similar
way.

F F-PO
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F-
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F-PO PO

F-PO
PO

PLV F
θ PLV F-PO

θ-α2 PLV F
θ-α2 PLV PO

θ-α2

Intra- and Inter-Frequency Functional Connectivity Graph

PLV PO
α2

FIGURE 3. Topographic illustration of the FCG construction that incorporates intra and inter frequency couplings between frontal
(F) and parieto-occipital brain areas (PO). The matrix in the right-most end corresponds to the tabular equivalence of all the
previous five topographies. Each colour corresponds to a specific type of functional connectivity (intra or inter frequency) in one
of the two brain areas (F or PO). We defined intra and inter frequency couplings between and within brain regions with
PLV Brain region

Brain waves . The superscript denotes the brain region(s) over which the interactions took place while the subscript the frequency
band(s) in which the interactions occur.
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Learning Machines for the Assessment of Cognitive
Workload

With the U and V matrices at hand, the quantifi-
cation of CWL (from a given single-trial FCG) pro-
ceeds in the standard pattern recognition way of
deriving the reduced tensor (i.e., the TSA-represented
FCG) and comparing it with instances of known
CWL. We found experimentally that the descriptive
power of TSA was so high that even simple learning
machines could be effective at this step.

TheproposedschemeofCWLassessment incorporates
the k-nearest-neighbors (k-NN) algorithm and employs
the frobenius normas thedistancemetric formatching the
input FCG against the members of a database that in-
cludes single-trial FCGs of known classification (CWL).

To evaluate the performance of our approach, we
followed a cross-validation scheme. The overall set of
single-trial FCGs (including additions of all five diffi-
culty levels) were randomly partitioned into two un-
equally sized subsets (corresponding to 90 and 10%
respectively). The bigger one served as the training set
(the database of FCGs of known level) and the smaller
as the test set (trials for which the level had to be pre-
dicted). A correct recognition rate was estimated, as the
proportion of trials in the test set for which the correct
CWL was predicted. The cross-validation scheme was
repeated 100 times and the mean value of the recogni-
tion rate was estimated for each subject separately.

Apart from the proposed scheme, which denoted as
‘‘TSA + k-NN’’, we also employed a more conven-
tional classification scheme denoted as ‘‘LDA + k-
NN’’. In the latter, the FCG-related tensors were first
vectorized (i.e., represented as high dimensional vec-
tors by traversing the corresponding matrices in a
systematic way), then dimensionality was reduced via
LDA20 (linear discriminant analysis) and classification
was performed via standard k-NN algorithm (imple-
menting majority vote strategy).

In all the above experiments, we defined the number
k of nearest-neighbors as the one that maximizes the
group-averaged classification performance.

Computation of FCGs and Statistical Analysis

All computations related with functional connec-
tivity estimates and statistical analysis were performed
using in-house software developed in Matlab (version
R2011a, MathWorks) in a PC running Windows 7
with Intel i7 of 6 cores.

RESULTS

Behavioral-Data Analysis

We first include the results from the statistical
analysis of behavioral data, namely the subject’s

response time and performance. Wilcoxon rank-sum
test was employed for the statistical comparisons
between consecutive difficulty-levels in terms of
response time and also accuracy performance. As for
all post hoc tests reported in this paper, corrections for
multiple testing were incorporated based on Bon-
feronni adjustment.

Regarding response time, we detected a main effect
of difficulty (p< 0.001, Bonferroni Corrected,
p¢ < 0.001/4) with higher difficulty leading to longer
response times (Fig. 4a). The accuracy measurements
showed a trend, associating the increased difficulty
with deteriorating performance, but it did not survive
the statistical testing (for p< 0.001) (Fig. 4b).

Sub-Graph Strength Level Across Cognitive Workloads

To illustrate the differences between the five differ-
ent CWLs in terms of functional connectivity esti-
mates, group-averaged topologies of FCGs were
demonstrated and a statistical comparison over the
average PLV across CWLs was performed. Figure 5
includes a topographical representation of the PLVs
for the studied relationships (sites corresponding to F,
PO brain regions and inter/within-frequency-band(s)
couplings associated with h and a2 brain waves). For
each difficulty level, a group-averaged FCG is shown
after thresholding each type of coupling separately.
The three thresholds, corresponding to h-coupling,
a2-coupling and h-a2 interactions, are indicated over
distinct colorbars. They were estimated as the mean
+ SD from the measurements of the 5th level.

