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Abstract—Alzheimer’s disease (AD) is associated with def-
icits in a number of cognitive processes and executive
functions. Moreover, abnormalities in the electroencephalo-
gram (EEG) power spectrum develop with the progression of
AD. These features have been traditionally characterized
with montage recordings and conventional spectral analysis
during resting eyes-closed and resting eyes-open (EO) con-
ditions. In this study, we introduce a single lead dry electrode
EEG device which was employed on AD and control subjects
during resting and activated battery of cognitive and sensory
tasks such as Paced Auditory Serial Addition Test (PASAT)
and auditory stimulations. EEG signals were recorded over
the left prefrontal cortex (Fp1) from each subject. EEG
signals were decomposed into sub-bands approximately
corresponding to the major brain frequency bands using
several different discrete wavelet transforms and developed
statistical features for each band. Decision tree algorithms
along with univariate and multivariate statistical analysis
were used to identify the most predictive features across
resting and active states, separately and collectively. During
resting state recordings, we found that the AD patients
exhibited elevated D4 (~4–8 Hz) mean power in EO state as
their most distinctive feature. During the active states,
however, the majority of AD patients exhibited larger
minimum D3 (~8–12 Hz) values during auditory stimulation
(18 Hz) combined with increased kurtosis of D5 (~2–4 Hz)
during PASAT with 2 s interval. When analyzed using EEG
recording data across all tasks, the most predictive AD
patient features were a combination of the first two feature
sets. However, the dominant discriminating feature for the
majority of AD patients were still the same features as the
active state analysis. The results from this small sample size
pilot study indicate that although EEG recordings during

resting conditions are able to differentiate AD from control
subjects, EEG activity recorded during active engagement in
cognitive and auditory tasks provide important distinct
features, some of which may be among the most predictive
discriminating features.
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INTRODUCTION

Alzheimers disease (AD) is by far the most common
form of dementia gradually leading to death of
patients. It affects about 5.4 million Americans and
almost 50% of those older than 85. It is the third most
expensive disease and sixth leading cause of death in
the United States and estimates that the disease will
triple by 2050.31 AD is a progressive neurodegenerative
disease affecting the hippocampus, neocortex, and
other brain regions associated with memory and
executive functions as well as neuromodulatory sys-
tems including the basal forebrain cholinergic neurons
that regulate cortical neuron activity.15 While no cure
currently exists, early detection and differentiation of
AD from normal aging processes are critical to begin
early intervention to delay the onset of symptomatol-
ogy of AD and begin palliative strategies as well as
develop treatments that prevent AD pathophysiol-
ogy.10

The electroencephalogram (EEG) reflects the aver-
aged electrical activity of large numbers of cortical
neurons associated with different neural information
processing of brain regions. Currently, there is no
known objective method of diagnosing AD and the use
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of EEG as a diagnostic tool continues to be challenged
given that most of the existing methods are not ana-
lytically or clinically validated and require significant
improvement.14 However, because of its non-invasive
and safe properties, EEG signal analysis remains a
potential tool that may aid in the early diagnosis of
AD. Single channel and multi-channel quantitative
EEG signal analysis has traditionally used Fast Fou-
rier Transform (FFT) power spectral approaches to
extract frequency information as a potential determi-
nant of the discriminating features of AD.4,7,14,21

Generally, increased power in the 4–7 Hz (h frequency
band) range is observed early in the progression of
AD. While further progression is associated with initial
decreases in a (8–13 Hz) and b (13–30 Hz) bands fol-
lowed by increases in the low frequency d (1–4 Hz)
band power.23

Although FFT based methods are computationally
efficient, the non-stationary and discontinuous prop-
erties of EEG signals following artifact removal are
problematic for traditional FFT approaches.3 Mean-
while, various researchers have shown that time
domain nonlinear dynamics approaches offer some
promise21 but they are computationally complex,
require extensive experience, and have not yet dem-
onstrated reliable diagnostic power in their present
form.29 Wavelet-based transformation9 of EEG signals
to represent EEG power distribution over both time
and frequency continues to be a promising approach
and is more suitable for spectral analysis for brain
disease detection when compared to FFT.3,5

There are two types of wavelet analysis: continuous
wavelet transform (CWT) and discrete wavelet trans-
form (DWT). Both DWT and CWT have been used in
EEG analysis and classification in the literature. Sta-
tistical features are extracted at different wavelet
decomposition levels and used with neural network
based methods for classification of abnormal vs. nor-
mal subjects.19,20,28 DWT is generally more computa-
tionally efficient and more widely used than CWT.2 To
our knowledge, very few published studies have used
DWT to directly extract EEG features from patients
with a clinical diagnosis of AD. Known studies include
Polikar et al.26 who identified discriminating event
related potentials (ERP) of the EEG using an auditory
oddball paradigm. The authors identified and classified
ERP features corresponding to 1–8 Hz (d and h bands)
and concluded that DWT appears to be a feasible
approach to aid with the early diagnosis of AD. In
another study, Wan et al.33 investigated the quantita-
tive EEG power spectrum of Chinese Han ethnic AD
patients recorded during resting eyes-closed (EC) state.
They reported that AD patients’ EEG spectrum has a
higher power in slow activities (0–2 Hz) and lower
power in fast activities (16–32 Hz) and concluded that

AD patients in China, consistent with the published
literature, show evidence of specific spectral EEG
changes. A third study presented a wavelet-chaos
methodology to find potential markers of AD abnor-
mality.1 This paper reported markers limited to d and h
spectral frequency bands.

