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Abstract—The advent of implantable blood-recirculating
devices such as left ventricular assist devices and prosthetic
heart valves provides a viable therapy for patients with
end-stage heart failure and valvular disease. However,
device-generated pathological flow patterns result in throm-
boembolic complications that require complex and lifelong
anticoagulant therapy, which entails hemorrhagic risks and is
not appropriate for certain patients. Optimizing the throm-
bogenic performance of such devices utilizing numerical
simulations requires the development of predictive platelet
activation models that account for variations in shear-
loading rates characterizing blood flow through such devices.
Platelets were exposed in vitro to both dynamic and constant
shear stress conditions emulating those found in blood-
recirculating devices in order to determine their shear-
induced activation and sensitization response. Both these
behaviors were found to be dependent on the shear loading
rates, in addition to shear stress magnitude and exposure
time. We then critically examined several current models and
evaluated their predictive capabilities using these results.
Shear loading rate terms were then included to account for
dynamic aspects that are either ignored or partially consid-
ered by these models, and model parameters were optimized.
Independent optimization for each of the two types of shear
stress exposure conditions tested resulted in different sets of
best-fit constants, indicating that universal optimization may
not be possible. Inherent limitations of the current models
require a paradigm shift from these integral-based discretized
power law models to better address the dynamic conditions
encountered in blood-recirculating devices.

Keywords—Cardiovascular devices, Blood flow, Blood dam-

age models, Platelet activation, Damage accumulation,

Platelet sensitization.

INTRODUCTION

Implantable cardiovascular blood-recirculating
devices are rapidly becoming a viable long term solu-
tion for patients with congestive heart failure or val-
vular disease, particularly among the growing elderly
population. Platelets are known to activate and
aggregate in response to shear stress conditions in these
devices.7,11,20 However, blood-recirculating device
manufacturers mostly test and optimize these devices
for hemolysis, which occurs at shear stress levels ten-
fold higher than those for platelet activation.27,31 Thus,
blood-recirculating devices are hardly optimized for
this lower level flow-induced thrombogenicity.4,5 This
is exacerbated by the relative paucity of shear-induced
platelet activation models developed and experimen-
tally validated for the dynamic, time-dependent flow
conditions found in such devices.

Several studies have focused on the formulation of
platelet ‘‘stimulation’’ (i.e., activation) functions based
on experimental observations. Ramstack et al.27

derived a geometry-dependent function to predict
platelet factor 3 (PF3) activity in response to constant
flow. The Platelet Stimulation Function (PSF) derived
by Boreda et al.8 states that platelet stimulation is due
to a combination of shear stress and exposure time,
based on flow velocities in experimental models of
coronary stenoses. This formula is based on a model of
fractional platelet lysis, as measured by lactate dehy-
drogenase (LDH) release,14 which in turn is based on a
previous model of red blood cell (RBC) hemolysis.3

More recent studies utilized these LDH-based models,
as well as linear ‘‘level of activation’’ or stress accu-
mulation (SA) formulations,6,12,32 to predict platelet
activation response to flow through mechanical heart
valve hinge regions and stenoses.30,33 This concept
originated from the observation that platelet activation
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was dependent on the product of shear stress and
exposure time,18 and was utilized in both numerical
simulations6,12,32 and experimental validation.33 These
models were developed for experiments where blood is
exposed to constant shear stresses, but they do not
address well, if at all, dynamic shear stress conditions
(i.e., accelerating and decelerating flow).

A more recent model by our group1 addressed the
transient nature of the flow field and senescence, or
past damage history, of platelets under dynamic
recirculating conditions. This formulation was based
on an RBC damage model,36 where a phenomenolog-
ical damage index, dependent only on shear stress and
time and applied to individual cells, increases as the
cell passes through the circulation, culminating in a
critical value reflecting the destruction or removal of
the cell. This model accounted for the transient nature
of the flow field and prior damage history, and assumes
a ‘‘perfect memory’’ of previous platelet damage. It
required the computation of individual platelet tra-
jectories within the device flow field and their corre-
sponding stress loading histories.

Another recent platelet activation model25 was
adapted from the RBC hemolysis power law model of
Grigioni et al.17 The latter was derived by making an
earlier RBC damage power law model16 mechanical
loading dose-dependent. This approach allowed the
shear-exposed RBC to retain its previous damage his-
tory, a feature lacking from prior RBC damage mod-
els, with the exception of Yeleswarapu et al.36 Nobili
et al. adapted this approach to predict platelet activa-
tion state (PAS) in response to dynamic shear stress
waveforms. While this phenomenological model
accounted for the prior shear loading history of the
platelet, like prior models it neglected the role of the
shear loading rate, or the acceleration and deceleration
phases of the shear stress. Prior studies have shown
that the shear stress gradients due to spatial orienta-
tion or change in flow conditions are often neglected in
shear induced platelet damage studies and have a sig-
nificant impact on platelet response.6,26 We hypothe-
size that this shear loading rate, or even turbulent flow
effects, may have a significant impact on the platelet
activation behavior.

The present study exposes platelets to both constant
and dynamic shear stress conditions, where the dura-
tion of high shear stress pulses and the acceleration/
deceleration times are within serve as a proxy to those
encountered in blood-recirculating devices. Several
commonly used platelet activation and damage models
are optimized using experimental PAS results. These
models are then evaluated to determine their robust-
ness in describing shear-induced platelet activation and
whether they are appropriate for assisting in the design
and optimization of blood-recirculating devices in a

way that may significantly reduce their thromboge-
nicity.

MATERIALS AND METHODS

In Vitro Experiments

Whole blood, 30 mL, was drawn via venipuncture,
in accordance with Stony Brook University IRB-
approved protocol, from consenting healthy adult
volunteers of both sexes who had not taken aspirin or
ibuprofen for 2 weeks. Purified gel-filtered platelets
(GFP) were prepared as previously described28,29 and
diluted to a count of 20,000/lL in HEPES-modified
Tyrode’s buffer. A computer-controlled hemodynamic
shearing device (HSD)25,35 was utilized for shear stress
exposure. Prior experimental and numerical observa-
tions show that the shear stress is homogeneous in all
fluid regions of the HSD, except for the small corner
regions, and motor response time is ~3 ms.35 GFP
were exposed to constant and dynamic shear stress
waveforms (Fig. 1), which include:

(a) repeated triangular peaks of accelerating and
decelerating flow with different shear stress
rates, ranging from 345 dyne s21 cm22 (fre-
quency of 0.78 Hz) to 2760 dyne s21 cm22

(frequency of 6.25 Hz), for 4 min, followed by
a 10 min exposure to 1 dyne/cm2 (n = 7).
Peak stress was 70 dyne/cm2. These shear
stress rates represent the range that platelets
encounter during passage through blood-
recirculating devices, such as mechanical heart
valves,2,35 and stenoses.

