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Abstract—Cough is the most common symptom of several
respiratory diseases. It is a defense mechanism of the body to
clear the respiratory tract from foreign materials inhaled
accidentally or produced internally by infections. The iden-
tification of wet and dry cough is an important clinical
finding, aiding in the differential diagnosis especially in
children. Wet coughs are more likely to be associated with
lower respiratory track bacterial infections. At present during
a typical consultation session, the wet/dry decision is based
on the subjective judgment of a physician. It is not available
for the non-trained person, long term monitoring or in the
assessment of treatment efficacy. In this paper we address
these issues and develop an automated technology to classify
cough into ‘wet’ and ‘dry’ categories. We propose novel
features and a Logistic regression model (LRM) for the
classification of coughs into wet/dry classes. The perfor-
mance of the method was evaluated on a clinical database of
pediatric coughs (C = 536) recorded using a bed-side non-
contact microphone from N = 78 patients. Results of the
automatic classification were compared against two expert
human scorers. The sensitivity and specificity of the LRM in
picking wet coughs were between 87 and 88% with 95%
confidence interval on training/validation dataset (310 cough
events from 60 patients) and 84 and 76% respectively on
prospective dataset (117 cough events from 18 patients). The
kappa agreement with two expert human scorers on pro-
spective dataset was 0.51. These results indicate the potential
of the method as a useful clinical tool for cough monitoring,
especially at home settings.

Keywords—Childhood cough, Cough quality, Dry and wet

cough, Automated cough assessment, Pneumonia.

INTRODUCTION

Cough is a common and one of the earliest symp-
toms in a range of respiratory diseases such as bron-
chitis, pneumonia, asthma and pertussis. It is a natural
protective mechanism that helps clearing the secretions
from the respiratory tract and prevents entering of
noxious particles into the respiratory system. It is
generally defined as the sudden expulsion of air
accompanied with a ‘‘typical sound.’’10 The prevalence
of cough in communities in Europe and USA varies
between 9–33%6 and likely higher in the developing
world. Even though cough is common in respiratory
diseases and considered an importance clinical symp-
tom, there is no objective gold standard to assess
cough quality. Subjective assessment of dry and wet-
ness of the cough sounds is the reference method used
by clinicians around the globe.3,19 Cough carries vital
information on the state of the airway,17 but the field
of cough analysis is in its infancy.

Based on the perception of presence of sounds
related to secretions in the airways, cough is classified
into the two categories ‘wet cough’ and ‘dry cough.’
Depending on its acoustic quality cough is character-
ized as wet when the sounds carry features indicative of
mucus; in the absence of perceivable wetness they are
called dry. This is essentially a subjective process.
Medically there are different reasons for the wet and
dry coughs and their identification aids in the differ-
ential diagnosis of diseases such as bronchiectasis,
asthma, chronic bronchitis and bronchiolitis.3 Often,
the dry-wet classification is used in epidemiological
studies21,22 and clinical research.3,26 In children, wet
cough is generally associated with lower respiratory
tract infections.26 Diseases such as asthma and
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post-infections can cause dry cough. In some condi-
tions the presence of dry cough as perceived by a cli-
nician indicates early stage of the disease, which may
later become wet cough with the progression of the
disease leading to more secretions in airway.

In the current clinical practice cough quality is
generally evaluated by asking the patients or patients’
caregivers during a clinical assessment. In cases when
medical condition of patient allow, clinicians assess
cough quality by listening while patient cough volun-
tarily. However while doing so significant temporal
information about the frequency of coughs and vari-
ation in wetness of the cough is lost, which may be
useful both for making a differential diagnosis and
assessing the efficacy of the treatment. In addition to
this, the manual evaluation of wetness of a cough is a
subjective process and the outcome depends on the
experience of clinicians.9,19 The process also suffers
from the difficulties for humans to discern, via coughs,
low-levels of mucus in airways; even trained clinicians
underscore wet coughs as confirmed by bronchoscopic
findings.3

Researchers have rarely attempted to develop tech-
nology for the automated, objective classification of
cough into dry-wet categories. To the best of our
knowledge, only two prior works exist in this area.5,14

Murata et al.14 argued that cough sound frequencies
can be used to discriminate between wet and dry
coughs. Chatrzarrin et al.5 proposed peaks of the
energy envelop and spectral features of the cough
sounds for the same purpose. These studies opened up
a new branch of research in respiratory sound analysis.
However they have been limited to a descriptive study
of some characteristic features of coughs. No definitive
classification algorithm or results were presented for
wet/dry differentiation. The amount of data analyzed
was fairly limited, 30 cough samples from 10 subjects
(5 healthy and 5 bronchitis patients) in Murata et al.14

and a total of 16 coughs in Chatrzarrin et al.,5 making
the interpretation of the results difficult.

