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Abstract—The abdominal electrocardiogram (ECG) pro-
vides a non-invasive method for monitoring the fetal cardiac
activity in pregnant women. However, the temporal and
frequency overlap between the fetal ECG (FECG), the
maternal ECG (MECG) and noise results in a challenging
source separation problem. This work seeks to compare
temporal extraction methods for extracting the fetal signal
and estimating fetal heart rate. A novel method for MECG
cancelation using an echo state neural network (ESN) based
filtering approach was compared with the least mean square
(LMS), the recursive least square (RLS) adaptive filter and
template subtraction (TS) techniques. Analysis was per-
formed using real signals from two databases composing a
total of 4 h 22 min of data from nine pregnant women with
37,452 reference fetal beats. The effects of preprocessing the
signals was empirically evaluated. The results demonstrate
that the ESN based algorithm performs best on the test data
with an F1 measure of 90.2% as compared to the LMS
(87.9%), RLS (88.2%) and the TS (89.3%) techniques.
Results suggest that a higher baseline wander high pass cut-
off frequency than traditionally used for FECG analysis
significantly increases performance for all evaluated meth-
ods. Open source code for the benchmark methods are made
available to allow comparison and reproducibility on the
public domain data.

Keywords—Fetal ECG, Reservoir computing, Template

subtraction, Adaptive noise canceller.

INTRODUCTION

Monitoring the fetal cardiac activity may allow for
screening of fetal well-being through analysis of the
fetal heart rate (FHR) and morphology of the fetal
electrocardiogram (FECG) waveform. For example,
shortening of the fetal QT interval has been associated
with intrapartum hypoxia resulting in metabolic aci-

dosis.25 Doppler ultrasound is routinely used for
measuring the FHR during pregnancy and delivery,21

even though it has not been demonstrated that ultra-
sound use is fully safe for the fetus.3 Moreover,
ultrasound is less accurate than FECG for tracking
FHR.12

The FECG can be recorded in two ways; through an
electrode attached to the fetal scalp while the cervix is
dilated (during delivery) or non-invasively through
electrodes attached to the mother’s abdomen. Figure 1
shows an example of a maternal electrocardiogram
(MECG), scalp FECG and an abdominal electrocar-
diogram (AECG) recorded simultaneously. The cur-
rent primary use of the FECG is for FHR analysis
during delivery. Morphological analysis of the FECG
waveform is usually not performed with the exception
of the STAN monitor (Neoventa Medical, Goteborg,
Sweden), which attempts to identify ST segment devi-
ation through a proxy measure (the T/R amplitude
ratio). However this technology is invasive, can only be
performed during labour and uses a single electrode
(on the fetal scalp) which does not cover the three
dimensional electrical field emanating from the fetal
heart. Conversely, non invasive FECG (NI-FECG)
extraction can theoretically be performed at almost
any point in the pregnancy with multiple electrodes.
This is true as long as the fetal dipole is large enough
and that the vernix caseosa layer is not isolating the
FECG signal too much during the third trimester. This
motivates the research in NI-FECG extraction from
the AECG which exhibits a mixture of the MECG,
noise and the FECG.

Despite the rich literature on adult ECG, the sig-
nificant advances in signal processing and the increased
computational capabilities of digital processors, clini-
cally useful extraction of the FECG from the mixture
of abdominal signals is still a nascent field.30 This is
due to the relatively low signal to noise ratio (SNR) of
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the FECG compared to the MECG, as well as the
limited clinical knowledge on how fetal cardiac func-
tion and development map to changes in the FECG.

The primary feature that any algorithm needs to
extract from the AECG signal mixture is the fetal QRS
complex (FQRS) location. This peak detection is used
for computing FHR, detecting rhythm abnormalities,
or further used as an anchor point for extracting fea-
tures from the FECG waveform. Ascertaining the
location of the FQRS is simplified by first separating
the FECG from the AECG, and several approaches
have been previously applied. These include: principal
component analysis,19 independent component ana-
lysis (ICA),7,16 or periodic component analysis
(pCA)31 which makes use of the ECG’s periodicity. In
essence, these approaches are a form of blind source,
or semi-blind in the case of pCA, separation, which
aim to separate the underlying statistically independent
sources into three categories: MECG, FECG and
noise. A key assumption of these methods is that of a
linear stationary mixing matrix between these sources.
Although the stationary aspect of the ICA mixing
matrix could be unrealistic over long recordings, in
practice the matrix can be regenerated for successive
short time periods. The original signals are projected
into the ‘‘source’’ domain, where the channels repre-
senting the MECG and noise can be canceled. The
resulting back-projected signals should primarily con-
sist of FECG components. Other techniques which
operate in lower dimensions include adaptive filter-
ing,36 template subtraction (TS)8,24,33 and Kalman fil-
tering (KF).29 See Sameni and Clifford30 for a good
overview of the methods. Despite many interesting

theoretical frameworks the robustness of most of these
methods has not been sufficiently quantitatively eval-
uated. This is mainly due to two factors: (1) the lack of
gold standard databases with expert annotations and
(2) the methodology for assessing the algorithms is
underdeveloped.

The echo state neural network (ESN), which be-
longs to the family of adaptive filtering techniques,17

was used for the first time in the context of ECG
processing by Petrenas et al.27 for QRST cancellation
during atrial fibrillation. In the present work, an FQRS
detection method based on the ESN is introduced and
compared to the following baseline techniques: the
least mean square (LMS) adaptive filter,36 the recursive
least square (RLS) adaptive filter36 and TS.8,24,33 The
work presented here is focused on the relative perfor-
mance comparison of these single channel time-based
techniques for extracting FQRS, in contrast to Blind
Source Separation (BSS) techniques which can be
considered as spatially based. Focusing on single
abdominal channel extraction techniques (i.e., tech-
niques that require only one abdominal channel with
or without a reference chest channel) would enable the
production of low-cost, easy-to-use devices for NI-
FECG monitoring. In particular, it is worth noting
that the methods are not compared against BSS based
approaches which require many abdominal channels to
be simultaneously recorded. The details for tuning the
algorithms’ global parameters and assessing their per-
formance are discussed and a particular focus is given
to the effect of the preprocessing step on the AECG
mixture, where preprocessing refers to any signal fil-
tering prior to applying a given FECG extraction
algorithm.