Although AD is characterized by progressive
impairment in cognitive and memory processes, resting
EC or resting eyes-open (EO) conditions are com-
monly used during clinical EEG recordings; e.g., Elg-
endi et al.14 These data have provided valuable
information for differentiating AD patients. None-
theless, we hypothesize that EEG signals recorded
during activated states of the brain can provide unique
discriminating features of AD, thus leading to a more
accurate assessment of brain health and function.17 To
test this hypothesis, we collected EEG recordings from
AD and age-matched control subjects (CTL) under
both resting conditions (EC and EO) and during a
number of cognitive and sensory tasks including
auditory stimulations, the Paced Auditory Serial
Addition Test (PASAT), and the CogState brief bat-
tery of tasks to assess attentional processes, learning,
working memory, and information processing
speed.18,24 DWT with 5 different wavelet functions
were used for feature extraction from EEG signals in
five decomposition levels, where at each decomposition
level statistical features of the signal were calculated.
The significant discriminating features of AD were
determined using both univariate and multivariate
analysis of variance (ANOVA) methods.22 Decision
tree algorithms were then employed as a classification
method to identify the most dominant EEG features of
AD in resting and activated states, separately and
collectively.

METHODS AND MATERIALS

Characterization of a Single Lead Dry Sensor EEG
Headset

A novel EEG headset device was modified for use in
a clinical context to record a 128 samples/s 10-bit data
stream transmitted from a single EEG sensor placed at
position Fp1 (based on a 10–20 electrode placement
system). Differential voltage signals relative to mastoid
on the left ear were amplified via an application-
specific integrated circuit (ASIC) containing an instru-
mentation differential amplifier followed by an analog
filter with common mode rejection at 60 Hz. Two
stainless steel mastoid electrodes (reference and
ground) were embedded in the left ear cup of the
headset for compression contact to the left ear of the
subject. After analog to digital conversion with a 10-bit
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unsigned analog-to-digital-converter (ADC), digital
EEG signals passed through an ASIC digital signal
processor before being transmitted via Bluetooth to a
nearby computer. The Bluetooth stream was parsed in
the computer according to the manufacture’s technical
specifications and verified by independent bench top
assessment. To assess the analytical performance of the
hardware/software system, we input various test sig-
nals generated from a NIST traceable function gener-
ator. The output reference signals were passed through
a voltage divider consisting of two metal film precision
resistors of 100 X and 1 MX impedance. This 1:104

voltage reduction enabled a 1.0 V output to become
100 lV. Sine waves of 5–30 Hz at 5 Hz increments
were hardwired into the headset and the resulting sig-
nals recorded and analyzed. We determined that the
frequency response of the system was less than 0.25 Hz
spectral band bin width. In addition, we assessed the
amplitude response of the system by stepping the signal
generator output down by a factor of 2 and observed
an excellent fourfold decrease in power (due to their
inverse squared relation).

Additional analytical bench studies were conducted
to assess the signal to noise ratio (SNR) of the system
in both an open-circuit and closed-circuit configura-
tion. In particular, 15 Hz reference signals were hard-
wired into the headset for 30 s blocks at varying
amplitudes and compared to 30 s recordings when the
lead from the function generator was removed from
the active sensor. All signal-to-noise ratio levels were
above 16 db as assessed in both the voltage/time
domain as well as the Fourier transformed frequency
domain. Typical signal-to-noise ratio measures were in
excess of 30 db showing excellent frequency discrimi-
nation.

Bench experiments were conducted to evaluate the
least significant bit by varying the input signal strength
between two values in smaller and smaller increments
until the modulation could no longer be detected by
the EEG headset and recording system. It was
observed that single lV signal changes to the input
electrodes could be detected as a single bit change in
the ADC over a 30 s EEG recording block.

To compare the headset to traditional clinical EEG
equipment, we simultaneously recorded arbitrary
waveform signals loaded into the buffer of an arbitrary
waveform/function generator hardwired in parallel to
a Compumedics Neuroscan NuAmps system and our
device. Reference EEG traces downloaded from the
UCSD website11 were uploaded into the buffer and
spooled out. After independent analysis of the
recorded 10,000 samples/s, 24-bit ADC signal from the
Fp1 channel of the NuAmps system and the 128
samples/s, 10-bit ADC output from our device, the
gross spectral response was indistinguishable except

for frequencies below 2 Hz. Thus, the analytical bench
assessment of the customized headset device demon-
strated excellent ability to accurately record EEG sig-
nals in the 1–100 lV and 2–30 Hz ranges.

Confirmation of Physiology in Human Subjects

We investigated the integrity of EEG recordings by
the device placed on human subjects. As the active
electrode sits at position Fp1 and mastoid was refer-
enced via three surface contact electrodes on the left
ear, the volume of conduction being sampled is large
and covers the left frontal cortex. Typical EEG arti-
facts in both live and recorded traces were critically
observed such as eye blink, EMG derived signals,
tongue movement, eye roll and teeth clench. Impor-
tantly, when a human subject was asked to maintain a
resting condition in either the EO or EC conditions,
one would observe well defined EEG signals. To
explicitly confirm this, we recorded EEG signals
sequentially from the same subject in both the resting
EC and EO conditions. After artifact detection and
signal processing using spectral analysis with sliding
windows to create a Power Spectral Density (PSD)
across all frequency bins from 1.0 to 30.0 Hz in
0.25 Hz steps, we then computed the EC/EO ratio
between the two power spectra on an individual fre-
quency bin by bin basis. As expected, a statistically
significant prominent peak of a rhythm activity was
observed centered around 10 Hz in the EC condition.16

While examining the bin by bin ratio of EC/EO pow-
ers, we often observed that this a rhythm peak was
seven to tenfold higher in the EC condition relative to
the EO condition.