All existing work used cough sounds from adult
subjects only and techniques used duration, magnitude
and frequency features to characterize cough into dry/
wet categories. Cough in adults are different in many
ways; while wet cough is the term used in children, that
used in adult is productive cough as adults are able to
expectorate airway secretions. Further the same
amount of secretions in a large airway (i.e., in adults)
would biologically produce a different sound in a small
airway (i.e., in children). Further production of cough
sound is a complex physiological process involving
several anatomical structures in the lower and upper
respiratory system. Its acoustic properties vary signif-
icantly17 with the individual differences, age, gender
and also depends heavily on the state of the airways.10

In diseases cough sound characteristics may change,
making it necessary to develop robust methods to
identify dryness/wetness. Intensity and duration
dependent methods will not be sufficient to capture the
rich information hidden in cough sounds.

Cough can be a symptom of serious diseases such as
childhood pneumonia which kills over 1 million23

children in the world. The clinical community recog-
nizes the important of cough in assessing the health of
children. However, researchers have rarely attempted
to develop objective, automated cough analysis sys-
tems for children. In particular, no prior work exists in
the area of wet/dry classification. Cough assessment
technology developed for adults cannot be extrapo-
lated for children.2 There is an urgent need for devel-
oping automated objective cough assessment method
for children.

In this paper we addresses these issues and propose
an automated objective classification model to cate-
gorize cough sounds into wet and dry class. Method
uses 1st, 2nd and 3rd order statistical features (e.g.,
formant frequencies, mel-cepstrum, non-Gaussianity,
and bispectrum etc.) of the cough sounds. Model is
trained and tested on a comprehensive database of 536
coughs from 78 subjects (41 male, 37 female) with age
range of 1 month to 15 years. The subjects included in
the study have a range of respiratory illnesses such as
asthma, pneumonia, bronchitis and rhino-pharyngitis
etc.

MATERIALS AND METHODS

Figure 1 shows the block diagram of the automated
cough classification algorithm proposed in this paper.
It is divided into four stages, (A) data acquisition
process (B) creating a cough sound database and
classification into wet/dry classes by expert scorer (C)
designing of automatic classifier (D) testing of classifier
on prospective cough sound dataset. In section ‘‘Data
acquisition’’ to section ‘‘Testing of selected LRM <’’
we describe details of the method.

Data Acquisition

The clinical data acquisition environment for this
work is Respiratory Medicine Unit of the Sardjito
Hospital, Gadjah Mada University, Indonesia. Table 1
lists the inclusion and exclusion criteria of subjects. All
patients fulfilling the inclusion criteria were
approached. An informed consent was made using
form approved by the human ethics committees of
Gadjah Mada University and The University of
Queensland. Patients were recruited within the first
12 h of their admission. After the initial medical
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assessment sound recordings were made for next 4–6 h
in the natural environment of the respiratory ward.

Sound recordings were made using two systems,

(i) Computerized data acquisition system: A high
fidelity system with a professional quality pre-
amplifier and A/D converter unit (Model
Mobile-Pre USB, M-Audio, California, USA)
and a matched pair of low-noise microphones
having a hypercardiod beam pattern (Model
NT3, RODE, Sydney, Australia). Adobe
audition software version 2 was used to record
the sound data on to the laptop computer.

(ii) Portable recording system: A high-end, light-
weight portable, 2-AA battery powered audio
recorder (Olympus LS-11) with two precision
condenser microphones.

In both sound recording systems we used a sampling
rate of 44.1 kHz with a 16 bit resolution (CD-quality
recording). The nominal distance from the microphone
to the mouth of the patient was 50 cm, but could vary
from 40 to 70 cm due to patient movements. For each

patient, we also received the final diagnosis as well as
all the laboratory and clinical examination results.