MATERIALS AND METHODS

Template Subtraction

Four variants of the TSmethodwere implemented and
evaluated.8,19,24,33 They are denoted TSc,

8 TSm,
24 TSpca,

19

and TSlp
33 with TSlp implemented as described in Vullings

et al.35 AMECG template cycle was built centered on the
mother R-peak and considering a duration of 0.20 sec-
onds (s) for the P wave, 0.10 s for the QRS complex and
0.40 s for the T wave. In the case of TSc the average
MECG complex t was scaled for each individual MECG
cycle with a constant a in order to reduce the mismatch
between the template cycle and the MECG complex m:
The scaling constant awas foundby searching for the least
mean square error (MSE) (e2) between m and t (i.e.,
solving argmin

a
ðe2Þ ¼ argmin

a
ðjjta�mjj2Þ.24 TSm is sim-

ilar to TSc except that three scaling constants are searched
for each individual cycle (one for each of the P, QRS and
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FIGURE 1. Example of (a) maternal chest ECG, (b) fetal scalp
ECG and (c) abdominal ECG. Note that the abdominal ECG
contains a mixture of both maternal and fetal ECG.
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T waves). TSlp was implemented as described in Vullings
et al.35 where the template ECGwas built byweighting the
seven previous cycles, where the weights selected mini-
mized the MSE. This is in contrast to the other TS
methods where the weights of the cycles contributing to
the template are equal. In order for the methods to adapt
to the non-stationary MECG morphology, the template
was updated with incoming cycles.

PCA aims to identify a meaningful orthonormal
basis to re-express a given dataset. It can be used for
dimensionality reduction, source separation and visu-
alization. In this work TSpca, was implemented as de-
scribed by Kanjilal et al.19 and the first two principal
components computed on the aligned ECG cycles were
kept. In order for the method to be adaptive, the PCA
basis was updated every 10 AECG cycles.

The LMS and RLS Adaptive Filter

The classical method for removing noise from a
corrupted signal is to pass it through a filter. The filter
can be fixed (i.e., its transfer function is constant) or
adaptive. In the context of FECG extraction, adaptive
noise cancelation36 is commonly used to suppress noise
from the mixture of signals in the AECG. The AECG
yðnÞ is treated as the sum of the signal of interest (the
FECG, sðnÞ) and noise (gðnÞ), i.e., yðnÞ ¼ sðnÞ þ gðnÞ.
gðnÞ corresponds to the combination of the MECG,
other physiological signals such as muscle noise and
artifacts such as movement. As the signal recorded on
the chest does not have an FECG component due to its
location, it serves as an observation of the noise and as
a reference for the noise canceling field. The abdominal
noise gðnÞ is adaptively removed by a filter whose
coefficients w ¼ ½w1; . . . ;wN� form a finite impulse
response filter with N being the number of coefficients
or weights that are recursively updated in order to
minimise an error signal eðnÞ. Thus the goal of the
LMS, RLS and ESN methods is to learn a model with
input uðnÞ and output ĝðnÞ, where ĝðnÞ matches the
target signal yðnÞ as closely as possible in the least
MSE sense. Subtracting ĝðnÞ from the abdominal
mixture results in the suppression of the most dis-
rupting source of noise; the MECG. This process is
represented in Fig. 2.

The LMS Adaptive Filter

The LMS adaptive filter applied to NI-FECG extrac-
tion was first published by Widrow et al.36 but only
qualitative results were demonstrated. LMS is used to
find filter coefficients that minimise the MSE e2ðnÞ
between the filter output ĝðnÞ and the desired response or
target yðnÞ. Let uðnÞ ¼ ½u1ðn�Nþ 1Þ; . . . ; u1ðnÞ�T;
8 n>N be a segment of the input signal (withN being the

last N input samples), wðnÞ ¼ ½w1ðnÞ; . . . ;wNðnÞ� be the
filter weights, and eðnÞ ¼ yðnÞ � wTuðnÞ the error rate at
each step. The optimal weight vector wo, also called the
Wiener weight vector, is given by wo ¼ R�1P where R is
the input correlation matrix and P is the cross correlation
between the desired response yðnÞ and uðnÞ. LMS algo-
rithms aim to estimate the optimum filter weights that
minimise theMSE by utilizing the gradient of theMSE at
each step. The weight update equation is given by
wðnþ 1Þ ¼ wðnÞ� l

2rE½e2ðnÞ�; where E½e2ðnÞ� is the ex-
pected value of the MSE and l is the step size that con-
trols the stability and convergence rate. By assuming that
the expectation of the MSE (E½e2ðnÞ�) can be adequately
approximated by a finite sample of size N (i.e., as
E½e2ðnÞ� ¼

PN�1
n¼1 yðnÞ�½ wTuðnÞ�2 ), this equation

becomes wðnþ 1Þ ¼ wðnÞþ leðnÞuðnÞ. The key LMS
adaptive algorithm steps can be summarized as:

ĝðnÞ ¼ wTðn� 1ÞuðnÞ ð1Þ

eðnÞ ¼ yðnÞ � ĝðnÞ ð2Þ

wðnÞ ¼ wðn� 1Þ þ leðnÞuðnÞ ð3Þ

where (1) gives the filter prediction, (2) is used to
evaluate the error and (3) is used to update the filter
weights at each sample n. Note that there are two
parameters to set in order to design the adaptive filter:
the filter length N, and the step size l. Both these
parameters must be optimized on a training set. In the
context of this work, usage of the LMS technique
implicitly assumes that there is a linear relationship
between the maternal waveform recorded on the chest
and on the abdomen.