In order to assess other basic elements of the in vivo
performance of the device on adult human subjects, we
conducted several reproducibility studies where we
measured both EC and EO conditions for 2 min at
approximately the same time of day (to avoid circadian
rhythm effects) and food/hydration state. After 5 days
of monitoring, we computed a relative coefficient of
variation of between 10 and 30% across the d, h, a and
b bands recorded in the same subject at the same time
of day over five independent days.

Human Subjects and Clinical Study Design

The objective of this study was to identify the dis-
criminant features of EEG signals extracted from
Alzheimers disease (AD) patients compared to healthy
age-matched control subjects. Up to 250 subjects were
to get stratified into several cohorts. Inclusion criteria
included: (1) healthy normal’s ages; (2) diagnosis of
probable AD according to the NINCDS-ADRDA
Alzheimer’s criteria; (3) Mini-mental state examination
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(MMSE) score 20–27; (4) diagnosis of mild cognitive
impairment (MCI) according to Peterson criteria; (5)
availability of a caregiver for AD and MCI subjects.
Study exclusion criteria included: (1) diagnosis of sig-
nificant neurological disease other than AD; (2) history
of strokes, seizures, or traumatic brain injuries; (3)
Chronic pain; and (4) use of high doses of sedating or
narcotic medications. Other demographic items noted
were date of birth, gender, ethnicity, education, rele-
vant medical history, current prescription and non-
prescription medications, nutritional supplements, and
alcohol/tobacco use.

All Personal Health Information (PHI) was retained
at Palm Drive Hospital and no PHI was provided to
any collaborator for HIPAA Compliance. Subjects
were assigned a random/sequential subject number
which was the only identifier used to analyze the
demographic, independent, and subsequently depen-
dent variables of the study. All study data were
encrypted via AES-256 bit encryption at the site of
data acquisition before transport to central servers
whenever any information was present in the data file.
We also employed a multi-step process whereby all
parties remained blind until the final extracted EEG
features data table was produced and circulated
internally to the collaborating members.

Twenty six subjects were enrolled, one withdrew due
to non-study related reasons and one did not qualify as
Alzheimer’s Disease (AD) or control (CTL) but was
diagnosed with MCI. Data from the remaining 24
subjects were considered, including 10 AD and 14 age-
matched CTL. The subject information for these 24
individuals are presented in Table 1.

Behavioral Tasks Within the Battery of Assessment

Wearing the device, subjects were asked to sit in a
comfortable chair and open and close their eyes for
nearly 2-min blocks, alternately recording 3 sessions of
resting EC and 3 sessions of resting EO. They were
then tasked with the four components of the CogState
Research (Melbourne, Australia) brief battery: Detec-
tion, Identification, One Card Back, and One Card
Learning tasks. CogState’s brief battery is a comput-
erized neuropsychological battery designed to be sen-
sitive to the cognitive impairments that characterize
mild-to-moderate AD yet simple enough for patients
to complete without requiring great support or assis-
tance. The Detection task is a measure of simple
reaction time and has been shown to provide a valid
assessment of psychomotor function in healthy adults
with schizophrenia. The Identification task is a mea-
sure of choice reaction time and has been shown to
provide a valid assessment of visual attention. The One

Card Learning and One Card Back cognitive tasks are
valid measures of working memory.

Next, the PASAT task of 60 auditory addition
trials was conducted at up to 3 different lag intervals
of trial. PASAT is a measure of cognitive function
that specifically assesses auditory information pro-
cessing speed and flexibility, as well as calculation
ability. Subjects are asked to listen to a series of
numbers and are requested to add consecutive pairs of
numbers as they listen. There is no visual component
to this task.

Brief auditory binaural beat stimulations (90 s, 50–
75 db) with differential beat frequencies of 6, 12, and
18 Hz were conducted next, followed by one final
block of each resting EC and EO to close the data
collection paradigm. Table 2 shows the summary
description of each task and their typical duration for
all the subjects. There were normally a short break
between recording sessions. Although there were a
total of 18 possible recording tasks, a large number of
subjects did not complete the PASAT 1.6 (s) interval
(Task 13) and hence the data from this task was not
included in the analysis.

EEG Signal Quality and Pre-processing

The rechargeable battery powered Bluetooth
enabled EEG headset eliminated frequently observed
artifacts including line noise. However, it was critical
to detect and eliminate other artifacts such as eye-blinks

TABLE 1. Subject demographics and health information.