Cough Sound Dataset and Classification into Wet
or Dry by Expert Human Scorers

Let N be the number of patients whose sound
recording is used in this paper and C be total number
of cough events from N patients. These C cough events
were manually segmented after screening though 6–8 h
of the sound data of each patient. There is no accepted
method for automatic marking of start and end of a
cough event. Manual marking is still considered the
gold standard. After careful listening start and end of
all cough events were manually marked.

We divided N patients with C cough events into two
datasets, (i) DS1 (model design dataset) and (ii) DS2
(prospective study dataset). The patients were divided
into DS1 and DS2 based on the order of presentation
to the respiratory clinic of the hospital. Patients in
datasets DS1 and DS2 were mutually exclusive.

(i) DS1—consisted of C1 cough events from N1
patients. Cough events from this dataset were
used to design the optimal model.

(ii) DS2—consisted of C2 cough events from N2
patients. Cough events from this dataset were
used to test the designed model. Cough events
from DS2 were blind to the process of model
design.

Two expert scorers having experience of 15–20
years in pediatric respiratory diseases then scored
cough events from two datasets into two classes, wet or

(A) Data acquisition

(B) Cough sound dataset and 
expert human scoring

DS2
Prospective 

dataset

DS1
Model design 

dataset

(C) Design optimal logistic-
regression-model (LRM)

Step 1
Compute Cough event Feature 

matrix

Step 2
Design LRM to select significant 
features. Re-design LRM using 

selected features. only.

Step 3
Select optimal LRM ℜ using k-

mean clustering algorithm

Manual segmentation of cough 
sounds from sound recording

Dry/Wet 
classification by 
expert scorers

Consensus  
Cough events 
on which two 
scorers agreed 

on class
Dry/Wet 

classification by 
expert scorers

(D) Testing of selected LRM

Compute Cough event Feature matrix and select 
significant features

Classify events into wet/dry using ℜ
and compare the performance with 

expert scorers

FIGURE 1. Block diagram for the proposed method for the wet/dry cough sound classification.

TABLE 1. Inclusion and exclusion criteria used in the study.

Inclusion criteria Exclusion criteria

Patients with symptoms

of chest infection: At least

2 of

Advanced disease where

recovery is not expected

e.g., terminal lung cancer

Cough

Sputum

Increased breathlessness Droplet precautions

Temperature >37.5� NIV required

Consent No Consent
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dry. Scorers were blinded to the subject’s history and
diagnosis. This manual classification is considered as
the reference standard against which results of auto-
matic classification are compared.

Design of Cough Sound Classifier

To design a system for automatic classification of
cough sounds we used cough events from DS1. Let
DS11 be the subset of DS1 containing those cough
events on which both scorers agreed on the class of
cough sounds. We had C11 cough events in DS11. Use
cough events in DS11 to design automatic classifier
model. This is a three step process.

[Step 1] Cough Event Feature Matrix Computation

In this step, feature vector containing ‘F’ mathe-
matical features is computed from each of C11 cough
events and a cough event feature matrix ‘MDS11’ of
size, C11 9 F was formed. To compute ‘F’ features
from a cough event use below steps.

(i) Let x denotes a discrete time sound signal from
a cough event.

(ii) Normalize x by dividing it by absolute maxi-
mum value.

(iii) Segment x into ‘n’ equal size non-overlapping
sub-segments. Let xi represents the ith sub-
segment of x, where i = 1, 2, 3,…, n.

(iv) Compute following features for each sub-
segment and form feature vector containing F
features: Bispectrum Score (BGS), Non-
gaussianity score (NGS), formant frequencies
(FF), Pitch (P), log energy (LogE), zero
crossing (ZCR), kurtosis (Kurt), and twelve
mel-frequency cepstral coefficients (MFCC).
Please see ‘‘Appendix 1’’ for a detailed
explanation of these features.

(v) Repeat steps (i)–(iii) for all C11 cough events
and form cough event feature matrix MDS11 of
size C11 9 F.