The RLS Adaptive Filter

The RLS algorithm minimises the total squared
error between the desired signal and the target signal.
In contrast to the LMS, which only considers the
current error value to adapt its coefficients, the RLS

FIGURE 2. Adaptive noise canceling block diagram in the
case of one reference input uðnÞ. On the diagram : the FECG
sðnÞ, the noise gðnÞ, the abdominal ECG yðnÞ ¼ sðnÞ þ gðnÞ,
the chest signal uðnÞ, the estimated noise ĝðnÞ, the estimation
error eðnÞ and the output signal ŝðnÞ. n corresponds to a time
index.
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considers the total error from the beginning of the
signal to the incoming data point. The forgetting factor
k 2 ½0 1� defines what proportion of past data con-
tribute to the filter coefficient update. In the extreme
case of k ¼ 1 all past data contribute equally, and as k
approaches zero only the most recent data points play
a role. This translates into finding the parameters so
that the following ‘‘loss-function’’ �ðnÞ is minimized:

�ðnÞ ¼
Xn

i¼1
bðn; iÞeðiÞ2 ¼

Xn

i¼1
bðn; iÞ½yðiÞ � ĝðn; iÞ�2

with ĝðn; iÞ ¼ wTðnÞuðiÞ and where bðn; iÞ ¼ kn�i in the
case of the exponentially weighted least squares solu-
tion. The RLS algorithm updates the filter coefficients
at each iteration2,34 as follows:

eðnÞ ¼ yðnÞ � wTðn� 1ÞuðnÞ

kðnÞ ¼ Pðn� 1ÞuðnÞ
kþ uðnÞTPðn� 1ÞuðnÞ

PðnÞ ¼ ðI� k uðnÞTÞPðn� 1Þ 1
k

wðnÞ ¼ wðn� 1Þ þ kðnÞeðnÞ;

where P is the covariance and I is the identity matrix.
There are two important parameters in the RLS: the
forgetting factor k and the number of filter coefficients
N. RLS tends to converge faster than LMS and is
usually more accurate. However, this is at the price of a
higher computational complexity. In the context of this
work and similar to the LMS approach, RLS assumes
that a linear relationship exists between the maternal
waveform recorded on the chest and the abdomen.

The ESN

Recurrent neural networks (RNN) are a class of
neural networks capable of non-linear modeling of
dynamical systems. This is made possible by recurrent
connections between neurons, visualized as cycles in
the network topology, that allow processing of tem-
poral dependencies.9 However, parameter estimation
of the RNNs has proven to be a difficult task. Indeed,
optimization methods that were originally used for
training feedforward neural networks, such as the error
backpropagation algorithm, do not generally perform
as well for training RNNs.23 The ESN17 is a recently
introduced approach to RNN training, with the RNN
(or reservoir) being generated randomly. The reservoir
is then fixed and only the weights of the output neu-
rons are learnt and updated using online or offline
linear regression. This method outperformed classic
fully trained RNNs in many tasks.23 The ESN is
introduced in the context of noise canceling as a non-
linear medium into which the reference signals propa-

gate before the ‘‘echo response’’ given by the network
reservoir is weighted by a readout layer.

In the configuration presented here, the MECG
recorded on the chest is projected onto a set of non-
orthogonal basis functions through the ESN reservoir,
comparable to the kernel in kernel learning approaches.
The input signal(s) (chest ECG) drive the nonlinear res-
ervoir resulting in a high-dimensional dynamical ‘‘echo
response.’’9 The reservoir also acts as a memory of the
input signal thus providing temporal context.22 In a sec-
ond step an adaptation algorithm is used to compute the
weights of the output neurons. The RLS algorithm was
used for this step. This readout layer maps the reservoir
states to the output: the observed abdominal AECG.

For K input units, M internal units and L output
units: uðnÞ ¼ ½u1ðnÞ; . . . ; uKðnÞ�, xðnÞ ¼ ½x1ðnÞ; . . . ;
xMðnÞ�, ĝðnÞ ¼ ½ĝ1ðnÞ; . . . ; ĝLðnÞ�, where xðnÞ is the res-
ervoir state vector, uðnÞ is the vector of input signals and
ĝðnÞ is the vector of output signals.We define the extended
system state as zðnÞ ¼ ½xðnÞ uðnÞ�: The activation of
internal units is updated using the following equation:

xðnþ 1Þ ¼ xðnÞ þ fðWxðnÞ þWiuðnþ 1Þ þWbĝÞ;

where W 2 RM�M is the reservoir weight matrix and
Wi 2 RM�K is the input weight matrix (randomly
generated and fixed). Wb 2 RM�L is the back projec-
tion weight matrix and f is the reservoir neuron acti-
vation function, taken to be the hyperbolic tangent.
Considering a purely input-driven dynamical pattern
recognition task, the system is simplified by setting
Wb ¼ 0. The output is computed as:

ĝðnþ 1Þ ¼ gðwoðnÞzðnÞÞ;

where g is the output neuron activation function (taken
to be identity) and wo are the output weights which
may be adaptive or fixed. An ESN with a leaky inte-
grator neuron model18 was used. This satisfies:

xðnþ 1Þ ¼ ð1� aÞxðnÞ þ fðWxðnÞ þWiuðnþ 1ÞÞ;
ð4Þ

with a 2 ½0 1� being the leakage rate or forgetting fac-
tor. In the case of a ¼ 1, the neurons do not retain any
information about their previous state. Initial weights
were generated from the uniform distribution on the
interval ½�1 1� for Wi and wo. W is a random M�M
sparse matrix with approximately w�M�M uni-
formly distributed non zero entries (w 2 ½0 1� is the
sparsity of the reservoir). Figure 3 shows a represen-
tation of the ESN based FECG extraction algorithm.
In the figure, one chest signals uðnÞ is used as inputs of
the ESN and the abdominal channel is used as the
target signal. The reservoir and input weights are
randomly initialized once and the generated network is
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used independently for each abdominal channel
available of each individual record. The predicted
signal ĝðnÞ is then subtracted from the jth abdominal
signal yjðnÞ giving the residual signal ŝðnÞ containing
the FECG. Using the ESN for NI-FECG extraction
allows for a non-linear relationship between the
maternal waveform as recorded on the chest and
recorded on the abdomen.

There are a number of global parameters that have
an important influence on the algorithm’s perfor-
mance. The main three global parameters of the ESN
are22: (1) input scaling c, (2) the spectral radius q and
(3) the leakage rate. The spectral radius determines
how fast the influence of an input disappears in the
reservoir with respect to time: choosing a small q
means that the output is more dependent on recent
history.18 It also affects how stable the reservoir acti-

vations are (see Eq. (4)). W is first rescaled by qðWÞ
(i.e., its dominant eigenvalue) and therefore has unit
spectral radius. Next W is scaled by q. Input scaling
determines the degree of non-linearity of the reservoir
responses. Normalizing the input signal so that it lies in
the range [�1 1] plays a similar role as scaling Wi (see
Eq. (4)). Table 1 summarises the ESN parameters.