Subject no. Gender Age Handedness Clinical diagnosis

1 F 57 R CTL

2 F 86 R CTL

3 F 54 R CTL

4 F 68 R CTL

5 M 63 L CTL

6 F 83 R AD

7 F 83 R CTL

8 F 67 R CTL

9 M 82 R AD

10 M 69 R CTL

11 M 75 R CTL

12 F 74 R CTL

13 F 75 R CTL

14 F 57 R CTL

15 M 81 R CTL

16 F 85 R CTL

17 M 84 R AD

18 F 75 R AD

19 M 80 R AD

20 M 62 R AD

21 M 73 R AD

22 M 86 R AD

23 M 76 R AD

24 F 89 R AD

GHORBANIAN et al.1246



in the EEG signal. These artifacts, frequent at Fp1
location, often have high amplitudes relative to brain
signals. Thus, even if their appearance in the EEG data
is not frequent, they may bias the results of a given
block of data or experiment.12 In this study, any DC
offset of the EEG signal was subtracted and an artifact
detection pre-processing algorithm was used to elimi-
nate large amplitude artifacts greater than 4.5r (stan-
dard deviation). An algorithm was developed to detect
such artifacts, nullify, and then reconstruct the nulled
samples using FFT interpolation of the trailing and
subsequent recorded data. However, amplitude-based
artifact detection method sometimes fail to detect low
frequency artifacts such as small eye blinks.12 Hence,
we recursively applied our artifact detection method to
the modified signal up to three times. This method
eliminated the remaining low frequency artifacts with
very high reliability considering that the EEG signals
are generally normally distributed (i.e., 1 in 49,053
samples are expected to be out of range for the filtered
signal while the sample size is in the 10,000–20,000
range). For illustrative purposes, Fig. 1 shows all the
recorded EEG blocks concatenated one after the other
for subject number 11, a CTL subject, in arbitrary
units from the 10-bit analog-to-digital converter (ADC)
before and after artifact detection. The enlarged area on

the left is part of the second recording state EO2 where
all eye blinks have been eliminated. The enlarged area
on the right shows part of the 18 Hz auditory stimu-
lation, AS3, where a few eye blinks plus a single arti-
fact with a very large amplitude have been removed.
The results show improvement over our previous
artifact detection.17 However, large amplitude signals
in the PASAT recordings have not been filtered out
due to larger r during these sessions which are due
normal physiological activities since subjects respond
vocally.

The headset sample rate was specified at fs = 128
Hz by the manufacturer. However, the effective sample
rate was closer to fs = 125 Hz in our experiments.
Frequencies below 1 Hz and above 60 Hz (near
Nyquist frequency) were filtered out. Furthermore, we
only analyzed frequencies between 2 and 30 Hz due to
the demonstrated reliability of the device; see section
‘‘Characterization of a Single Lead Dry Sensor EEG
Headset’’.

Discrete Wavelet Transform Feature Extraction

Discrete wavelet transform analyzes the signal at
different temporal resolutions through its decomposi-
tion into several successive frequency bands by utiliz-
ing a scaling and a wavelet function associated with
low-pass and high-pass filters. The original EEG signal
x(t) forms the discrete time signal x[i], which is first
passed through a half-band high-pass filter, g[i], and a
low-pass filter, h[i]. Filtering followed by sub-sampling
constitutes one level of decomposition and can be
expressed as follows26:

d1½k� ¼
X

n

x½i�:g½2k� i�; ð1Þ

a1½k� ¼
X

n

x½i�:h½2k� i�; ð2Þ

where d1[k] and a1[k] are level 1 detail and approxi-
mation coefficients at translation k, which are the
outputs of the high-pass and low-pass filters after the
sub-sampling, respectively. This procedure, called sub-
band coding, is repeated for further decomposition as
many times as desired or until no more sub-sampling is
possible. At each level, it results in half the time reso-
lution (due to sub-sampling) and double the frequency
resolution (due to filtering), allowing the signal to be
analyzed at different frequency ranges with different
resolutions.

Of the many families of mother wavelets, the
Daubechies family9 possesses a number of character-
istics that are ideal for EEG analysis, including (1) the
well understood and smoothing characteristics of
Daubechies2 (db2)19 and (2) detection of changes in

TABLE 2. Description and duration of the EEG recording
states.

Number Description Duration (s)

1 First Eyes-Closed (EC1) 90–120

2 First Eyes-Open (EO2) 90–120

3 Second Eyes-Closed (EC3) 90–120

4 Second Eyes-Open (EO4) 90–120

5 Third Eyes-Closed (EC5) 90–120

6 Third Eyes-Open (EO6) 90–120

7 Cognitive task 1: 90–120

Attention (CG1)

8 Cognitive task 2: 90–120

Identification (CG2)

9 Cognitive task 3: One Card 180–240

Learning (CG3)

10 Cognitive task 4: One Card 180–240

Back (CG4)

11 PASAT: 2.4 (s) intervals 90

(P-2.4)

12 PASAT: 2.0 (s) intervals 90

(P-2.0)

13 PASAT: 1.6 (s) intervals 90

(P-1.6)

14 Auditory Stimulation, Left = 397, 90

Right = 403, 6 Hz (AS1)

15 Auditory Stimulation, Left = 394, 90

Right = 406, 12 Hz (AS2)

16 Auditory Stimulation, Left = 391, 90

Right = 409, 18 Hz (AS3)

17 Fourth Eyes-Closed (EC7) 90–120

18 Fourth Eyes-Open (EO8) 90–120
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EEG important for detecting epileptiform activity.2 In
this study, we used five different mother wavelets from
the Daubechies family: db2, db4, db6, db8, and db10.

We performed five levels of decomposition resulting
in D1 (approximately related to the c spectral fre-
quency band) through D5 (approximately related to
the upper d spectral frequency band) and A1 through
A5 (approximately related to lower d spectral fre-
quency band), as shown in Fig. 2. Table 3 shows the
exact sub-band frequency ranges and their corre-
sponding approximate EEG major spectral frequency
bands. However, the recording device was only vali-
dated for 2–30 Hz frequency range. Hence, we
excluded D1 (~c) and A5 (~lower d) sub-band features
in our analysis. As a result, the effective sub-bands
used in this study were D2–D5.