(b) constant shear stress of variable magnitude
(70, 50, 30 and 10 dyne/cm2) for 2 min (with
acceleration and deceleration times of 0.025 s)
followed by 12 min exposure to 1 dyne/cm2

(n = 9);
(c) constant shear stress of 30 dyne/cm2 for vari-

able durations (1, 2, 3 and 4 min, with accel-
eration and deceleration times of 0.025 s)
followed by exposure to 1 dyne/cm2 (n = 8);

Total duration of all experiments was 14 min.
Exposure of GFP to 1 dyne/cm2 for 14 min served as
the negative control for all waveforms. Samples for the
prothrombinase-based platelet activation state (PAS)
assay19,29 were drawn every min from 0 to 4 min and
every 2.5 min from 4 to 14 min using a LabView-
controlled syringe pump (PSD/8, Hamilton, Reno,
NV) connected to the HSD via a 30-gauge PTFE tube.
PAS values were normalized against those obtained by
sonicating unsheared platelets at 10 W for 10 s with a
Branson Sonifier 150 with a microprobe (Branson,
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MO). The sonication step yields platelets that are fully
activated, and thus normalized PAS values represent
the bulk activity as a fraction of this full activation
state. Change in PAS (DPAS) was calculated over the
duration of high shear stress exposure. Sensitization
platelet activation rates (PAR) were determined by
performing linear least squares regression analysis on
PAS values from the subsequent low shear period and
computing the slope. It is important to note that DPAS
is used instead of a linear PAR for the shear stress
exposure periods, but this does not imply that PAS
increases linearly during this period. The sensitization
PAR assumes that the PAS values subsequent to shear
stress exposure fall along a straight line, and post hoc
Chi square goodness-of-fit tests validate this assump-
tion. Loading DPAS and sensitization PAR values for
each type of shear stress waveform (dynamic, variable
magnitude, and variable duration) were analyzed and
compared to their respective controls using one-way
ANOVA with Dunnett’s T3 post hoc test, where
p< 0.05 established significance.

Platelet Activation Model Analysis

The objective of this study was to determine if
current platelet activation models are robust enough to
accurately describe the phenomenological (i.e., based
on shear stress and time) response of platelets to both
constant and dynamic shear stress conditions. We
adapted the power law model derived to fit LDH
release from red blood cells,3 and later platelets,14

exposed to very high constant shear stresses for fixed

durations. This ‘‘original power law (OPL)’’ model was
redefined for the PAS:

PASOPLðs; tÞ ¼ Csatbexp ð1Þ

where the platelet activation state, PAS, is dependent
on the shear stress, s, and exposure time, texp. The
value of the constants C, a, and b were originally
obtained for platelet LDH release and cannot be used
for PAS. Therefore, the constants were optimized for
PAS by minimizing the difference between Eq. (1) and
the experimental data as described later (in Optimiza-
tion Approach for the Model Parameters).

This model was discretized by Grigioni et al.16,17 to
allow fitting of experimental hemolysis data at addi-
tional time points and adapted by Nobili et al.25 for
PAS measurements. Since these models were originally
developed for constant shear stress conditions, they
were derived again from basic principles to account for
the shear loading rate _s (Appendix). Each expansion of
these models results in constants C1 and C2, which
represent C for the constant and dynamic shear stress
parts of the equations, respectively. When C2 = 0, the
models revert back to their originally presented
forms.16,17,25

Cumulative Power Law Model

The cumulative power law model (CPL) developed
by Grigioni et al.16 was adapted to PAS by expanding
Eq. (1) to account for dynamic conditions and derived
utilizing their approach for a prior blood damage
model (Appendix):

FIGURE 1. Dynamic and constant shear stress waveforms. Platelets were exposed to (a) dynamic waveforms with variable
loading rates, (b) variable magnitudes of constant shear stress for 2 min, and (c) 30 dyne/cm2 shear stress for variable durations.

Shear-Induced Platelet Activation Model Evaluation 1281



PASCPLðsðtÞ; tÞ ¼ C1

Zttotal

t0

bsðtÞatb�1dt

þC2

Zttotal

t0

asðtÞa�1tb dsðtÞj j
dt

dtþ PASðt0Þ ð2Þ

where ttotal is the total duration of the experiment. The
platelet activation state at the start of the experiments
is given by PAS(t0). The absolute value of the change
in shear stress, dsðtÞ, is taken to avoid violating the
principle of causality,17 where decrease in shear stress
does not cause a decrease in PAS. We assume that
platelets activate the same regardless of whether dsðtÞ
is due to acceleration or deceleration. In discrete form,
Eq. (2) becomes:

PASCPLðs; tÞ ¼ C1b
Xn
i¼1

tb�1i sa
i Dti

þ C2a
Xn
i¼1

sa�1
i tbi si � si�1j j þ PASðt0Þ

ð3Þ

All 3 power law conditions defined by Grigioni
et al.17 are satisfied. Eq. (3) is similar to a previously
derived model35 but does not assume that the constants
C, a, and b are equal to 1. If Dti included a linear
ramping of s tð Þ, si over this interval was approximated
using the trapezoidal rule.

Linear Model

The simplest form of the power law model assumes
that shear stress and exposure time have equal weight,
and that a = b = 1. Simplifying Eq. (2) yields the
linear (L) model:

PASLðsðtÞ; tÞ ¼ C1

Zttotal

t0

sðtÞdtþ C2

Zttotal

t0

t
dsðtÞj j
dt

dtþ PASðt0Þ

ð4Þ

When C2 = 0, Eq. (4) relates the stress accumula-
tion (SA) of particular platelet shear histories6 to PAS
through multiplication with constant C1. In discrete
form, Eq. (4) becomes:

PASLðs; tÞ ¼C1

Xn
i¼1

siDtiþC2

Xn
i¼1

ti si� si�1j j þPASðt0Þ

ð5Þ

If Dti included a linear ramping of s tð Þ, si over this
interval was approximated using the trapezoidal rule.

Modified Cumulative Power Law Model

While Eq. (2) addresses the shear loading rate that
previous models neglect, it does not truly satisfy the
prior damage history condition for power law models:
PAS(t0) was taken into account, however it did not
include the effect of loading at each interval in which
an experimental observation is made. Thus, the mod-
ified cumulative power law (MPL), adapted by Nobili
et al.25 for PAS, was expanded to include the shear
loading rate (Appendix):

PASMPLðsðtÞ; tÞ ¼C1b

"Zttot

t0

 Z/

t0

sðnÞa=bdn

þa
b

Zsð/Þ

sðt0Þ

n � sðnÞða=bÞ�1dsþ PASðt0Þ
C1

� �1=b
!b�1

sa=bd/

#

ð6Þ

C1, a, and b are constants, while ds is the change in
shear stress for a given time interval. The inner inte-
grals represent mechanical stress loading dose D
(Appendix) divided into constant and dynamic shear
stress terms and applied over a time n, where dn is the
interval over which an elemental dose of shear stress is
applied and C is the shear stress at time n. The outer
integral is the summation of these doses over the
duration of the experiment, with / and d/ as the
observation time points and the interval between them,
respectively. In discrete form, Eq. (6) becomes:

PASMPLðs; tÞ¼C1b
XN
i¼1

 Xi
j¼1

sðtjÞa=bDtj

þa
b

Xi
j¼1

tj � sðtjÞða=bÞ�1 Dsj
�� ��þ PASðt0Þ

C1

� �1=b
!b�1

sðtiÞa=bDti

ð7Þ

The i-th interval refers to experimental observation
time points, while the j-th interval refers to time points
where the mechanical loading changes. For example, in
the constant shear stress experiments included in the
model parameters optimization, the initial high shear
stress loading had three distinct phases: a linear
ramping of shear stress, constant high shear stress,
followed by a linear decrease in shear stress. Experi-
mental PAS values were measured at the start of the
first ramping phase (PAS(t0)) and at the end of the
decreasing shear stress phase (PAS(t1)). Thus, there are
3 mechanical stress loading dose intervals (j) for the
single observation interval (i) in this case. The absolute
value of the shear loading term Dsj was taken to avoid
violating the principle of causality, and to ensure that a

SHERIFF et al.1282



reduction in shear stress does not cause a decrease in
PAS. As before, if Dti and Dtj included a linear
ramping of s tð Þ, the integrals of si and sj over these
intervals were determined using the trapezoidal rule.
Eqs. (6) and (7) revert to the prior model25 when only
constant shear stress conditions are considered.