The weights can be allowed to evolve (adaptive fil-
tering) or can be fixed (initialized on a sub-segment of
the signal and kept constant). Both options were
explored for the ESN approach; these will be denoted
ESNa for the adaptive (i.e., weights are updated on-
line) approach and ESNna for the nonadaptive (i.e.,
weights are determined on some initial training data
and kept constant) approaches. This allows for
assessment of whether online updating of the filter
coefficients improves the filter performance.

FIGURE 3. The ESN based FECG extraction algorithm showing the relationship between the chest signal uðnÞ, predicted signal
ĝðnÞ, the jth abdominal ECG signal yðnÞ, and the residual signal ŝðnÞ containing the FECG. Dashed lines represent adaptive
weights. Image of the women is adapted from Zaunseder et al.37.

TABLE 1. Parameters of the ESN, LMS and RLS algorithms.

Symbol Definition Grid search range (step size)

fb High frequency cut-off [30, 120] (5)

fh Low frequency cut-off [1, 49] (3)

ESN M Size/number of units of the reservoir [10, 250] (20)

w Sparsity of the reservoir. Percentage of connections

between nodes of the reservoir

20%y

q Spectral radius of W , the reservoir connection matrix [0, 1] (0.05)

c Input scaling of the input weight matrix Win 1y
a Leakage rate [0, 1] (0.1)

k Forgetting factor of the RLS algorithm 0:999

LMS N Filter length [1, 262] (5)

l Step size [0.01, 0.46] (0.05)

RLS N Filter length [1, 61] (3)

k Forgetting factor [0.8, 1] (0.0025)

yParameters that were not optimized.
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Databases and Evaluation Protocol

Databases

Two databases were used in this study. The first was
the Physionet non-invasive FECG database
(PNIFECGDB)14 consisting of 55 multichannel
AECG recordings taken from a single subject between
21 and 40 weeks of fetal gestational age. Each record
consisted of two chest channels and 3–4 abdominal
channels with different electrode configurations (elec-
trode position was varied in order to improve the
SNR). All signals were sampled at 1 kHz with 16-bit
resolution. A bandpass filter (0.01–100 Hz) and a
notch filter (50 Hz) were applied to the data during
acquisition. A total of 14 records were manually se-
lected where the FQRS complexes were visible on at
least one channel. The gestational age for these records
ranged from 22 to 40 weeks. One minute of signal, 30 s
after the start of the record, was extracted for all
available channels for each record.1 A total of 2148
FQRS were manually annotated by the first author
(with three years of FECG analysis experience) using
the channel where the FQRS appeared to be the most
visible for each record. These markers were considered
to be the reference. For consistency, only the first three
abdominal channels were kept so that all records had
two chest and three abdominal channels. The three
abdominal channels were considered independently for
FECG extraction thus providing 3� 14 ¼ 42 min of
annotated data (i.e., 3� 2148 ¼ 6444 reference
FQRS). Data were of good quality with variable
FECG/MECG SNR and some minor artifacts which
were not manually discarded. This first database was
denoted DB1.

The second database consisted of a subset of records
from a private commercial database.2 Each record
consisted of 28 abdominal channels, one maternal
chest channel, and the invasive scalp FECG signal. All
signals were sampled at 1 kHz with 16-bit resolution.
The chest channel as well as a subset of four abdominal
channels where a FECG trace was visible were man-
ually selected for processing. A total of eleven 5 min
records from 8 pregnant women were used. An energy
QRS detector based upon that of Pan and Tompkins
(P&T)26 was applied to the scalp electrode and the
corresponding markers were used as the reference. All
records’ abdominal channels were considered inde-
pendently for FECG extraction thus providing
11� 5� 4 ¼ 3 h and 40 min of annotated data (overall

4� 7752 = 31,008 reference FQRS annotations).
Some artifacts were present in a few records and the
FECG/MECG SNR was variable. This second data-
base was denoted DB2.

All ECG signals were downsampled to 250 Hz with
an anti-aliasing filter prior to running extraction
algorithms and tuning the parameters. In the following
work, DB1 constitutes the training database and DB2

the test database. Summary statistics for the fetal and
maternal HR in DB2 are reported in Table 2. Note that
the data in the training set (DB1) and the test set (DB2)
were recorded with different hardwares, following a
separate protocol and at different stage of pregnancy
for different subjects. This allows for reassessment of
whether the algorithms are sufficiently flexible to work
with data that have similar, but not equivalent,
recording configurations. It is particularly pertinent to
assess the adaptability of the extraction methods to an
unseen set of signals from distinct subjects as there are
many free parameters which are tuned on the training
set database. Furthermore, the PNIFECGDB was
used as the training set because the reference FQRS
fiducial markers were not as accurate as for the private
database which had a simultaneous fetal scalp signal.

Because only one chest channel was available in
DB2 only one of the two available chest channel was
used for DB1. Each abdominal channel were consid-
ered individually. Thus uðnÞ ¼ uðnÞ and ĝðnÞ ¼ ĝðnÞ:

Evaluation Protocol

QRS detectors’ performances are usually assessed
by beat-to-beat comparisons between the detected
beats and the reference beats. The classical adult
matching window for candidate fiducial points is
150 milliseconds (ms).1 However, in order to account
for the higher FHR, a matching window of 50 ms is
commonly employed, as for example in Guerrero-
Martinez et al.15 and Zaunseder et al.37 In accordance
with the ANSI/AAMI guideline1 the sensitivity (Se)
and positive predictive value (PPV) are reported as
follows: Se ¼ TP=ðTPþ FNÞ, PPV ¼ TP=ðTPþ FPÞ;
where TP, FP and FN are true positive, false positive
and false negative detections respectively. For algo-
rithm parameter optimization the following perfor-
mance index (PI), was suggested by Kotas et al.20 in
the context of FQRS detection: PI ¼ ðT� FN
�FPÞ=T ¼ ðTP� FPÞ=ðTPþ FNÞ, where T ¼ TPþ
FN is the number of annotated FQRS. The F1-measure
could alternatively be used as a measure of an algo-
rithm’s accuracy. In the context of binary classifica-
tion:

F1 ¼ 2 � PPV � Se
PPV þ Se

¼ 2 � TP
2 � TPþ FNþ FP

: ð5Þ

1The set of the 14 records selected from the PNIFECGDB was: 154,

192, 244, 274, 290, 323, 368, 444, 597, 733, 746, 811, 826, 906.
2The study was approved by The Institutional Review Boards at

Summa Health System (RP#12018) and Brigham and Women’s

Hospital (RP#2010-P-002778/1).
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From Eq. (5) one can observe that FN and FP play a
symmetric role in penalizing the accuracy measure F1,
which is not the case when considering the PI measure.
Thus in ‘‘Results’’ section Se, PPV and F1 statistics are
reported and the F1 measure was used for parameter
optimization. In addition, the performance of the
algorithms are evaluated in terms of FHR. FHR can
be derived from the RR interval time series and com-
pared with the reference trace HR derived from the
reference annotations. Both the FHR and the reference
HR were extracted as the reciprocal of the RR interval
scaled by a factor of 60. At any given time, the ex-
tracted FHR is said to match the reference FHR if it is
within �5 beats per minute (bpm) with respect to the
reference trace. The corresponding FHR measure is
denoted HRm.

Preprocessing and General Experimental Set Up

For each of the available abdominal channels,
baseline wander was first removed. In the context of
NI-FECG extraction, it is common to use a larger
than standard low frequency cut-off before perform-
ing MECG cancelation (see Martens et al.24 and
Zaunseder et al.37 for example), where larger is �2
Hz. This cut-off is acceptable when the aim of the
analysis is not FECG morphology, yet there is no
comprehensive study known to the authors that has
assessed the prefiltering effect on outcomes for FQRS
extraction. As a consequence an exhaustive search
was conducted to determine fb (an ‘‘optimal’’ cut-off
frequency to remove the baseline using a high pass
filter) and fh (an ‘‘optimal’’ cut-off frequency to
remove the high frequency content using a low pass
filter). Two zero phase Butterworth digital filters were
cascaded for that purpose: one sixth order high pass

filter and one 10th order low pass filter. The reference
and input signals were then normalized according to
the following procedure: (1) the first 5 s of the signal
were used to derive the amplitude range of the ECG
signal and the signal was then divided by this value,
(2) the mean was computed over the first 5 s and
subtracted from the ESN signal, and (3) the resulting
signal was transformed using the hyperbolic tangent
function. Step (3) was applied in order to avoid out-
liers which could result in the reservoir state xðnÞ or
LMS/RLS weights wðnÞ taking unexpected values due
to abnormally large values (likely attributable to
signal artefact). Not performing this last step could
result in loss of useful memory or a highly unpredic-
tive output.22 Following the preprocessing, each of
the algorithms was utilized to filter out the MECG
resulting in a residual signal comprising of the FECG
and some noise. FQRS detection was performed on
the residual signal ŝ using a P&T QRS detector with
150 ms refractory period. All the parameter optimi-
zation was performed on DB1 while DB2 was used as
the independent test set. The Se, PPV, F1 and HRm of
each algorithm was evaluated.

TS techniquesMQRS detection was run on the chest
channel because of its higher SNR and negligible FECG
contribution. Each MQRS was then adjusted in order
for the R-peaks to be accurately located on each
abdominal channel. This was to ensure good construc-
tion of the channel-specific MECG template and good
alignment between the ECG cycles and the template
MECG.

LMS technique An exhaustive search over a range of
values of N 2 ½1 262� and l 2 ½0:01 0:46� was per-
formed.

RLS techniqueAn exhaustive search over a range of
values of N 2 ½1 61�) and k 2 ½0:8 1� was performed.

TABLE 2. HR reference statistics for DB2 records.

FHR stats (bpm) MHR stats (bpm)

Mean SD Max Min Mean SD Max Min

123a 130 5 139 119 66.7 2.74 76.3 61.2

123b 131 6.19 144 117 63.8 2.12 68.5 59.2

125 145 5.44 147 126 80.9 2.77 87.3 74.8

126 159 2.43 163 155 78.9 5.36 96 69.5

172a 154 6.35 159 135 91.5 4.32 102 83.6

172b 142 10.8 153 112 93.6 6.6 109 81.0

210 157 5.51 170 145 90.8 6.77 108 80.2

261 132 3.54 142 122 79.3 2.69 89.7 74.2

265 129 2.57 135 125 64.9 3.42 74 59.3

299a 148 6.92 159 123 83.4 5.65 100 74.8

299b 147 13.1 157 95.5 80.2 5.57 97.2 72.1

All the values are given use trimmed estimates of the FHR distribution, i.e., they exclude the most extreme values (2.5% on either tail). This is

due to inherent artifacts in the data causing misleading statistics if not excluded.
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ESN technique The optimization of the ESN param-
eters was performed using stage wise grid search as fol-
lows: (i) a standard prefiltering range using fb ¼ 2 and
fh ¼ 100 Hz was used to search for workable q and a
values, (ii) given q and a, a search was performed over a
range of preprocessing cut-off frequencies to find opti-
mal fb and fh, (iii) using the optimized fb and fh, the search
for optimal values of q and a was repeated, and finally
(iv) the number of reservoir neurons (M) was optimized
as measured by the F1 score with the parameters selected
in (i–iii). Note that (i–iii) were performed with a high
number of reservoir neurons (M ¼ 250). In the case of
adaptive filtering, an RLS algorithm was used to update
the weights of the readout layer whichmaps the reservoir
states to the output of the observedAECG. In the case of
non-adaptive filtering, the Wiener–Hopf, direct pseudo
inverse and ridge regression were considered to deter-
mine the weights on a 30 s signal epoch preceding the
studied segments. When varying the number of neurons,
M, the experiment was repeated 20 times in order to
ensure the variance of the F1 measure caused by the
random initialization of the ESN reservoir connections
and weights was negligible.