To examine the influence of CWL on the three types
of functional coupling in a more quantitative manner,
we performed statistical analysis (at group level) of the
average PLV value estimated over subgraph interac-
tions as this was defined for each one of the two sub-
groups of selected sites (F and PO ones). Figure 6
includes the obtained results. A progressive decrease of
thePLV2 can be observed as wemove from the easiest to
the most difficult additions. All level-dependent differ-
ences, shown in Fig. 6a, were statistically significant
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(Wilcoxon rank sum test, p< 0.01; Bonferroni cor-
rected p¢ < 0.01/10). Additionally, the sub-graph PLV
over Fh areas was higher than the PLV over POa2 sites,
as can be seen in Fig. 6b, This tendency was present at
every cognitive workload level and statistical significant
(Wilcoxon rank sum test, p< 0.01). Apart from these,
within-frequency, measurements, we also examined the
PLV for the cross-frequency couplings (data not shown
here). The PLV was found decreasing during the three
first levels, but then remained almost unaltered for the
last two ones.

Performance of Various Strategies
for CWL-Assessment

To further establish that the reported improved
performance is a combined effect of both the aug-
mented FCG representation and the tensorial handling
of the connectivity patterns, we compared our
approach against a standard signal-analytic method
(power indices of WM-relevant EEG rhythms) and a
conventional pattern-analytic technique (LDA applied
to vectorized versions of FCGs). Furthermore, to show
that cross-frequency phenomena are indeed important
in brain decoding, we measure the performance of

CWL estimation based on isolated single-rhythm (ei-
ther h or a) measurements.

We present on this subsection results from a strat-
egy that included signal characteristics and behavioral
data. In the feature-extraction step, signal-power
measurements (the power in h band Ph, the power in a2
band Pa2 and the corresponding ratio Ph/Pa2) were
measured from all selected channels and for each sin-
gle-trial segment (i.e., an addition). This battery of
features was further augmented by including the
reaction-time. By means of a normalization step, that
had been performed for each feature independently, all
features were brought within [0–1] range. Subse-
quently, the dimensionality of the feature space was
reduced via principal component analysis (PCA). Fi-
nally a k-NN classifier served as the predictor of CWL.
The whole classification scheme was run for each
subject independently and its performance was evalu-
ated with the cross-validation scheme (described in
‘‘Learning Machines for the Assessment of Cognitive
Workload’’ section). The measured performance, ex-
pressed as correct-recognition-rate and averaged
across subjects, was found equal to 75.12 ± 9.35%.

We then present the results from strategies that
incorporate functional-connectivity measurements for
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assessing the CWL during a single-trial (Table 1).
Apart from our suggestion TSA + k-NN we also in-
clude, for comparison purposes, the results from
LDA + k-NN and also the results from a variant that
did not incorporate any cross-frequency phenomena.
The group-averaged performance of TSA + k-NN
scheme was 95.56 ± 2.35%. The corresponding cor-
rect-recognition-rate for the ‘‘vectorizing’’ approach,
LDA + k-NN, was 85.44 ± 2.98%. When we re-
stricted our TSA + k-NN strategy to the Fh and POa2

subgraphs the measured group averaged performance
was respectively h: 73.45 ± 8.36% and a2: 75.39 ±

7.61%. The vectorial treatment of Fh and POa2 with
LDA + k-NN scheme was respectively h: 69.32 ±

7.38% and a2: 70.61 ± 8.94% (Table 1).
Additionally, we manipulated FCGs based on (F–

PO)h and (F–PO)a2 as vectors and as tensors in order
to further justify the importance of estimating the
connectivity profile of each brain sub-region oscillates
on the preferred frequency and the role of CFC. The
TSA + k-NN strategy gave a group-averaged classi-
fication performance of 81.12 ± 8.12 and
79.12 ± 7.96% for (F–PO)h and (F–PO)a2 respec-
tively. The LDA + k-NN strategy showed a group-
averaged classification performance 75.43 ± 9.06 and
77.86 ± 6.92% for (F–PO)h and (F–PO)a2 corre-
spondingly. Table 1 summarizing the classification
performance of vectorial, LDA and tensorial treatment
of FCGs over different frequency and spatial depen-
dent representations. The results clearly demonstrated
the superiority of tensorial manipulation of FCGs
compared to vectorial and also the importance of
incorporating both intra and inter-frequency phase
coupling within FCG. Additionally, both TSA and
LDA dimensionality reduction techniques outper-
formed the treatment of original FCGs.

Finally we should mention that the performance of
TSA analysis is influenced by the parameters t (heat
kernel) and j (j-nearest neighbors). We searched over

a range of possible values for these two parameters
(j 2 1; 2; . . . ; 30f g and t 2 1; 2; . . . 30f g). That experi-
mentation showed that the classification performance
was insensitive to the heat kernel parameter t and that
parameter was set to 1. On the other hand, the optimal
j (subject-adapted value) was ranging between 6 and
10.