Optimization Approach for the Model Parameters

Where appropriate, constants were optimized for
the cases where (1) only constant shear effects are
considered (C2 = 0); (2) constant and dynamic shear
effects have equal weights (C1 = C2); and (3) constant
and dynamic shear effects have unequal weights
(C1 „ C2). Optimization was performed for PAS
values from 0 to 4 min, as sensitization was not con-
sidered in the models evaluated.

Constants for Eqs. (1), (3), (5), and (7) were opti-
mized using a Levenberg–Marquardt (L-M)21,22 opti-
mization scheme in MATLAB 7.13 (MathWorks,
Natick, MA), where the difference between the model
prediction and experimental results was minimized:

min
h

fðxÞ ¼ minðPASexp � PASnumÞ

s:t: h ¼ fC1;C2; a; bg
ð8Þ

PASnum refers to the discrete forms of the models
examined. For constant shear stress waveforms,
PASnum includes the initial and final transient phases
of the high shear exposure regardless of the shear
loading term. Experimental PAS values, PASexp, were
taken from the results at each time point during con-
stant and dynamic shear stress loading for each con-
dition tested. Shear stress, exposure time, and shear
loading rate were inputted into the discrete forms of
the models for each experimental sampling point, with
each successive equation inclusive of the prior equa-
tions for each condition tested. Optimization included
experimental values for the 1 dyne/cm2 negative con-
trol that indicated no significant increase in PAS over
the course of the experiment.

In order to reduce the dependence of the optimized
constants on the initial values, the following iterative
procedure was followed: C1 and C2 were initialized at
values between 0.005 and 0.1, with increments of 0.005,
and a and b were initialized between 0.5 and 10, with
increments of 0.5 between each value, such that:

C1 ¼ C2 ¼ 0:005; 0:1½ �; a ¼ b ¼ ½0:5; 10� ð9Þ

This range of values was based on the results of a
previous platelet activation model optimization
study.25 This resulted in 20 initial values for each
constant, generating up to 160,000 unique sets of these
four constants. For each combination of constants,
iterations were performed until the cumulative least

square error (LSE) between the experimental and
numerical PAS values was below 1 9 1025 or when
2 9 104 iterations were exceeded. In the event that the
number of iterations was exceeded, the set of constants
was discarded and the program initialized at a new set
of constants. The combination of constants that yiel-
ded the lowest cumulative error was selected for the
final formulation of the model.25 If there were several
combinations of constants that yielded the lowest
error, the mean values for all such constants were
calculated.

RESULTS

In Vitro Experiments

A general increasing trend was observed for both
the change in the high shear platelet activation state
(DPAS) and sensitization platelet activation rate
(PAR) for the dynamic waveforms (Fig. 1a), correlat-
ing with an increase in frequency of 70 dyne/cm2 peaks
(Fig. 2, Table 1, n = 7). Furthermore, the evolution of
PAS over the 4 min high shear stress exposure was
different for the four waveforms, despite having iden-
tical stress accumulations (SA) of 2800 dyne s cm22.
This increase in high shear PAS was observed to be
non-linear, contrasting with a linear increase in PAS
for the subsequent sensitization phase. For the 4 min
shear stress exposure, DPAS is significantly higher than
the control for all waveforms, whereas the sensitization
PAR is only significant for 6.25 Hz ( _s = 2760 dy-
ne s21 cm22, p< 0.05). In addition, DPAS for 6.25 Hz
and 3.13 Hz ( _s = 1380 dyne s21 cm22) was signifi-
cantly higher than for 0.78 Hz ( _s = 345
dyne s21 cm22).

For the constant shear stress waveforms with vari-
able magnitudes (Fig. 1b), there was a general
increasing trend for both DPAS and sensitization PAR
with an increase in shear stress magnitude (Fig. 3,
Table 2a, n = 9). Similar to the dynamic waveforms, a
non-linear increase in PAS is observed for the 2 min
high shear exposure, followed by a linear increase in
PAS for the subsequent sensitization phase. For the
2 min shear stress exposure, DPAS is significantly
higher than the control for 70, 50, and 30 dyne/cm2,
and DPAS for the 30 and 10 dyne/cm2 waveforms is
significantly lower than for the 70 dyne/cm2 waveform
(p< 0.05). The sensitization PAR is significantly
higher than the control for 70 and 50 dyne/cm2,
whereas it is significantly lower than the 70 dyne/cm2

PAR for the 30 and 10 dyne/cm2 conditions (p< 0.05).
For the constant 30 dyne/cm2 shear stress waveforms

with variable durations (Fig. 1c), there was a gen-
eral increasing trend for both DPAS and sensitization
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FIGURE 2. Dynamic waveforms PAS and PAR results. (a) Normalized PAS results were obtained for both the dynamic phase
(0–4 min) and sensitization phase (4–14 min) (standard error bars, n 5 7). (b) DPAS was measured over the dynamic phase, while
(c) PAR was measured for the sensitization phase (* p < 0.05 vs. control).

TABLE 1. Platelet activation response to dynamic shear stress experiments.

Frequency

(Hz)

Integral

shear stress

(dyne s cm22)

Loading

activation

state

(DPAS) (91022)

p vs.

control

Sensitization

rate (PAR)

(91023 min21)

p vs.

control

6.25 2800 12.7 ± 3.0 0.04 9.6 ± 1.3 0.001

3.13 2800 11.4 ± 1.7 0.005 6.9 ± 1.7 0.07

1.56 2800 8.2 ± 1.2 0.004 3.2 ± 1.5 0.74

0.78 2800 3.8 ± 0.8 0.04 4.7 ± 1.6 0.3

1 dyne/cm2 (control) 240 0.6 ± 0.1 – 0.8 ± 0.4 –

Loading activation states are mean ± SEM and are determined from the change in PAS values from 0 min to the end of dynamic shear stress

exposure (4 min, n = 7). Sensitization rates are obtained from the slope of a line fit to PAS values from 4 min to the end of the experiment.

FIGURE 3. Variable magnitude waveforms PAS and PAR results. (a) Normalized PAS results were obtained for both the high
shear stress phase (0–2 min) and sensitization phase (2–14 min) (standard error bars, n 5 9). (b) DPAS was measured over the
high shear stress phase, while (c) PAR was measured for the sensitization phase (* p < 0.05 vs. control, � p < 0.05 vs. 70 dyne/cm2).
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PAR with an increase in exposure duration (Fig. 4,
Table 2b, n = 8). As observed previously, the increase
in PAS is non-linear over the initial high shear stress
exposure, followed by a linear increase in PAS during
the subsequent sensitization phase. Significantly higher
DPAS is observed only for the 2 and 4 min exposure
times when compared to the control (p< 0.05). No
significance is observed for the sensitization PAR when
compared to the control.