One chest channel was taken as the reference signal
for the LMS, RLS and the ESN. Filter weights were
initialized on 30 s preceding the annotated data for
each record (i.e., preceding the 1 min of DB1 and the 5
min of DB2).

Adding Signal Quality Indices

In Clifford et al.11 different signal quality indices
(SQIs) to identify bad quality ECG signals were eval-

uated. The most accurate SQI evaluates the agreement
between two QRS detectors with different robustness
to noise. This metric, termed bSQI 2 [0 1] (with 1
representing a good quality signal), was difficult to
apply to the abdominal signal as the MQRS and also
some FQRS could be detected by the QRS detectors in
the case of high amplitude FECG traces. This makes
bSQI a weak quality indicator if applied to the
abdominal signal. Thus no bSQI was used on this
signal but was used on the chest channel (where there is
no FECG contribution) with a 10 s window and 9 s
overlap. This provided a second by second SQI for the
chest channel. In the case where bSQI was inferior to
0.8 the corresponding abdominal segments were
removed.

RESULTS

Parameter Optimization

TS

For TS, the TSpca method gave the best results on
the training set (see Table 3), thus only results for TSpca
were reported in Table 4 for the performance on the
individual records of DB2.

ESN

Figure 4 illustrates the exhaustive search results
obtained on the training database DB1 using the direct
pseudoinverse method for computing w. Based on this
optimization step, the preprocessing and ESN parameters

TABLE 3. Overall statistics on DB1 (training DB) and DB2 (test DB).

Se (%) PPV (%) F1 (%) HRm (%)

TSc -DB1 91.2 90.5 90.8 57.9

TSm-DB1 90.3 90.0 90.1 56.7

TSlp -DB1 91.2 92.8 92.0 59.7

TSpca-DB1 94.7 96.0 95.4 68.7

LMS-DB1 95.8 95.0 95.4 69.3

RLS-DB1 96.2 95.6 95.9 70.6

ESNna-DB1 97.2 97.3 97:2 73.5

ESNa-DB1 96.8 97.2 97.0 72.2

TSc -DB2 86.8 85.3 86.0 68.1

TSm-DB2 86.4 85.2 85.8 67.2

TSlp -DB2 85.9 85.5 85.7 66.7

TSpca-DB2 89.9 88.8 89.3 73.9

LMS-DB2 89.3 86.5 87.9 73.7

RLS-DB2 89.7 86.8 88.2 74.5

ESNna-DB2 89.3 86.5 87.9 73.9

ESNa-DB2 91.4 88.9 90:2 78.7

Best results in term of F1 and HRm are underlined.

‘‘a’’ stands for adaptive filtering and ‘‘na’’ stands for non adaptive filtering. In the case of offline training the weights are determined on the 30 s

of signal preceding the studied ECG segment (for both DB1 and DB2).
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were determined to be: fb ¼ 20 Hz, fh ¼ 95 Hz, a ¼ 0:4,
q ¼ 0:4,M ¼ 90. The best results on the training set using
the above mentioned parameters were Se ¼ 97:2%,
PPV ¼ 97:3% and F1 ¼ 97:2% (see Table 3).

LMS

The parameters l and N of the adaptive LMS adap-
tive algorithm were searched (Fig. 4). Selected parame-
ters based on the grid search were l ¼ 0:1 and N ¼ 20
with corresponding performance statistics Se ¼ 95:8%,
PPV ¼ 95:0% and F1 ¼ 95:4% (see Table 3).

RLS

The parameters k and N of the RLS adaptive
algorithm were searched (Fig. 4). Parameter values
selected based on the grid search were k ¼ 0:999 and
N ¼ 20, with corresponding performance statistics of
Se ¼ 96:2%, PPV ¼ 95:6% and F1 ¼ 95:9% (see Table
3).

Qualitative Results

Results in Fig. 5 were produced with fb ¼ 20 Hz,
fh ¼ 95 Hz. Figure 5b shows qualitative examples of
the ESN algorithms performance on r154 in DB1 with
optimal parameters.

Results on Training and Test Sets

Table 3 summarises the results obtained on the
training set DB1. It can be seen that ESN based tech-
niques performed better than the TS and adaptive filter
techniques. Both ESN techniques gave similar results,
with F1 scores of 97:2% for ESNna and 97% for ESNa.
Among the TS techniques, TSpca gave F1 ¼ 95:4% and
outperformed all other TS techniques. Finally, among

the adaptive filter techniques the LMS (F1 of 95:4%)
was slightly outperformed by the RLS (F1 of 95:9%).

Table 3 also summarises the results obtained on the test
set DB2. The adaptive ESN (ESNa) gave the best F1 score
of 90:2%, improving upon the TSpca technique (89:3%)
and the RLS technique (88:2%). Table 4 presents the re-
sults for each individual record of DB2 for the optimal
ESN, LMS, RLS and TSpca as determined on the training
set DB1. Note that in Table 4 the performance of each
algorithm was averaged over all individual channels of a
given record. The best result in each case is underlined.

Results with Signal Quality Indices

Table 5 presents the results for the test database in
terms of F1; Including the signal quality indices im-
proved the results on DB2 by þ1:07 for the TSpca
approach, þ0:95% for the LMS approach, þ1:04% for
the RLS approach and þ1:11% for the ESN approach
while excluding 3:6% of the overall signals length. See
Fig. 6 for an example of segment excluded on DB2

using bSQI.

DISCUSSION

The focus of this study was to benchmark the ESN,
RLS, LMS and TS techniques in their capacity to
accurately extract the FECG from the AECG and
facilitate robust FQRS detection. Better results may be
achieved with an alternative QRS detector, specifically
designed for FQRS detection as in Kotas et al.,20 but
the relative ordering of the algorithms is unlikely to
change.

It should be noted that in practice the FHR time
series are smoothed prior to being displayed on the
clinical monitor. This smoothing operation removes

TABLE 4. Per record statistics on DB2 (test DB).