Having created the DWT sub-bands of EEG signal,
we can extract the common statistical features from the

DWT analysis.20,30,32 In this study, we selected the the
mean power, minimum, maximum, as well as standard
deviation (SD), skewness, and kurtosis of the wavelet
coefficients as candidate extracted features. The mean
power of the wavelet coefficients was computed as
follow:

Pj ¼
1

n

Xn�1

i¼0
jxij2; j ¼ 1; . . . ;N; ð3Þ

where xi’s are the computed coefficients of the signal at
each sub-band, n is the number of computed coeffi-
cients at each sub-band, and N is the total number of
sub-bands. These values were computed at each level
of DWT decomposition separately for each recording
block from each task of each subject. Note that, we did
not consider the mean values since we had subtracted
the mean before processing the data.
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FIGURE 1. Raw EEG signal of subject 11 before (top) and after (bottom) artifact detection pre-processing. Y-axis is arbitrary units
from the onboard 10 bit unsigned ADC.
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Univariate and Multivariate Statistical Testing of DWT
Features

We were unable to use common statistical testing
methods that rely on normal distribution (e.g., t-Test)
to compare the signals from the 10 AD patients with
the 14 CTL subjects since the extracted feature data
were not normally distributed. Furthermore, trans-
formation techniques were not successful. Thus, we
chose the non-parametric Wilcoxon rank-sum test,
which is the two sample version of the Kruskal–Wallis
one-way analysis of variance (ANOVA) by ranks and
is a method for testing whether samples originate from
the same distribution. The null hypothesis of the Wil-
coxon rank-sum test is that the populations from
which the samples originate have the same median.
Since Wilcoxon rank-sum test is a non-parametric
method, it does not assume a normal distribution.13

We used multivariate ANOVA22 to investigate not
only the null hypothesis but also whether or not the
features are highly correlated and increase the reli-
ability of the statistically significant features. We
grouped the six features (mean power, minimum,
maximum, SD, skewness, kurtosis) corresponding to
each DWT decomposition (D2 through D5) as the six
dependent variables of multivariate analysis.

Subject Classification Using Decision Tree Analysis
of Extracted Features

Since several significant features were identified in
our study from Wilcoxon rank-sum test, we wanted an
objective algorithm to identify the most dominant and
reliable discriminating features of AD patient EEG
signals in our study. Therefore, we applied a widely
used classification method called decision tree analy-
sis.25 Decision tree analysis holds several advantages
over traditional supervised methods, such as maximum
likelihood classification. It does not depend on
assumptions of distributions of the data and therefore
is a non-parametric method. Another valuable
advantage of decision tree is its ability to handle
missing values, which is a very common problem in
dealing with biomedical data.34,35 However, a disad-
vantage of the decision tree algorithm for our appli-
cation is that it does not account for univariate
statistical significance of the utilized features.

The most important aspect of a decision tree
induction strategy is the split criteria, which is the
method of selecting an attribute test that determines
the distribution of training objects into sub-sets upon
which sub-trees are consequently built.25 In this study,
we used three well-known split criteria: Gini, Twoing,
and maximum deviance reduction (or entropy)
indexes. The Gini index, IG, is defined as35:

IGðtÞ ¼
X

i

pið1� piÞ ð4Þ

where pi is the relative frequency of class i at node
t, and node t represent any node at which a given split
is performed. pi is determined by dividing the total
number of observations of the class by the total
number of observations. The Twoing index, IT, is
defined based on the proportion of the t population
sent to the left, PL, and right, PR, tree branches such
that PL + PR = 18:

FIGURE 2. Five level decomposition of an EEG signal; D1–D5 and A5 are the DWT representation of the signal.

TABLE 3. DWT sub-band frequencies and the correspond-
ing approximate major brain frequency bands.

Sub band Frequency range (Hz)

Corresponding EEG

frequency band (Hz)

D1 30–60 c (>30)

D2 15–30 b (13–30)

D3 7.5–15 a (8–13)

D4 3.75–7.5 h (4–8)

D5 1.875–3.75 d{u (2–4)

A5 1–1.875 d{l (0–2)
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ITðtÞ ¼
PLPR

4

X

i

jpi;L � pi;Rj
 !2

ð5Þ

where pi,L and pi,R are the relative frequencies of class i
at left and right nodes, respectively. The maximum
deviance reduction index, also known as entropy, IE, is
defined as

IEðtÞ ¼ �
X

i

pi log pi ð6Þ

where pi is the relative frequency of class i at node t.

RESULTS

Choice of mother wavelet function is the most
important factor for a reliable DWT analysis. There-
fore, we determined EEG features of AD patients
compared to CTL subjects across five candidate
wavelet functions from the Daubechies family. The
number of statistically significant EEG features of AD
patients compared to CTL subjects, identified by the
five different wavelets, are shown in Table 4, where
many features were common among the different
wavelet functions. We then performed univariate and
multivariate ANOVA for all features, applied three
different split criteria, and chose the best decision tree
based on reliability of the utilized features.

Discriminating DWT Features of AD Patients

We initially applied univariate statistical testing to
identify the statistically significant discriminant DWT
extracted features of AD patients compared to CTL
subjects. Given that data within the six statistical
measures (minimum, maximum, SD, skewness, kurto-
sis, and mean power) were not normally distributed,
the non-parametric Wilcoxon rank-sum test for one-
way ANOVA was used. Table 5 provides an overview
of the db4-based DWT coefficient features extracted
during these tasks that are statistically different with
their corresponding false positive rate p values. Over-
all, the second EO state (EO4) yielded the most num-
ber of statistically significant features followed by the

third EO state (EO6) and auditory stimulation at
18 Hz (AS3). Note that, the differences in the first and
last round of resting states may be explained by the
fact that the subjects may not have initially been fully
resting or later were perhaps tired and restless at the
end of recording sessions. The other four resting states
combine to yield similar results to their individual
recording blocks.