Platelet Activation Model Analysis

The OPL model (Eq. (1)), optimized with experi-
mental results for both sets of constant shear stress
waveforms (Figs. 1b, 1c), provides a good fit for

experimental PAS for both the 1 and 2 min time points
for the variable magnitude waveforms (Fig. 5,
LSE = 1.0 9 1023). To account for intermediate time
points, 3 discrete models were analyzed: the linear (L,
Eq. (4)), cumulative power law (CPL, Eq. (2)), and
modified cumulative power law (MPL, Eq. (6)) models.
For all 3 models, when _s is not considered, the fit yields
lower LSE values for constant than dynamic shear
stress waveforms (Fig. 6, Table 3). In addition, the
lack of a term for _s in these 3 models yields an identical
fit for the 4 dynamic waveforms from 0 to 4 min, de-
spite experimental values showing different PAS values
for each during the intermediate time points (Fig. 2).
Including this loading rate term generally yields lower
LSE, with lowest errors obtained when constants

TABLE 2. Platelet activation response to constant shear stress experiments.

Shear

stress

(dyne/cm2)

Duration

(s)

Integral

shear stress

(dyne s cm22)

Loading

activation state

(DPAS) (91022)

p vs.

control

Sensitization

rate (PAR)

(91023 min21)

p vs.

control

(a) Variable magnitude

70 120 8400 7.8 ± 1.8 0.02 10.8 ± 1.3 <0.001

50 120 6000 3.9 ± 0.6 0.002 6.3 ± 1.0 0.007

30 120 3600 1.2 ± 0.2 0.02 2.7 ± 0.5 0.07

10 120 1200 0.5 ± 0.3 >0.5 0.7 ± 0.3 >0.5

1 (control) 120 120 0.3 ± 0.1 – 1.0 ± 0.3 –

(b) Variable duration

30 240 7200 7.2 ± 1.8 0.03 4.5 ± 1.4 0.25

30 180 5400 3.1 ± 0.9 0.12 2.5 ± 0.5 0.17

30 120 3600 1.2 ± 0.2 0.02 2.7 ± 0.5 0.07

30 60 1800 0.9 ± 0.1 0.06 1.5 ± 0.3 >0.5

1 (control) 120 120 0.3 ± 0.1 – 0.7 ± 0.3 –

Loading activation rates are mean ± SEM and are determined from the change in PAS values from 0 min to the end of higher shear stress

exposure for the (a) variable magnitude (2 min, n = 9) and (b) duration (1, 2, 3, or 4 min, n = 8) experiments. Sensitization rates are obtained

from the slope of a line fit to PAS values from the end of high shear stress exposure to the end of the experiment.

FIGURE 4. Variable exposure time waveforms PAS and PAR results. (a) Normalized PAS results were obtained for both the high
shear stress phase and sensitization phase (standard error bars, n 5 8). (b) DPAS was measured over the high shear stress phase,
while (c) PAR was measured for the sensitization phase (* p < 0.05 vs. control).
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C1 „ C2 (Table 3). For the dynamic shear stress
waveforms, the lowest LSE and concave activation
behavior representative of the experimental response are
obtainedwith theCPLmodel whereC1 „ C2 (Fig. 6b).
For the constant shear stress waveforms, the lowest LSE
is achieved for the Lmodel (Fig. 6a, Table 3). However,
both the L and CPL models with C1 „ C2 yield lower
LSE compared to models with C1 = C2 when including
the loading rate due to acceleration to and deceleration
from the peak shear stress condition (Table 3). While
C2, the constant preceding the loading rate term, is on
the same order of magnitude as C1, the constant pre-
ceding the constant shear stress term, for the constant
shear stress Lmodel, it is 3–4 orders of magnitude lower
in all the other cases. Furthermore, setting C1 „ C2

increases a and b to values markedly larger than 0
compared to C1 = C2 for the CPL model under both
dynamic and combined conditions.

PAS values predicted by the discretized CPL models
and the OPL model were compared with experimental
PAS values (PASexp) for the 1 and 2 min time points of
the variable magnitude constant shear stress wave-
forms (Fig. 1b) to determine which yields the highest
accuracy. The CPL models included the forms with
C2 = 0 (PL0) and C1 „ C2 (PL2). The OPL model
yields the lowest difference between model predictions
and PASexp for all but the 2 min value for the 70 dyne/
cm2 experiment (Table 4), indicating that the OPL
model is still valid for constant shear stress conditions.

However, this model only accounts for initial PAS
value (PAS(t0)) and the final observed PAS value, and
cannot be used for intermediate time points.

However, the fits described earlier utilized different
sets of constants C1, C2, a, and b for each type of
model depending on whether constant or dynamic
shear stress waveforms were optimized. Constants
obtained from optimization of the CPL model with
C1 „ C2 were fit simultaneously to constant and
dynamic shear stress PAS values in order to evaluate
the predictive capability of the model. This model was
selected as it yielded the lowest LSE for the optimi-
zation of the constant and dynamic shear stress
waveforms (Table 3). As expected, model fits for the
variable magnitude and variable duration waveforms
agree well with experimental PAS values when using
constants obtained from optimization of only the
constant shear stress waveforms (Fig. 7a). However,
these constants cause underestimation of PAS for the
dynamic shear stress waveforms. Conversely, model
fits for the dynamic waveforms agree well with PAS
values using constants obtained from optimization of
only the dynamic waveforms, while underestimating
the PAS values for the constant shear stress waveforms
(Fig. 7b). Optimizing the CPL model with C1 „ C2

simultaneously for the constant and dynamic shear
stress waveforms restores some of the behavior
observed for the individual optimizations (Fig. 7c), but
the LSE increased (Table 3).

FIGURE 5. Giersiepen original power law (OPL) fit for variable magnitude constant shear stress experiments. Fits for 1 and 2 min
experimental values (open circles with standard error bars) were obtained with constants C 5 1.47 3 1026, a 5 1.04, and b 5 1.30.
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DISCUSSION

While several researchers explored the concept of
predictive platelet activation models, few developed
such models based on direct experimental results.8,25,27

Moreover, these models were developed using either
constant shear stress experiments, or approximated
using formulations originally developed for constant
shear stress conditions. The overwhelming majority of
these models and their predecessors were either devel-
oped or optimized based on experiments where sam-
ples were taken at the start and end of shear stress
exposure.8,14,18,27,34 However, these models neglect
shear loading rate or turbulent flow effects, which may
have a significant impact on the platelet activation
behavior.6,26

In this study, platelets were exposed to tightly-
controlled constant and dynamic shear stress wave-

forms (Fig. 1), which serve as a proxy to conditions
found in mechanical circulatory support (MCS) de-
vices and prosthetic heart valves (PHVs). The exposure
time in these waveforms is generally longer than found
in vivo, but these conditions allow the development of
models which can later be validated under more real-
istic conditions. While platelets are only briefly ex-
posed to shear stresses up to 3000 dyne/cm2 in such
devices,37 repeated exposure to these conditions may
result in persistent platelet activation despite antico-
agulation therapy.9,10 This may be partially explained
by our observation that residual activation response
(sensitization) subsequent to high shear stress exposure
correlates well with the shear stress-time product, or
stress accumulation (SA), encountered by the plate-
lets.29 As expected, change in PAS for the constant
shear stress experiments showed a positive correlation

FIGURE 6. Linear and power law model fits for constant and dynamic shear stress experiments (constants in Table 3a–b). PAS
results for constant and dynamic shear stress experiments were fit to (a) L, (b) CPL, and (c) MPL power law models. These models
fit the high shear period (0–2 min) well for constant shear stress experiments without a loading rate term (left), but do not
differentiate between the different loading frequencies (middle, 0–4 min) until addition of a loading rate term (right).
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with increases in both shear stress magnitude and
exposure time (Figs. 3a–3b, 4a–4b). This trend was
also observed in the sensitization response subsequent
to high shear stress exposure, with more significant
results observed for the variable shear stress magnitude
experiments (Fig. 3c). Positive correlations were also
observed for both DPAS and the sensitization PAR

with increasing frequency in the dynamic shear stress
waveforms (Figs. 1a, 2), but SA, maintained at
2800 dyne s cm22 for all waveforms, had no correla-
tion with PAS observations. Constant shear stress
waveforms result in a convex platelet activation
response during high shear stress exposure (0–2 min in
Fig. 3 and 0–4 min in Fig. 4), whereas the dynamic

TABLE 3. Optimized model constants for constant and dynamic shear stress experiments.