Rec

TSpca LMS RLS ESNa

F1 HRm F1 HRm F1 HRm F1 HRm

123a 84.1 51.7 83.4 63.8 83.3 51.7 84:3 65.0

123b 95.9 88.4 96:3 92.4 96:3 92.5 95.7 90.2

125 87.2 71.6 78.7 54.5 80.7 59.3 88:2 75.6

126 86.2 69.4 88.4 75.8 88.2 76.1 88:9 76.5

172a 98.1 90.2 99.1 96.4 99:3 97.8 99.2 97.3

172b 94.1 85.4 94.1 88.7 94.5 89.9 94:7 90.7

210 86.2 63.4 84.2 51.2 85.4 62.0 88:9 70.8

261 77:2 58.7 73.6 53.1 73.5 52.9 75.9 56.4

265 77.4 54.5 70.7 42.9 70.5 43.0 78:6 56.7

299a 98.0 89.0 98.9 95.3 99:0 96.8 98.0 93.8

299b 97.4 90.5 98:8 96.7 98:8 97.2 98.0 93.2

Best results in terms of the F1 measure are underlined.
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sudden drops or increases of FHR due to missed beat
detections. Higher performances would be expected on
DB1 and DB2 in terms of the FHm if this smoothing
operation was applied.

Studying the performance of the algorithms on
individual channels without smoothing the extracted
FQRS time series allowed us to draw a direct com-

parison between the various time based techniques.
Blind source separation techniques such as ICA or
PCA were not considered in this work as its focus was
on time based techniques using a single abdominal
channel. However, in a multi abdominal channel sys-
tem any of the presented methods could be used to
remove the MECG contribution on the different
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FIGURE 4. Search space for the preprocessing parameters (fb , fh) the ESN specific parameters (a, q) and the LMS parameters (l,
N) on the training set database DB1. (a) search for ESN preprocessing parameters (a ¼ 0:4, q ¼ 0:4, M ¼ 90), (b) search for ESN
parameters a and q (fb ¼ 20 Hz, fh ¼ 95 Hz, M ¼ 90), (c) search RLS parameters k and N (fb ¼ 20 Hz, fh ¼ 95 Hz), (d) search LMS
parameters l and N (fb ¼ 20 Hz, fh ¼ 95 Hz), (e) for the number of ESN neurons required (fb ¼ 20 Hz, fh ¼ 95 Hz, a ¼ 0:4, q ¼ 0:4-
repeated 20 times for each value of N to look at the variance of the F1measure caused by the random initialization of the ESN
reservoir connections and weights).
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channels independently before performing the BSS
step, as for example in Behar et al.5 where higher
performance was obtained by adding a BSS step after
any of the single channel time based approaches was
used. In addition results in Table 4 showed that no
algorithm was systematically outperforming the oth-
ers. This suggests that there is potential to combine
different approaches for NI-FECG extraction and
further improve the overall results.

The importance of the signal preconditioning and in
particular the baseline wander cut-off frequency was
studied. Figure 5 shows an example of a segment (r154,
DB1, 3rd AECG) which was preprocessed with various
different fb values. Note that at 10 Hz most of the

frequency content of the P-wave and the T-wave of the
MECG have been filtered out leaving only the FQRS
and MQRS. This higher cut-off showed improvement
on both training and test sets for all methods. As an
example, the TSlp technique gave F1 ¼ 83:0% and
F1 ¼ 80:0% with fb ¼ 2 Hz, fh ¼ 95 Hz on DB1 and
DB2 respectively and F1 ¼ 92:0% and F1 ¼ 85:7% with
fb ¼ 20 Hz, fh ¼ 95 Hz on DB1 and DB2 respectively

3.
The cut-off selected in this work was inferred from the
grid search in Fig. 4a. Although it was clear that
choosing fb larger than traditional used was beneficial
in this case, whether to choose fb ¼ 20 Hz (as in this
work) or a lower value inevitably depends on the
dataset and filter design considered.

One of the theoretical limitations of such adaptive
filtering approaches is that any noise contained in the
abdominal, but not the chest ECG signal, will not be
removed. Indeed, the assumption behind adaptive
noise canceling is that the noise contaminants on the
abdominal channels are also present on the chest
channels (considered as the noise field). Nevertheless
the method is well suited for removing the main noise
contaminant from the abdominal signal, namely the
MECG, and easing FQRS detection.

The ESN algorithm requires a minimum of one
reference and one abdominal channel. This is an
important advantage over the blind source separation
techniques which while very popular for this applica-
tion, require a relatively high number of channels
(usually between 8 and 1629). Furthermore, the ESN
does not require any prior information on the MQRS
location, unlike the TS or KF approaches. In partic-

f
b
 = 1 Hz

f
b
 = 10 Hz

10 10.5 11 11.5 12

f
b
 = 25 Hz

Time [sec]

FQRS(a) chest MECG

AECG
ESN output

47 48 49

Time [sec]

Residual

(b)

FIGURE 5. (a) Effect of varying fb (r154, DB1, 3rd AECG, fh ¼ 110 Hz) for the preprocessing step. Note that at 10 Hz most of the
frequency content of the P and the T-wave of the MECG have been filtered out, leaving only the FQRS and the MQRS. (b) Example
of the ESN algorithm performance with a ¼ 0:4, q ¼ 0:4, M ¼ 90 (optimal parameters). The signal (r154, DB1, third AECG) was
prefiltered with fb ¼ 20 Hz and fh ¼ 95 Hz. Notice in particular the extraction of the FQRS embedded in the MQRS at t 5 48.2 sec
(circled by a broken black line).

3It is less meaningful to report a direct comparison of prefiltering

effects for the ESN and LMS since parameters have been optimized

for these two algorithms based on a given prefiltering (fb ¼ 20 Hz,

fh ¼ 95 Hz).

TABLE 5. Results on DB2 both with and without removing
low quality record segments based upon a single SQI.

F1 no SQI (%) F1 SQIa (%) DF1 (%)

TSpca 89.32 90.39 +1.07

LMS 87.88 88.83 +0.95

RLS 88.23 89.27 +1.04

ESNa 90.17 91:28 +1.11

a With 3.6% of the overall signals being removed.
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ular, the KF requires a precise MQRS detection tech-
nique, making this technique particularly susceptible
to noise in the MECG.

When using the ESNa with the traditional RLS
implementation presented in Sect. 2.2.2 used to train
the readout layer, we observed a monotonic increase of
the weights over time leading to large weights after a
few minutes. When the weights are too large they
amplify small differences among the dimensions of
xðnÞ which in turn can lead to instability in the pre-
sence of a small deviation from the conditions for
which the network had been trained.23 As a conse-
quence we implemented the RLS algorithm introduced
in Douglas et al.,13 which uses RLS in combination
with least squares prewhitening. This implementation
made the ESNa stable.