Statistically significant features of AD patients
observed in the resting EO and EC are consistent with
published literature where increased d and h activities
and lower b activities have been reported for AD
patients.21,23 To illustrate the performance of DWT
with db4 wavelet function, Figs. 3 and 4 show the raw
EEG signal recorded during EO4 followed by the sig-
nals after each level of decomposition for subjects 5
(a CTL subject) and 25 (an AD subject), respectively.
The higher D5 (~d) and D4 (~h) activities and lower D3

(~a) and D2 (~b) activities of the AD subject compared
with the CTL subject are clearly observed through the
amplitudes of the corresponding signals.

Note that, we initially determined EEG features
using the traditional short-time FFT with sliding
windows of 8-s duration. We then calculated the mean
powers, standard deviations, skewness, and kurtosis
for all the frequency ranges corresponding to the major
brain frequency bands as listed in Table 3. However,
we were unable to determine any of the widely
reported discriminating features and determined above
using DWT except higher h mean power.

Among the active states, the discriminating features
during auditory stimulation at 18 Hz all belonged to
the wavelet coefficient in the D3 scale range. Other
discriminating features included skewness of D2 and D3

during the One Card Learning cognitive task (CG3),
skewness of D3 during Attention (CG1) task, and
kurtosis of D5 during PASAT with 2.0 s interval (P2.0).

Multivariate ANOVA confirmed the null hypothesis
for these features but could not reject the hypothesis
that these features lie on the same line. In other words,
the six dependent variables, features of the wavelet
coefficients within the same sub-band, may not be
independent discriminants. Thus, the wavelet coeffi-
cient features within the same sub-bands are highly
correlated and we cannot prove that any of the
recordings blocks displayed in Table 5 has more than
one independent discriminating feature. In general, the
low number of independent statistically significant
features is likely attributed to the small sample size of
the study and limited associate power.

In this study a large number of pairwise statistical
tests (n = 408) have been performed. Hence, we
attempted to apply different variations of Bonferroni
correction and False Discovery Rate for multiple com-
parisons. However, we were unable to observe any

TABLE 4. Number of statistically significant features derived
by different Daubechies family of wavelets.

Mother wavelet No. of significant features

Daubechies2 (db2) 19

Daubechies4 (db4) 28

Daubechies6 (db6) 21

Daubechies8 (db8) 26

Daubechies10 (db10) 25
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significant results after False Discover Rate adjustment
for such a large number of tests.

Decision Tree Analysis Results

We applied decision tree analysis to determine the
most dominant and reliable discriminating extracted
features of AD patients. We applied the three split
criteria described in section ‘‘Subject Classification
Using Decision Tree Analysis of Extracted Features’’
to the features extracted using the five wavelet func-
tions, db2 through db10. The procedure provided 15
decision trees, many of which were different. We then
selected the best decision tree based on the statistical
significance of the selected features and minimal rate of
false classification.

Resting Conditions

Initially, we applied the decision tree algorithms to
the features extracted in the resting conditions (EC1–
EO8) blocks of data using each of the five wavelet
functions. The best decision tree was the one derived
through Twoing index applied to the features obtained
by db10 wavelet function. The algorithm identified the
mean power of D4 (~h) of the second EO state (EO4),
as the first and most dominant discriminating feature
of AD patients in resting states. These results indicate
that if the mean power of D4 in resting EO state of a
subject is greater than 235.32, then that subject is

identified as an AD patient, as shown in Fig. 5. The
feature was determined to be statistically significant by
both univariate and multivariate ANOVA. However,
three subjects were misclassified. Note that, we did
have decision trees with no false classification. How-
ever, none of the utilized features were statistically
significant from a univariate perspective.

Cognitive and Sensory Tasks

Next, we applied the decision tree algorithm to the
ensemble of active state recordings. The best decision
tree was derived through Twoing index but when
applied to the features obtained by db4 wavelet func-
tion. According to these results, the majority of AD
patients exhibited increased minimum D3 (~a) values
during auditory stimulation at 18 Hz combined with
increased kurtosis of D5 (~du) during PASAT with
Dt ¼ 2 s interval. While the remaining few exhibited
decreased minimum D3 values during auditory stimu-
lation at 18 Hz combined with increased skewness D5

(~2–4 Hz) skewness during PASAT with Dt ¼ 2:4 s
interval, as shown in Fig. 6. These results indicate that
if the minimum value of D3 during AS3 recording of a
subject is greater than 272.15 and kurtosis of D5

during P2.4 recording is great than 15.88, then that
subject is identified as an AD patient. In addition, if
the minimum value of D3 during AS3 recording of a
subject is less than 272.15 and skewness of D5 during
P2.0 recording is greater than 0.217, then that subject

TABLE 5. Statistically significant (db4) DWT EEG features of AD subjects based on Wilcoxon rank-sum test and their corre-
sponding false positive p-values.