Model C1 C2 a b LSE (91023)

(a) Constant only

L 7.59 9 1026 – – – 1.9

OPL 1.47 9 1026 – 1.0400 1.3000 1.0

CPL 5.35 9 1025 – 0.8240 0.7620 2.1

MPL 7.30 9 1022 – 1.0300 0.0063 33.4

L w/loading rate C1 = C2 4.36 9 1026 – – – 1.7

C1 „ C2 5.78 9 1026 2.65 9 1026 – – 1.5

CPL w/loading rate C1 = C2 3.40 9 1025 – 0.5280 0.9700 3.0

C1 „ C2 2.07 9 1025 2.14 9 1029 0.8720 0.9000 1.5

MPL w/loading rate 6.19 9 1027 – 1.0400 1.4400 32.2

(b) Dynamic only

L 3.39 9 1025 – – – 12.4

CPL 1.30 9 1024 – 1.0293 0.7249 11.7

MPL 7.85 9 1028 – 1.2600 2.0700 114.0

L w/loading rate C1 = C2 7.52 9 1029 – – – 17.6

C1 „ C2 2.17 9 1025 3.59 9 1029 – – 6.9

CPL w/loading rate C1 = C2 9.10 9 1022 – 0.0002 0.0468 2.7

C1 „ C2 9.84 9 1023 4.15 9 1026 0.4291 0.1628 2.4

MPL w/loading rate 6.86 9 1026 – 0.3120 1.3200 83.9

(c) Constant and dynamic

L 1.23 9 1025 – – – 48.6

CPL 5.59 9 1021 – 0.3940 0.0068 17.1

MPL 1.46 9 1022 – 0.1500 0.2810 149.0

L w/loading rate C1 = C2 7.53 9 1029 – – – 35.2

C1 „ C2 8.65 9 1026 5.95 9 1029 – – 13.0

CPL w/loading rate C1 = C2 6.97 9 1023 – 0.0004 0.3710 10.8

C1 „ C2 2.58 9 1023 7.43 9 1027 0.6890 0.2430 5.5

MPL w/loading rate 8.30 9 1027 – 1.2200 1.2600 91.7

Constants are optimized values corresponding to the lowest least square errors (LSE) for the linear (L), cumulative power law (CPL), and

modified cumulative power law (MPL) models. Constants were optimized for (a) constant shear stress waveforms only, (b) dynamic shear

stress waveforms only, and (c) constant and dynamic shear stress waveforms in combination.

TABLE 4. Comparison of power law models for variable shear stress magnitude experiments.

Shear stress (dyne/cm2)

Time (min)

0
1 2

PASexp PASexp PASOPL PASPL0 PASPL2 PASexp PASOPL PASPL0 PASPL2

10 0.0049 0.0069 0.0082 0.0111 0.0104 0.0103 0.0130 0.0212 0.0205

30 0.0045 0.0106 0.0149 0.0198 0.0190 0.0166 0.0300 0.0372 0.0369

50 0.0042 0.0157 0.0218 0.0274 0.0267 0.0434 0.0476 0.0513 0.0519

70 0.0053 0.0261 0.0303 0.0360 0.0355 0.0831 0.0669 0.0673 0.0690

Comparison of power law model predictions of PAS with mean experimental results (PASexp) at 1 and 2 min for constant shear stress

experiments with variable magnitudes. Models selected for comparison are the Giersiepen original power law (OPL), cumulative power law

(CPL) with no loading rate (PL0), and cumulative power law (CPL) with constants C1 „ C2 (PL2).
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shear stress waveforms result in a concave response
during dynamic loading (0–4 min, Fig. 2). This is
particularly apparent for the higher shear stresses or
exposure times in all 3 types of exposure examined.

While the results of the constant and dynamic shear
stress experiments were not directly compared, it is
interesting to note the mean DPAS for the most
dynamic waveform (6.25 Hz, Fig. 2b) is greater than
the 2 min, 70 dyne/cm2 constant shear stress exposure
(Fig. 3b), even though the SA for the former is 33% of
the latter waveform. The mean sensitization PAR
values for the dynamic (Fig. 2c) and constant (Fig. 3c)
shear stress waveforms are similar, despite the 1:3 ratio
in SA. Thus, frequency, and shear loading rate by
extension, has a significant effect on platelet activation
and subsequent sensitization, confirming previous
observations that secondary flow effects, which include
acceleration and deceleration, may be more damaging

than constant shear stress effects.26 These observations
suggest that while SA has been successfully applied in
experimental18 and numerical6,12,33 approaches, it is
more relevant for constant shear stress exposures.
Therefore, researchers using SA in computational fluid
dynamics (CFD) simulations as a benchmark of
thrombogenic performance of blood-recirculating de-
vices may need to additionally account for flow
acceleration and deceleration that platelets encounter.

Initial platelet damage models were correlated with
experimental measurements of platelet lysis but only at
the end of the experiments.14 This Giersiepen formu-
lation (OPL) fit constant shear stress platelet activation
experiments well and yielded lower LSE when com-
pared with other power law models (Fig. 5, Table 3a).
Our results show a lower C1 and a, and higher b than
the original OPL constants of C = 3.31 9 1026,
a = 3.075, and b = 0.77 obtained for platelet lysis.14

FIGURE 7. Cumulative power law (CPL) model fits for constant and dynamic shear stress experiments (constants in Table 3a–c).
Variable magnitude and duration constant shear stress, and dynamic shear stress experiments were fit using the CPL model
including the loading rate term and C1 „ C2. The fits use constants optimized for (a) constant shear stress results only,
(b) dynamic shear stress results only, and (c) combined constant and dynamic shear stress results.
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In addition to our constants being optimized for
platelet activation, differences between these two sets
of constants may be due to Giersiepen et al. using
shear stresses 2 orders of magnitude higher and expo-
sures times 1–2 orders of magnitude lower than our
experimental conditions. However, this model cannot
be used for dynamic waveforms with variable condi-
tions, such as those found in blood-recirculating
devices. We expanded this basic formulation following
the approach of several recent studies16,17,25 to predict
the PAS value due to cumulative stress over time for
dynamic, time-dependent, stress loading waveforms,
while incorporating the effect of the shear loading rate.
The resulting models were integral functions of time
and dynamic shear stress rather than the original
algebraic formulation based on constant shear stress
exposure.14 Furthermore, these models were optimized
with experimental PAS results obtained at intermedi-
ate time points to obtain a more robust fit.