[Step 2] Automatic Classifier Design

In this paper we used a Logistic-regression model
(LRM) as the pattern classifier. LRM is a generalized
linear model, which uses several independent predic-
tors to estimate the probability of a categorical event
(dependent variable). In this work, the dependent
variable Y is assumed to be equal to ‘‘one’’ (Y = 1) for
wet cough and ‘‘zero’’ (Y = 0) for dry cough. A model
is derived using regression function to estimate the
probability Y = 1 (i.e., cough event belong to category

of ‘wet cough’) given the independent variables (i.e.,
F features) as follows:

Prob Y ¼ 1jf1;f2;f3;...fF
� �

¼ ez

ez þ 1
ð1Þ

z ¼ b0 þ b1f1 þ b2f2 þ � � � þ bnfF ð2Þ

In Eqs. (1) and (2) f1, f2,…fF are the elements of
feature vector (independent variables), b0 is called the
intercept and b1, b2 and so on are called the regression
coefficient of independent variables. To select the
optimal decision threshold k from Y (that the cough is
wet if Y is above k otherwise dry) we used the Receiver-
Operating Curve (ROC) analysis.

Use data in matrix MDS11 (C11 observations from F
independent variables) and adopt leave-1-out cross
validation (LOV) technique for LRM design. As the
name suggests, LOV technique involves using data
from all cough events except one to train the model
and one cough event to validate the model. This pro-
cess was systematically repeated C11 times such that
each cough event in DS11 was used as the validation
data once. This resulted in LC11 number of LRMs.

To evaluate the performance of the designed LC11, per-
formance measures such as Sensitivity, Specificity, Accu-
racy, Positive Predicted Value (PPV), Negative Predicted
Value (NPV), Cohen’s Kappa (K) statistic were computed.
Please see ‘‘Appendix 2’’ on how to interpret K values.

Design logistic regression model (LRM) for

(i) Feature Selection: Feature selection is a tech-
nique of selecting a sub-set of relevant features
for building a robust learning model. Theo-
retically, optimal feature selection requires
exhaustive search of all possible subsets of
features. However, to do so for large number
of features it will be computationally intensive
and impractical. Therefore we searched for
satisfactory set of features using p value. In
LRM design a p value is computed for each
feature and it indicates how significantly that
feature contributed in development of the
model. Important features have low p value.
We used this property of LRM to select a
reasonable combination of features (indepen-
dent variables with low p value) that facilitate
the classification, in the model during the
training phase. Compute mean p value for ‘F’
features over LC11 LRMs. Select the features
with mean p value less than pths. Let Fs be the
sub-set of selected features from F.

(ii) Robust LRM design Create a matrix: M¢DS11

of size C11 9 Fs from MDS11. Matrix M¢DS11

is a cough event feature matrix with only
selected features Fs from C11 cough events in
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DS11. Using M¢DS11 and adopting LOV,
retrain C11 LRMs.

[Step 3] Selecting a Good Model from LC11 LRMs

From LC11 LRMs we selected one model as the best,
using the k-mean clustering algorithm8 to test on
prospective study dataset DS2. In the k-mean cluster-
ing algorithm, target is to divide q data points in
d-dimensional space into k clusters, so that within the
cluster sum of squared distance from the centroid is
minimized.

Problem in our hand is to select a good model
from the LC11 models available to us. To do so we
divided LC11 models in d-dimensional space into
k = 2 clusters, i.e., high performance model cluster
and low-performance model cluster. We set space
dimension d equal to model parameters plus three
performance measures (sensitivity, specificity and
kappa). Then from the cluster of the high perfor-
mance models, we selected that model which had the
lowest mean square error value with respect to the
centroid. Let < represent the selected LRM and k< is
the corresponding probability decision threshold
(value determined using ROC curves such that the
classifier performance is maximized). Once < is
chosen, we fix all the parameters of the model and use
it for classifying cough sounds in the prospective
dataset DS2.

Testing of Selected LRM <

Following the procedure described in section
‘‘Design of cough sound classifier’’ [Step 1] and
using the cough events from dataset DS2, compute
the cough event feature matrix MDS2 of size C2 9 F.
C2 is total cough events in DS2 and ‘F’ is feature
vector. Form M¢DS2 from MDS2 by selecting only
robust Fs features. Use selected LRM < to classify
data in M¢DS2 into classes wet or dry. Decision
process of wet/dry class from the output of < is as
follows:

Let the output of the < to a given cough input is
Y<. Then, the cough is classified as wet if Y< ‡ k<
and dry otherwise.

Compare the results of automatic classification
by < with that of expert scorers and compute
the performance measures described in section
‘‘Design of cough sound classifier’’ [Step 2]. All
the algorithms were developed using software pro-
gramming language MATLAB version 7.14.0.739
(R2012a).