EC1 EO2 EC3 EO4 EC5 EO6 CG1 CG2 CG3 CG4 P2.4 P2.0 AS1 AS2 AS3 EC7 EO8

MP D2 – – .03 – .04 – – – – – – – – – – – –

MP D3 – – – – – – – – – – – – – – .03 – –

MP D4 – – – .009 – – – – – – – – – – – – –

MP D5 – – – .0008 – .046 – – – – – – – – – – –

Min D2 – – – – – – – – – – – – – – – – –

Min D3 – – – – – – – – – – – – – – .033 – –

Min D4 – – – .022 – – – – – – – – – – – – –

Min D5 – – – .022 – – – – – – – – – – – – –

Max D2 – – – – – – – – – – – – – – – – –

Max D3 – – – – – – – – – – – – – – .02 – –

Max D4 – – – .035 – – – – – – – – – – – – –

Max D5 – – – .013 – – – – – – – – – – – – –

SD D2 – – .035 – – .04 – – – – – – – – – – –

SD D3 – – – – – – – – – – – – – – .033 – –

SD D4 – – – .009 – – – – – – – – – – – – –

SD D5 – – – .008 – .046 – – – – – – – – – – –

Skw D2 – – – – – – – – .008 – – – – – – – –

Skw D3 – – – – – – .03 – .009 – – – – – – – –

Skw D4 – – – – – – – – – – – – – – – – –

Skw D5 – – – – – – – – – – – – – – – – –

Kurt D2 – – .019 – .029 .03 – – – – – – – – – .016 .022

Kurt D3 – – – .04 – – – – – – – – – – – – –

Kurt D4 – – – – – – – – – – – – – – – – –

Kurt D5 – – – – – – – – – – – .04 – – – – –
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is identified as an AD patient. In this case, there were
no false classifications and the first feature (min D3)
was found to be statistically significant by both uni-
variate and multivariate ANOVA. D5 kurtosis feature
was also found to be statistically significant by uni-
variate ANOVA. D5 skewness feature, however, was
not statistically significant from either univariate or
multivariate ANOVA.

All Features

Combining the extracted features from all recording
tasks, we applied the decision tree algorithm to all
features. In this case a combination of features used in

the first two decision trees were used to form the opti-
mal tree, as shown in Fig. 7. Again, the Twoing index
applied to the features extracted by db4 yielded the best
decision tree. The majority of AD patients were iden-
tified in exactly the same way as the active state anal-
ysis. While the remaining few exhibited decreased
minimum D3 during auditory stimulation at 18 Hz
combined with increased D4 (4–8 Hz) mean power
during resting EO state. These results again indicate
that if the minimum value of D3 during AS3 recording
of a subject is greater than 272.15 and kurtosis of D5

during P2.4 recording is great than 15.88, then that
subject is identified as an AD patient. However, if the
minimum value of D3 during AS3 recording of a subject
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FIGURE 3. EEG signal and its DWT decompositions for CTL subject 5, EO4 block.
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is less than 272.15 and the mean power of D4 during
EO2 recording is great than 653.2, then that subject is
again identified as an AD patient. Again, there were no
false classifications and two features were found to be
statistically significant by both univariate and multi-
variate ANOVA. However, D4 mean power during
resting EO state was only found to be statistically sig-
nificant during the second EO state (EO4).

Internal Cross Validation

Werandomly left one test subject out and reapplied the
decision tree algorithms to all features of the remaining
subjects as the training set. The best decision tree was
determined to be exactly the same as the one shown in

Fig. 7. As we changed the test subject, the mean power of
D4 during EO feature was replaced by anotherD4 feature
during EO in some cases. However, these features are not
independent since we could not reject the hypothesis that
the two multivariate means lie on the same line; i.e., the
features arehighly correlated. Furthermore, therewere no
false classifications when we applied the optimal decision
tree classification to the randomly selected control subject.

DISCUSSION

Although the device used in this study is simple in
design and only records one active channel of EEG
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activity, it can accurately capture the spectral compo-
sition of the EEG signal between 2 and 30 Hz. The
technical and analytical performance characteristics of
the device are comparable to much more sophisticated
clinical units as demonstrated not only by the excellent
frequency and amplitude response as well as favorable
signal to noise ratio.When compared to a single channel
of a traditional clinical EEG equipment, its prominent
features were indistinguishable. Most importantly,
when traceswere recorded, analyzed and then compared
between restingECand restingEOconditions, the single
lead wireless device faithfully detected increased a
rhythm activity as expected, with roughly seven to ten-
fold elevation in the EC/EO power ratio. The main
disadvantages of a single sensor device are its inability to
perform multi-lead analysis such as coherence analysis,
the inability to spatiallymap brainwave activity, such as

seizure foci, and weakness in picking up potentials on
the opposite side of the brain from the sensor perspec-
tive. There are, however, significant advantages includ-
ing a meaningful increase in comfort and convenience
for the patient, a faster more accessible portable tech-
nology that can move to the point of care, as well as a
more affordable procedure leading to wider patient
participation and neuro-diagnostic information earlier
in the diagnostic algorithm. Of the EEG abnormalities
reported in the literature,21 it appears from our small
sampled pilot study that slowing and decreased com-
plexity of EEG in AD patients can be nonetheless cap-
tured with a single Fp1 sensor.

Once the analytical and clinical validity of the sig-
nals recorded by the device was established, we used a
DWT with five different mother wavelets to extract
candidate discriminating EEG features of AD patients.
Single electrode EEG recordings at Fp1 during both
resting and active states by AD and CTL subjects were
analyzed. Given that AD is frequently characterized by
progressive impairment in cognition and memory, the
underlying hypothesis is that the addition of EEG
traces recorded during the activated states will help
identify clearer discriminating features with greater
clinical performance as measured by sensitivity, speci-
ficity, and positive and negative predictive values.
Extracted DWT statistical features from 5 level of
decomposition were computed and compared between
the AD and CTL groups. Statistical features of the
DWT decomposition levels corresponding to the
standard spectral brain frequency bands were used to
identify numerous statistically significant features of
AD patients in both resting and active states.

FIGURE 5. Optimal Decision tree for resting conditions. x is
the mean power of D4 of the second EO state (EO4). x is also a
statistically significant feature of AD patients. The values
within parentheses indicate the number of classified subjects.