Handling the Classification of Unbalanced Datasets

Our classification scheme based on unbalanced
datasets since the classification categories (CWLs) are
not approximately equally represented. Unbalanced
datasets can cause seriously negative effect on classifi-
cation performance of machine learning algorithms.
To deal with classification of unbalanced data sets in
the current experiment, we extracted multiple random
(partially overlapped) bootstrap-samples with size
equal to size corresponding to the most difficult CWL
5 (with the lower number of trials), repeatedly measure
the classification accuracy and derive the correspond-
ing averaged score (+SD). The above procedure was
repeated 100 times for each subject then we estimated
the subject-average and finally the group-aver-
age + SD. The estimated classification performances
are tabulated in Table 1.

DISCUSSION

Based on our experimental validation, the tensorial
treatment of FCGs increased the discriminability
among the five Cognitive Workload Levels signifi-
cantly (10% with respect to LDA). This notable
improvement can be associated both with the fact that
TSA considers FCGs as matrices (and not as vectors)
and the ability of TSA to learn sufficiently the
underlying manifold of connectivity measurements.
Moreover, classification strategies based on power

TABLE 1. Classification performance (averaged across subjects) for original and bootstrap-sampling procedure with vectorial,
tensorial and LDA treatments of FCGs over different frequency and spatial dependent representations.

Classification performance

LDA treatment of vectorized

FCGs (LDA + k-NN)

Tensorial treatment of FCGs

(TSA + k-NN) Vectorized FCGs (k-NN)

Original (%) Bootstrap (%) Original (%) Bootstrap (%) Original (%) Bootstrap (%)

Fh 69.32 ± 7.38 68.18 ± 6.15 73.45 ± 8.36 74.04 ± 9.34 60.23 ± 9.93 61.49 ± 8.79

POa2 70.61 ± 8.94 71.24 ± 7.92 75.39 ± 7.61 73.97 ± 8.12 62.21 ± 8.78 63.11 ± 8.05

(F–PO)h 75.43 ± 9.06 76.01 ± 8.04 81.12 ± 8.12 80.05 ± 7.65 67.42 ± 10.21 66.45 ± 9.12

(F–PO)a2 77.86 ± 6.92 76.17 ± 7.14 79.12 ± 7.96 77.87 ± 6.37 64.23 ± 9.04 65.79 ± 7.45

(Fh–POa2)h:a2 85.44 ± 2.98 86.87 ± 3.11 95.56 6 2.35 96.15 6 2.67 82.38 ± 7.28 83.58 ± 8.11

Bold indicates the highest classification performance. Italic indicates the suggested frequency and spatial representations of FCGs approach

in this study.
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spectrum measurements or FCGs related with Fh,
POa2,(F–PO)h and (F–PO)a2 subbands showed inferior
performance. The whole analysis demonstrated the
importance of tensorial treatment of FCG and the gain
in information representation by incorporating cross-
frequency synchronization phenomena (Table 1). The
relationships between the row and column vectors of
the connectivity matrix constitute important features
and hence should be exploited for deriving a suitable
low-dimensional representation. Additionally, the
unstructured representation of all pairwise interac-
tions, as a high-D vector, disrupts the natural repre-
sentation of connectivity pattern. Considering the high
classification performance that can be achieved in
minimal time, the most appealing outcome of this
study is that the obtained results were obtained based
on scalp–recorded EEG (instead of measurements
based on non-portable and costly equipment like MEG
and fMRI).

Unbalanced datasets can often cause negative effects
on the classification performance. In the present work,
classification categories (different cognitive workload
levels) are not approximately equally represented and a
solution to this problem is to rebalance them artifi-
cially by oversampling and/or under-sampling.30 Here,
we extracted multiple random (partially overlapped)
bootstrap-samples with size equal to the most difficult
level 5 (with the lowest number of trials), repeatedly
measure the classification accuracy and derive to cor-
responding group-averaged score. The classification
performances based on rebalanced datasets further
support the remarkably high correct-recognition-rate
of the task difficulty based on available initial training
dataset.

Previous neuroimaging studies7,26,28,44 have revealed
the significant contributions of specific brain regions to
distinct processes related to WM-involved tasks like
complex arithmetic operations. However, a clear pic-
ture about the coordination between the WM-related
brain regions involved in such tasks44 has not been
established yet.