Within the TS techniques, TSpca performed the best
on the training and test sets. Within the TS class of
techniques used TSpca is certainly the most adaptive.
Within the other methods (LMS, RLS, ESN), RLS
was found to perform slightly better than LMS and the
ESN better than the RLS. This suggests that the
MECG cycle was better removed with more adaptive
algorithms.

It is important to note that the TS techniques could
include discontinuities due to the piece-wise template.
Indeed the MECG template cycle was built centered on
the mother R-peak and considering a duration of 0.20,

0.10 and 0.40 s for the P, QRS and T waves respec-
tively.24 The choice of each ECG segments’ time
interval is realistic although certainly not optimal.
However, the discontinuities mentioned are assumed
to be minimal, with limited influence on FQRS detec-
tion (as opposed to FECG morphological analysis).
Performance could be improved by varying the length
of each of these intervals with the maternal heart rate
rather than being constant.

The main drawback of the TS with respect to the
LMS and ESN is that it relies on accurate MQRS
detection (the best detectors typically achieve about
99% accuracy over a range of diverse databases). In-
deed, a missed MQRS detection will most likely result
in FPs (except if located in the FQRS refractory peri-
od) and possibly FNs (if the actual FQRS is located
within the refractory period of the induced FP). Con-
versely, the main drawback of the LMS, RLS and ESN
algorithms is that they are driven by and subject to
poor signal quality in the chest signal. This particularly
motivates the use of SQIs. It should also be noted that
the number of coefficients for LMS/RLS adaptive fil-
ters or neurons in the ESN is a function of the signal
sampling frequency and as a consequence parameter
optimization should be conducted again if a different
sampling frequency is to be considered.

Usage of a SQI on the chest reference channel im-
proved the accuracy measure by �1% while sup-
pressing �3% of the overall record. It is expected that
the added value in using SQI would be higher in the
presence of noisier recordings, as the data used in this
work were of relatively good quality with some minor
local artifacts.

It is to be noted that the number of ESN parameters
that need tuning, in addition to the randomness of
reservoir initialization and connectivity (that give no
insight into the reservoir dynamic), makes the ESN
design and implementation difficult. In an attempt to
tackle these problems, Rodan et al.28 compared the
performance of the ‘‘standard’’ ESN framework (the
one used in this paper) with much simpler networks
structures and showed that similar performance to the
standard ESN could be achieved using these deter-
ministically constructed reservoirs. Their approach has
two main advantages: 1) simplification of the reservoir
design and number of parameters to optimise and 2)
building a path to theoretical analysis of the ESN. This
alternative ESN design will be compared, in the con-
text of our application, to the standard ESN in future
work. An alternative is to use random search for
finding a set of acceptable parameters as suggested in
Behar et al.4 where we used the approach from Berg-
stra et al.6 Random search performed for the ESN and
preprocessing parameters showed similar performance
as the exhaustive grid search presented in this work but

FIGURE 6. Signal quality for identifying bad quality regions
(record 123a first abdominal channel). From top to bottom:
chest MECG, ABD ECG and residual after performing MECG
cancelation using the ESN. In the faded colour area, the part
of the signal that would be discarded because of its low
quality (SQI � 0.8-window size for assessing quality is 10 s
with 9 s overlap).
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reducing the number of search iterations. The param-
eters that were assumed constant in this work in order
to restrict the grid search to an acceptable number of
free-parameters (such as / and c) could be searched if
random search was employed. In practice it is likely
that random search would be used as an initialization
method to find which parameters are the most relevant
and further parameter tuning would be performed with
fine grid.

An important limitation for evaluating NI-FECG
extraction algorithms is the absence of large publicly
available databases with expert references. This limi-
tation was recently partially addressed with the intro-
duction of the Physionet/Computing in Cardiology
2013 challenge database.32 However this database is
constituted of 4 abdominal channels for each record
without any reference chest MECG channel, thus not
allowing for evaluation of adaptive noise canceling
techniques such as the LMS, RLS and ESN presented
in this work.

The ESN performed slightly better than the LMS
and RLS on the test database, but the results were not
significantly different. One of the main differences
between the two approaches is that the ESN allows for
a non-linear relationship between the chest and
abdominal ECGs whereas the LMS only considers a
linear relationship. Thus the results could suggest that
the the mapping is mostly linear or that the numerous
ESN hyperparameters were over-tuned on the training
set database. Recall that the data in the training set
(DB1) and test set (DB2) were recorded with different
hardware, following a separate protocol and at dif-
ferent stage of pregnancy for different subjects. Since
the LMS is conceptually simpler and computationally
less expensive it is most likely a more appropriate
choice for low-cost devices with limited computational
power. However in the case of a more advanced hos-
pital-based system, where computing power is gener-
ally not a concern, then there is little incentive against
using the more computationally complex and accurate
solution.

CONCLUSION

This work compared non invasive FECG extraction
methods. The methods were qualitatively and quanti-
tatively evaluated. In addition, the preprocessing per-
formed for baseline wander and high frequency
removal was studied in some detail. These filters, along
with various parameters for the LMS, RLS and ESN,
were optimized through exhaustive grid search on a
training database. The findings of this research are; (1)
The non linear ESNa method showed slightly superior

performance with respect to the LMS, RLS and TS
methods; (2) using a high baseline wander cut-off fre-
quency improved the performance of the extraction
algorithms; (3) SQI improved the performance of all
methods by excluding bad quality chest ECG which
likely led to an unexpected adaptive filters response or
false QRS detection. In addition this paper suggested a
framework for assessing the algorithms performance in
extracting the FQRS and FHR by using the F1 and
HRm measures. Future work requires assessing the
algorithms on a larger dataset, benchmarking them
against additional methods employed for this task and
evaluating the alternative ESN reservoir design as
suggested by Rodan et al.28 Open source code for the
benchmark methods are made available to allow
comparison and reproducibility on the public domain
data. The source code is available on Physionet at
http://physionet.org/.10
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