FIGURE 6. Optimal decision tree result for active states. x1 is
the minimum value of D3 of auditory stimulation at 18 Hz
(AS3), x2 is the skewness of D5 of PASAT 2.4 s interval (P2.4),
and x3 is the kurtosis of D5 of PASAT 2.0 s interval (P2.0). Only
x1 and x3 are statistically significant. The values within
parentheses indicate the number of classified subjects.

FIGURE 7. Optimal decision tree result using all recording
blocks. x1 is the minimum value of D3 of auditory stimulation
at 18 Hz (AS3), x2 is the mean power of D4 of the first EO state
(EO2), and x3 is the kurtosis of D5 of PASAT 2.0 s interval
(P2.0). Only x1 and x3 are statistically significant. The values
within parentheses indicate the number of classified subjects.
The values within parentheses indicate the number of clas-
sified subjects.

GHORBANIAN et al.1254



In the resting conditions, the mean powers of D4

(~h) and D5 (~du) were significantly higher for AD
subjects compared to CTL subjects directly replicating
the literature reported results of Wan et al.33 Very
importantly, our replication of this literature derived
hypothesis supports the notion that a single lead device
is able to replicate features observed with a clinical
EEG system. Furthermore, the mean powers of D2

(~b) were significantly lower for AD subjects compared
to CTL subjects. These results are consistent with
published literature where higher d and h activities and
lower b activities have been reported for AD patients
using other approaches.21,23 Interestingly, we have
observed in this small pilot study that the EO EEG
recordings result in more discriminant features and are
more dominant in identifying AD patients compared
with the EC recordings. While, standard deviation,
skewness, and kurtosis at several decomposition levels
were also found to be statistically significant, we could
not establish their independence through multivariate
ANOVA.

Many of the EEG features of AD patients recorded
during active state tasks were very different than those
of resting conditions. D3 (~a) mean power, minimum,
maximum, and SD during auditory stimulation at
18 Hz, were all significantly lower (magnitude) for AD
patients when compared to control subjects. Multi-
variate analysis confirmed the univariate ANOVA
results for these features. However the features were
highly correlated since we could not reject the
hypothesis that the features lie on the same line. Other
significant discriminating features of AD patients in
active states included skewness of D2 and D3 during
the One Card Learning cognitive task, skewness of D3

during Attention task, and kurtosis of D5 during
PASAT with 2.0 s interval.

A decision tree approach was used to identify the
most predictive EEG features of AD patients. Since we
used five different wavelet functions and three different
split criteria for the decision trees, several unique
classifications were obtained. In each case, we selected
the best classification based on the statistical signifi-
cance of the utilized features and the minimal rate of
false classifications.

Classification of discriminating DWT extracted
EEG features of AD patients utilized features from
both active and resting states. In particular EEG fea-
tures extracted during auditory stimulation, PASAT,
and EO recording blocks were most useful and domi-
nant. Overall, these findings suggest that although
EEG recordings during resting conditions may be used
to differentiate AD from control subjects, EEG activity
during active engagement in cognitive and sensory
tasks appear to provide additional and differential
information, which in some cases were observed to be

among the most discriminatory features of the AD
subjects.

Although EEG recordings during performance of
several different cognitive and sensory tasks provided a
smaller number of features that were significantly dif-
ferent after univariate analysis between AD and CTL
subjects, many unique features were nonetheless iden-
tified. The lack of statistical power in active states may
be due to inter-subject variability in both EEG
recordings and the ability of individual subjects to
perform these tasks. Furthermore, in this study the
sample size in each group was small compared to other
studies33 and as such likely contributed to low statis-
tical power. Nonetheless, we found a few specific sta-
tistically significant discriminators that may lend
themselves better to within subject analysis. Further-
more, some of the unique features derived through the
analysis of active state recordings were used as domi-
nant features in identifying AD patients through
decision tree classification. Therefore, it is encouraging
that even with such small sample size, novel features
can be identified that differentiate AD and CTL
groups.

It is important to note that this study is of an
exploratory nature where a large number of statistical
tests were conducted where multiple comparison cor-
rections are too conservative and not strictly
required.6,27 We believe that the replication of the
widely reported and accepted resting state EEG mean
power features of AD provides a significant level of
confidence in our results. However, we also note that
our results do not provide rigorous evidence for each
of the identified discriminating features and further
studies to replicate these findings are still required to
both verify and then validate any putative markers as
predefined hypotheses.

In general, the initial results of this Alzheimer’s
diagnostic pilot study indicated that DWT analysis of
EEG signal from a single electrode during an ensemble
of resting and active brain states is potentially effective
in identifying new discriminant features of patients
with AD. However, we cannot be certain that the
identified discriminating features and decision tree
classifications are in fact due to AD and not inter-
subject variability. We believe further studies with
recordings from the same location as well as other
locations on the scalp can help confirm our preliminary
results and lead to further coherence analysis. In par-
ticular, when applied in the future to a larger sample
size and recordings from other possible locations, we
believe that the method can aid in the early diagnosis
of AD.

We believe that our approach to identify features
during active performance of cognitive tasks may play
a more critical role in identifying AD in individual
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subjects and early diagnosis. Longitudinal studies of
AD patients and CTL may also be useful in showing
normal rates vs. accelerated rates of change in the AD
patients. Such studies may particularly be useful for
patients with MCI as a means of tracking their pro-
gression to AD. Cognitive testing for minimally
impaired subjects may also form an important baseline
that should be followed over time to aid in the early
diagnosis of AD.
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