In the first use of the MPL model for platelet acti-
vation,25 it was observed that fits for square waveforms
yielded lower root-mean-square errors than for trian-
gular waveforms.25 This indicates that earlier power
law models may predict platelet activation or damage
levels with greater accuracy for constant, rather than
dynamic, shear stress conditions. In the present study,
optimizing these models with both constant and
dynamic shear stress conditions confirm this observa-
tion: power law-based models (Figs. 6b–6c) and the
modified linear model (Fig. 6a) without consideration
of the loading rate term _s yields a better fit for the
constant shear stress conditions (Table 3). These
models account for the acceleration and deceleration
preceding and succeeding the high shear stress phase,
and the loading rate term does not become trivial.
Furthermore, incorporation of a loading rate term that
accounts for acceleration and deceleration of flow in
the dynamic shear stress waveforms (Fig. 6, right col-
umn) yields a more accurate reflection of the different
activation rates observed experimentally (Fig. 2a),
since the original models only consider the impact of
exposure to constant shear stress present from the
beginning to the end of experiments and do not dif-
ferentiate between the different loading frequencies
(Fig. 6, center).

Inclusion of shear loading rate terms yielded model
constants that are different from prior models derived
for constant shear stress conditions. The CPL model
optimized for both constant and dynamic shear stress
conditions yields C1 which was higher, and a and b
which were lower, than the Giersiepen constants
(Table 3). The constants for the original MPL model
for platelet activation prediction were: C = 1025,
a = 0.6256, and b = 1.3198, where a and b correspond
to b and a, respectively, in the original model.25 In

comparison, the MPL model with a loading rate term
yields constants C and b that were lower and a that
was higher than the original MPL constants (Table 3).
Unlike the CPL, the MPL modeled the concave PAS
response of the dynamic waveforms (Fig. 6, right) with
a convex fit. While this convex behavior is more
appropriate for the constant shear stress waveforms
(Fig. 6, left), the MPL largely under predicted PAS for
the earlier time points for the lower shear stresses and
exposure times. These factors, combined with error
accumulation over 32 and 20 unique observation time
points for the constant dynamic waveforms, respec-
tively, may explain why the MPL model yields the
highest LSE (Table 3). For dynamic shear stress
waveforms, the CPL model accounting for loading rate
and with C1 „ C2 yields the lowest LSE between
predicted and experimental PAS, and reflects the
experimental response of PAS over time (Fig. 6b). In
addition, the reduction in LSE associated with the
different weights on the constants preceding the con-
stant shear stress and shear loading terms (C1 and C2,
respectively) indicate that these models are improved
when separately accounting for transient effects such
as flow acceleration and deceleration. It is expected
that C2 is several magnitudes smaller than C1, as
observed, since the shear loading term includes the
time t at which the shear stress is computed. Incor-
porating the condition that C1 „ C2 also ensures that
a and b for the CPL model with loading rate for the
dynamic and combined conditions (Table 3) do not
approach 0, which would imply that the effect of shear
stress or time is negligible. This issue can also be re-
solved by using global nonlinear least squares (NLS)
optimization techniques, such as the genetic algorithm
(GA) method,24 over local NLS minimization
approaches, such as the Levenberg–Marquardt,21,22

although the latter is less computationally expensive.
The strengths of these 2 approaches can also be har-
nessed in tandem to provide both a global solution
space and fast convergence to optimized parameters in
the local domain.13

In adding a loading rate term, it was necessary to
take the absolute value of the change in shear stress,
dsðtÞ, to avoid violating the principle of causality.17

While several researchers examined the effect of load-
ing rate on platelet activation,26,38 the directional ef-
fects of stress change are not well understood and the
effect of fluid acceleration and deceleration have not
been directly compared. In our modeling approach, we
assumed that the platelet response to either accelera-
tion or deceleration is identical, as our experiments are
unable to separately examine these behaviors.

These discretized power law models are hindered by
the observation that application of these models to
different types of shear stress conditions (i.e., constant
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or dynamic) results in different sets of constants
(Fig. 7). These issues need to be addressed with regards
to prediction of platelet activation in response to
potentially thousands of shear stress trajectories
extracted from CFD simulations of blood-recirculating
devices. Utilizing a universal set of constants will not
only lower the computational expense of such simu-
lations, and researchers will not have to subjectively
determine what constitutes a ‘‘constant’’ or ‘‘dynamic’’
shear stress condition.

In addition to the requirement of different sets of
constants for the type of shear stress exposure, the
CPL model16 is prone to accumulation of error
resulting from the utilization of time steps in discrete
form due to the use of powers on time (Appendix). The
mechanical dose function D in the MPL model was
redefined to remove the power on time, with the
specification that the model was appropriate for con-
stant shear stress conditions.17 However, the precision
of this model and its subsequent adaptation for
PAS23,25 is still dependent on the discretization of the
time intervals (Appendix). Other researchers have
attempted to tackle the effect arising from the non-
linear dependence on exposure time by introducing
‘‘virtual time points’’ that are force-fitted back into the
model,15 but the resulting algebraic formulation is
cumbersome. The accuracy of these models may be
improved by using higher-order methods of approxi-
mation for integral functions (i.e., trapezoidal rule, as
utilized in this study, Simpson’s rule, and finite dif-
ference methods), reducing the discrete time step size in
the models, and increasing the number of temporal
experimental data points, although the latter is limited
by time required for sampling and performing the PAS
assay. However, the errors arising from time-depen-
dent discretization of these power law models have yet
to be addressed.

The expanded platelet activation models presented
herein provide improved descriptive capabilities as
compared to prior platelet activation models8,17,25 by
introducing shear loading rate terms that account for
the dynamic nature of shear stress waveforms, such as
those found in blood-recirculating devices.5 However,
these models have yet to incorporate sensitization,
where platelets continue to activate in response to high
shear stress exposure even in subsequent low shear
stress regions.29 A robust shear-induced platelet acti-
vation prediction tool will be of great benefit to device
optimization techniques, such as our Device Thromb-
ogenicity Emulator (DTE) methodology,35 which
combines highly resolved CFD simulations of blood
flows in devices, experimental emulation of these con-
ditions, and measurement of the resultant platelet
activation in the HSD to map device-specific thromb-
ogenicity footprints.

Our analysis indicates that a paradigm shift is
required in the development of models that eliminate
errors arising from discretization of the power law and
allows universal prediction of platelet response to
varying shear conditions. Our group is concurrently
developing ordinary differential equation-based mod-
els that may better address the dynamic stress loading
conditions encountered in blood-recirculating devices.
Further studies are needed to expand the robustness
and range of these models to include device-specific
conditions.
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APPENDIX

Derivation of the Cumulative Power Law Model (CPL)
with Loading Rate

We wish to derive a power-law formulation that
includes a shear loading term, _s, that accounts for the
change in shear stress as opposed to assuming the
shear stress is applied in a stepwise manner. The fol-
lowing approach utilizes the derivation method for a
prior blood damage model.16 We start with the simple
equation that accounts for shear stress and time (Eq.
(A1)):

PASðsconst; tÞ ¼ Csatbexp ðA1Þ

This is the simple extrapolation of the Giersiepen
expression for platelet damage to predict the instan-
taneous value of the platelet activation state (PAS) at a
given time point (‘‘original power law—OPL’’). For
the dynamic case where shear stress is a function of
time, s ¼ sðtÞ, we consider the integral form of the
quantities s and t. We first differentiate Eq. (A1) to
obtain the loading rate term, yielding:

d

dt
CsðtÞatb
� �

¼ CbsðtÞatb�1 þ CasðtÞa�1tb dsðtÞ
dt

ðA2Þ

The final termdsðtÞ
dt is the shear loading rate term. We

substitute this into Eq. (A1), and then integrate to
obtain the form presented in Eq. (A2):
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Zttotal

t0

d

dt
CsðtÞatb
� �

dt ¼
Zttotal

t0

CbsðtÞatb�1 þ CasðtÞa�1tb dsðtÞ
dt

� �
dt

ðA3Þ

Therefore, taking the integral yields the following
without loss of generality:

PASðsðtÞ; tÞ ttotal
t0

�� ¼CsðtÞatb ttotal
t0

��

¼C
Zttotal

t0

bsðtÞatb�1dtþ C

�
Zttotal

t0

asðtÞa�1tb dsðtÞ
dt

dtþ C0 ðA4Þ

The constant of integration, C0, is defined as the
non-zero initial platelet activation state at t = 0, or
PAS(t0). The absolute value of dsðtÞ is taken to avoid
violating the principle of causality. The cumulative
power law PAS model (CPL) with loading rate then
becomes:

PASCPLðsðtÞ; tÞ ttotal
t0

�� ¼ C1

Zttotal

t0

bsðtÞatb�1dt

þC2

Zttotal

t0

asðtÞa�1tb dsðtÞj j
dt

dtþ PASðt0Þ ðA5Þ

The constants C1 and C2 represent C for the con-
stant and dynamic shear stress parts of the model,
respectively. For constant shear stress conditions,
where _s = 0, Eq. (A5) can be rewritten:

PASCPLðsðtÞ; tÞ ttotal
t0

�� ¼ C1

Zttotal

t0

bsðtÞatb�1dtþ PASðt0Þ

ðA6Þ

This is the original CPL model16 adapted to PAS.
For utilization in a computational tool, such as
MATLAB, Eq. (A5) is discretized:

PASCPLðs; tÞ ¼ C1b
Xn
i¼1

tb�1i sa
i Dt

þ C2a
Xn
i¼1

sa�1
i tbi

Dsij j
Dt

Dt þ PASðt0Þ

Rewriting Dsi, we get Eq. (A7):

PASCPLðs; tÞ ¼ C1b
Xn
i¼1

tb�1i sa
i Dtþ C2a

Xn
i¼1

sa�1
i tbi si � si�1j j þ PASðt0Þ ðA7)

Similarly, Eq. (A6) is discretized:

PASCPLðs; tÞ ¼ C1b
Xn
i¼1

tb�1i sa
i Dtþ PASðt0Þ ðA8Þ

Derivation of the Modified Cumulative Power Law
(MPL) Model with Loading Rate

As in the previous section, we want to derive a
power-law formulation that includes a shear loading
term, _s, that accounts for the change in shear stress as
opposed to assuming the shear stress is applied in a
stepwise manner. However, we want to truly account
for loading history, where two groups of platelets
exposed to different mechanical loadings are expected
to show different responses in a subsequent loading,
even if the latter is the same for both groups. That
means that the PAS at each loading stage is dependent
on the PAS of a previous loading scheme. Equations
(A5) and (A6) do not satisfy these requirements, since
only the initial activation, PAS(t0), is considered. Thus,
we need to follow the Grigioni approach,17 with
adaptation for PAS.25 This approach is different from
that utilized for the earlier CPL formulation16 in that
the latter does not consider the loading history of the
platelet (i.e., a mechanical dose function). We start
with the simple equation that accounts for shear stress
and time (Eq. (A9)):

PASðsconst; tÞ ¼ Csatb ðA9Þ

Grouping the independent variables s and t on one
side, we get:

PASðs; tÞ
C

¼ satb ðA10Þ

Here, we define a mechanical dose function, D:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PASðs; tÞ

C

b

r
¼ sa=bt ðA11Þ

Thus, the function for PAS can be rewritten as:

PASðs; tÞ ¼ C �Db ðA12Þ

Applying the chain rule, we get the form:

dD

dt
¼ @D
@t
þ @D
@s
� ds
dt
¼ sa=b þ a

b
t � sða=bÞ�1 _s ðA13Þ

Grigioni et al. neglected _s, claiming that it violates
the principle of causality and causes a reduction in
damage if shear stress is decreasing.17 We diverge from
this approach by accounting for the shear loading rate
and taking its absolute value so that its effect is always
additive. In partial differential form, the above equa-
tion becomes:
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dD ¼ sa=bdtþ a
b
t � sða=bÞ�1ds ðA14Þ

Integrating with respect to time and shear stress, the
above equation becomes:

DðtÞ �Dðt0Þ ¼
Z/

t0

sð/Þa=bd/þ a
b

Zsð/Þ

sðt0Þ

/ � sð/Þða=bÞ�1ds

ðA15Þ

We must rewrite D(t0) in terms of the initial platelet
activation state, PAS(t0):

PASðt0Þ ¼ C �Dðt0Þb

Dðt0Þ ¼
PASðt0Þ

C

� �1=b ðA16Þ

Taking the derivative of the PAS function in terms
of the dose D, we obtain:

dðPASÞ ¼ dðC �DbÞ ¼ CdðDbÞ ¼ CbDb�1dD ðA17Þ

Putting this equation in integral form yields:

dðPASÞ ¼ Cb
Z/

t0

sðnÞa=bdnþ a
b

ZCð/Þ

Cðt0Þ

n � sðnÞða=bÞ�1dsþDðt0Þ

0
B@

1
CA

b�1

dD

ðA18Þ

The inner integrals represent the total mechanical
stress loading doseD divided into constant and dynamic
shear stress terms and applied over a time n, where dn is
the interval over which an elemental dose of shear stress
is applied and C is the shear stress at timen. The outer
integral is the summation of these doses over the dura-
tion of the experiment, with/ and d/ as the observation
time points and the interval between them, respectively.
Substituting Eq. (A14) for dD yields:

dðPASÞ ¼ Cb
Z/

t0

sðnÞa=bdnþ a
b

Zsð/Þ

sðt0Þ

n � sðnÞða=bÞ�1dsþDðt0Þ

0
B@

1
CA

b�1

� sa=bd/þ a
b
t � sða=bÞ�1ds

� �

ðA19Þ

Expressing the platelet activation state (PAS) as the
integral sum of the infinitesimal contributions repre-
sented by the above equation yields:

PAS ¼ Cb
Zttotal

t0

Z/

t0

sðnÞa=bdnþ a
b

Zsð/Þ

sðt0Þ

n � sðnÞða=bÞ�1dsþDðt0Þ

0
B@

1
CA

b�1

sa=bd/

2
64

þ
ZsðttotalÞ

sðt0Þ

a
b

Z/

t0

sðnÞa=bdnþ a
b

Zsð/Þ

sðt0Þ

n � sðnÞ
ða=bÞ�1

dsþDðt0Þ

0
B@

1
CA

b�1

t � sða=bÞ�1ds

3
75

ðA20Þ

PAS can be numerically computed by adding the
mechanical doses acting on a platelet trajectory. The
discrete elemental dose DðPASÞi is sustained by a
platelet in the i-th interval, from the instant ti�1 to ti,
and is expressed as:

DðPASÞi ¼ Cb
Xi
j¼1

sðtjÞa=bDtj þ
a
b

Xi
j¼1

tj � sðtjÞða=bÞ�1 Dsj
�� ��þDðt0Þ

 !b�1

sðtiÞa=bDti

2
4

þ a
b

Xi
j¼1

sðtjÞa=bDtj þ
a
b

Xi
j¼1

tj � sðtjÞða=bÞ�1 Dsj
�� ��þDðt0Þ

 !b�1

ti � sðtiÞða=bÞ�1 Dsij j

3
5

ðA21Þ

The time period Dti refers to the duration between
experimental observations. Unlike previous deriva-
tions of this formula, we no longer assume the shear
stress is constant in this interval, as we now have a
shear loading term. The starting observation time, t0, is
conventionally assumed to be equal to 0. The
mechanical dose, due to dynamic behavior, is broken
into multiple sub-intervals (referred to as the j-th
interval in the above equation). Each sub-interval can
be a constant shear stress dose if applied as such, or an
approximation, where the dose is approximated as a
constant shear stress part and a linearly ramped part,
which includes the change in shear stress Dsj. Note that
for the latter, the absolute value is taken in order not to
violate the principle of causality.17 Thus, for each i-th
interval, multiple j-th intervals may be present. From
the integral form for the PAS function (Eq. (A20)), we
derive the discrete form:

PAS

¼ Cb
XN
i¼1

Xi
j¼1

sðtjÞa=bDtj þ
a
b

Xi
j¼1

tj � sðtjÞða=bÞ�1 Dsj
�� ��þDðt0Þ

 !b�1

sðtiÞa=bDti

2
4

þ a
b

Xi
j¼1

sðtjÞa=bDtj þ
a
b

Xi
j¼1

tj � sðtjÞa=b�1 Dsj
�� ��þDðt0Þ

 !b�1

ti � sðtiÞða=bÞ�1 Dsij j

3
5

ðA22Þ

This represents the sum of PAS values over N
intervals. In our experiments, PAS measurements are
only taken during constant shear stress phases.
Therefore, we can neglect the second part of the above
equation. In addition, the term for D(t0) can also be
substituted, yielding the discrete form of the modi-
fied cumulative power law model (MPL) with loading
rate:

PASMPLðs; tÞ ¼ Cb
XN
i¼1

 Xi
j¼1

sðtjÞa=bDtj

þ a
b

Xi
j¼1

tj � sðtjÞða=bÞ�1 Dsj
�� ��þ PASðt0Þ

C

� �1=b
!b�1

sðtiÞa=bDti

ðA23Þ
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Making a similar simplification for Eq. (A20)
yields:

PASMPLðs; tÞ ¼Cb

"Zttotal

t0

 Z/

t0

sðnÞa=bdn

þa
b

Zsð/Þ

sðt0Þ

n � sðnÞða=bÞ�1dsþ PASðt0Þ
C

� �1=b
!b�1

sa=bd/

#

ðA24Þ

For constant shear stress conditions, where _s = 0,
Eqs. (A23) and (A24) can be rewritten as Eqs.
(A25) and (A26), respectively. To allow compari-
son with other models in this study, we set C = C1.
These 2 equations are the original MPL model for
PAS:

PASMPLðs; tÞ

¼ C1b
XN
i¼1

Xi
j¼1

sðtjÞa=bDtj þ
PASðt0Þ

C1

� �1=b
 !b�1

sðtiÞa=bDti

ðA25Þ

PASMPLðs;tÞ

¼C1b
Zttotal

t0

Z/

t0

sðnÞa=bdnþ PASðt0Þ
C1

� �1=b
0
@

1
A

b�1

sa=bd/

3
75

2
64

ðA26Þ

Equation (A24) provides a model that accounts
for previous shear stress history and platelet activa-
tion, as well as the effect of the shear loading
rate, the latter which was not addressed in prior
models.8,25,27

Errors in Power Law Models Due to Discretization

The CPL model (Eq. (A8))16 is prone to accumu-
lation of error resulting from the utilization of time
steps in discrete form due to the use of powers on time.
Consider the initial condition of PAS(t0) = PAS0 at
t ¼ t0, after which platelets are subjected to a constant
shear stress, including at two subsequent times sepa-
rated by Dt. These time points are given at t1 ¼ t0 þ Dt
and t2 ¼ t0 þ 2Dt. Substituting into the OPL (Eq.
(A1)) and rewriting yields:

PAS1 ¼ PASðt1Þ ¼ PAS0 þ Csaðt1 � t0Þb

¼ PAS0 þ CsaDtb
ðA27Þ

PAS2 ¼ PASðt2Þ ¼ PAS0 þ Csaðt2 � t0Þb

¼ PAS0 þ Csað2DtÞb
ðA28Þ

Alternatively, PAS2 can be obtained by substituting
the time of exposure from t1 to t2 into Eq. (A1) and
adding PAS1:

PAS2 ¼ PAS1 þ Csaðt2 � t1Þb ¼ PAS0 þ 2CsaDtb

ðA29Þ

Equations (A28) and (A29) are not equivalent if
b „ 1, and therefore this form of the power law
model16 is inconsistent.

While the mechanical dose term was redefined in the
MPL17 to remove the power on time (Eq. (A11)), er-
rors due to the discretization of the time intervals Dti
and Dtj are still present. Consider the case where shear
stress, s, is constant over the time period t0 to t2. Thus,
Dt ¼ t2 � t1 ¼ t1 � t0 and 2Dt ¼ t2 � t0, as described
earlier. We set Dsj

�� �� ¼ 0 in Eq. (7), since the loading is
instantaneous. For simplicity, we consider a single i-th
interval, from t0 to t2, and set the i-th and j-th intervals
equivalent in size. Substituting these values into Eq.
(7), we obtain:

PAS0�2 ¼
X1
i¼1

C1b
X1
j¼1

sj
� �a=b

Dtj þ
PASðt0Þ

C1

� �1=b
" #b�1

sið Þa=bDti

¼ 2C1b sð Þa=bDt 2 sð Þa=bDtþ PASðt0Þ
C1

� �1=b
" #b�1

ðA30Þ

Alternatively, we consider 2 i-th and j-th intervals
with the same sizes, from t0 to t1 and from t1 to t2.
Substituting into Eq. (A21), and setting
Dsij j ¼ Dsj

�� �� ¼ 0, we obtain:

DðPASÞ0�1 ¼ C1b
X1
j¼1

sj
� �a=b

Dtj þ
PASðt0Þ

C1

� �1=b
" #b�1

sið Þa=bDti

¼ C1b sð Þa=bDtþ PASðt0Þ
C1

� �1=b
" #b�1

sð Þa=bDt

ðA31Þ

DðPASÞ1�2 ¼ C1b
X2
j¼1

sj
� �a=b

Dtj þ
PASðt0Þ

C1

� �1=b
" #a�1

sið Þa=bDti

¼ C1b sð Þa=bDtþ sð Þa=bDtþ PASðt0Þ
C1

� �1=b
" #a�1

sð Þa=bDt

ðA32Þ
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Adding Eqs. (A31) and (A32), we obtain:

PAS0�2

¼ DðPASÞ0�1 þ DðPASÞ1�2

¼ C1b sð Þa=bDt sð Þa=bDtþ PASðt0Þ
C1

� �1=b
" #b�1

0
@

þ 2 sð Þa=bDtþ PASðt0Þ
C1

� �1=b
" #b�1

1
A ðA33)

We see Eqs. (A30) and (A33) are not equivalent
since the first bracket of Eq. (A33) is missing an
additional sð Þa=bDt, and therefore, accuracy of the
MPL model is still heavily dependent on discretization
of time intervals.
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