Visual working memory (VWM) is the ability to
maintain relevant to the task visual information for a
short time period and is well-known to have a limited-
capacity.37 Numerous studies identified frontal, parie-
tal and visual regions as neural candidates for VWM
maintenance.26,52 There is evidence that these distrib-
uted regions communicate through: (a) local within-
frequency phase interactions and (b) long-range syn-
chronization based on frequency-specific phase inter-
actions of the Fh and POa2 oscillations, as shown by
human scalp-recorded (EEG) studies during several
WM tasks, such as mental calculations.28,44,45 Taking
advantage by the current neuroscience knowledge

regarding the distributed WM network between two
functions, namely, the central executive and storage
buffer functions,2,7,26 we constructed FCG that tabu-
lated both intra (local) and inter (long-range) fre-
quency functional connectivity. An integrative view of
memory-related phase synchronization mechanisms
includes the phase-amplitude coupling, the m:n phase
coupling and frequency restricted phase synchroniza-
tion.19

The design of the experiment and the adopted
methodology established a novel direction for many
situations where brain activity in humans has to be
assigned to different mental states.22 Mental states can
be related to individual’s state of reading, writing, lis-
tening, and feeling. Brain decoding is required for
dream reading based on visual imagery,24 for moni-
toring/enhancing human performance, for neurofeed-
back6,53 treatment in patients with psychological
disorders etc.

Our attempt was more difficult compared to previ-
ous studies since the task differed on the number of
digits of the addend numbers. We estimated the within
and between frequency regional synchronizations and
CFC of the h and a2 rhythms demonstrate that the
dynamic linkage between h oscillations and modality-
specific a2 oscillations mediates communication
between the central executive functions and storage
buffer functions in WM (Fig. 7).

Multivariate features from brain networks may
provide increased discriminatory power for brain state
classification12 instead of well-known univariate fea-
tures (e.g., power spectrum, activated foci in fMRI).
Machine learning and pattern analysis techniques were
introduced and applied to brain connectivity graphs
with main scope to decode the different brain states
based on the functional connectivity patterns.42

Machine learning methods are an excellent choice
for compensating the high variability in EEG when
analyzing single trial data in real-time.39 Until now
numerous studies have presented various preprocess-
ing and classification schemes for efficient EEG-based
brain-computer interfacing (BCI)39 and mental state
monitoring applications.5,29 From the famous Berlin
brain-computer interface (BBCI), which can be oper-
ated with minimal subject training and succeeds com-
munication speeds of 6–8 letters/min39 to monitor of
mental states and decoding of covert user states5,29

different strategies have been suggested but all of them
based on time–frequency EEG analysis. In the present
study, we exploit, for the first time, functional con-
nectivity as a source of information that can lead to
high-performance CWL decoding, and without
inducing a computational load that will be prohibitive
for real-time applications.

Cognitive Workload Evaluation Using Phase-Interactions 985



The execution time for computing the FCG over the
selected 25 sensors was ~0.7 s in the case of CWL-5
(most delayed response time) and almost 0.1 s for
acting upon a test-tensor with the pre-calculated U, V
matrices (see Sect. ‘‘TSA Learning of CFC Patterns’’).
By taking advantage of the multi-core processor and
adopting parallel computation the execution time for
FCG computation drops to ~0.2 s and this results to a
total time of ~0.3 s (for representing a single-trial)
which is almost identical to the execution time of
power spectrum estimations conventionally employed
in BCI applications.18,36

In functional connectivity studies, it is important to
address the degree of connectivity that can also be
explained by volume conduction. Volume conduction
is an electrical field produced at near the speed of light
by an electrical dipole and thus exhibits approximately
zero phase lag everywhere in the field.40 Zero phase

delay is one of the important properties of volume
conduction, when separated generators exhibit a stable
phase difference of, for example, 30� then this can not
be explained by volume conduction. We examined the
distribution of instantaneous phase differences for
many pairs of electrodes (in particular those of stron-
gest phase coupling) and confirmed that it was not
centered around 0 or ± p. Moreover checking for
phase distribution that does not peak around 0 or p
does not guarantee that phase coupling will not be
affected by volume conduction but it may be less
sensitive.9,48 In multichannel time–frequency EEG
analyses it has been shown that there is a huge amount
of 0 or p phase synchronization. To address this issue,
we studied the phase difference derived from the entire
set of trials over CWLs and subjects. By taking into
account the whole group of subjects and the entire set
of trials from the 5 CWLs, we derived a histogram of
the phase differences (data not shown here). We
mention here that less than 8% of phase differences
was centered near 0 and p and almost 5% of phase
differences was centered near ±90� difference. Addi-
tionally, in Fig. 6a PLV was presented over Fh and
POa2 brain regions as a function of difficulty level and
clearly demonstrated significant differences between
CWLs. The above trend could not be explained by
volume conduction effects.

Our EEG study is the first one that classify five
levels of WM Load with high performance based on
the same task. Present study together with a previous
preliminary work14 demonstrated the crucial role that
phase synchrony plays in mental calculations. Our
next goal is to built a unified classifier from all the
subjects that can also differentiate the correct from
wrong responses. In addition, we will attempt to
incorporate both anatomical and functional/effective
connectivity patterns and especially of the latter esti-
mated in the source space to further improve the
discriminating power of brain decoding in a future
exploration.25
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APPENDIX: ALGORITHMIC STEPS

OF THE TSA
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