RESULTS

Cough Sound Datasets and Agreement Between
Expert Scorers

In this paper we used sound recording data from
N = 78 patients (41 were male and 37 were female).
The mean age of the subjects was 2 years and
11 month. The age range of the subjects varied from
1 month to 15 years and having diseases such as
asthma, pneumonia, bronchitis and rhinopharyngitis.
Table 2 gives the demographic and clinical details of
the patients.

From N = 78 patients a total of C = 536 cough
events were analyzed. On the average 7 cough events
per patients were analyzed (minimum = 2 and maxi-
mum = 13). Dataset DS1 has C1 = 385 cough events
from N1 = 60 patients and dataset DS2 has C2 = 151
cough events from N2 = 18 patients.

Table 3 shows the contingency table between two
scorers in classifying cough sounds from DS1 and DS2,
into two classes wet and dry. In DS1 out of 385 cough
events, scorers agreed C11 = 310 times (80.5%) on the
classes of cough events which were used to form subset
DS11. In dataset DS2 they agreed 117 times out of 151
(77.5%). The kappa agreement between Scorer 1 and
Scorer 2 is 0.55 for DS1 and 0.54 for DS2. Of the 310
cough events in DS11, 82 belonged to wet class and 228
belonged to dry class. The DS11 cough events were
then used to design LRM models described in section
‘‘Design of cough sound classifier’’.

Cough Sound Characteristics in Our Databases

The mean duration of dry cough in DS11 was
260 ± 77 ms (computed using 228 dry coughs) and
that of wet cough was 238 ± 54 ms (computed using
82 wet coughs). Figure 2 shows a typical example of
dry cough waveform and wet cough waveform from
two patients, ids #35 & #38 respectively. The cough
sound waveforms were generally clean with high
signal-to-noise-ratio (SNR). The mean signal to noise
ratio for the DS11 was 15.2 ± 5.5 db (maxi-
mum = 28.65 db and minimum = 2.9 db) and that for
DS2 was 18.6 ± 4.5 db (maximum = 27.8 db and
minimum = 11.1 db). Figure 3 shows the histogram of
SNR for the cough sound in DS11 and DS2.

Start and end of each coughs were carefully marked
after listening to cough sounds as shown in the Fig. 2.
All the markings were done by a single person, 1st
author of the paper. Following the method given in
section ‘‘Design of cough sound classifier’’ [Step 1] we
computed feature matrix MDS11. We used n = 3 to
divide each cough segment into 3 sub-segments. In the
literature, clinicians and scientist alike have described
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cough sounds consisting of 3 phases, (i) initial opening
burst, (ii) followed by noisy airflow and last Eq. (3)
glottal closure.24,25 It has been shown that these phases
carry different significant information specific to
quality of cough, wet or dry. On this basis we divided

each cough segments into 3 sub-segments. Setting
n = 3 led to a feature vector F of length 66 consisting
of following features (n 9 12 MFCC) + (n 9 4
FF) + (n 9 [BGS, NGS, P, LogE, Zcr, Kurt]). From
C11 = 310 cough events and F = 66 features, cough
event feature matrix MDS11 was created.

Automatic Classification using LRM

Feature Matrix and LRM Performance During
Training Stage

Following LOV technique, LC11 = 310 LRMs were
designed. The mean training sensitivity and specificity
for the 310 LRMs were 92 ± 1% and 93 ± 0.5%
respectively. Validation sensitivity and specificity for
these models were 62 and 84% respectively. Table 4(A)
gives the detailed classification results when all the
F = 66 features were used to train the LRMs.

Following the process described in section ‘‘Design
of cough sound classifier’’ [Step 2] and using
pths = 0.06, we selected Fs = 31 features. Figure 4
shows the mean ‘p value’ associated with F = 66
features computed over C11 = 310 LRMs. All the
features which have mean ‘p value’ less than
pths = 0.06 were selected. The selected features were 1
each from Bispectrum score, kurtosis, and number of
zero-crossing, 2 each from non-gaussianity score and
log-energy, 5 from formant frequencies, and 19 from
mel-frequency cepstral coefficients. Table 5 gives
details of the feature selected for designing the final
LRM. According to this table MFCC based features

TABLE 2. Demographic and clinical details of the subjects.

Gender Male 41

Female 37

Age Neonatal 2

<12 months 31

<60 months 29

‡60 months 16

Diagnosis Pneumonia 34

Pneumonia + other 21

Bronchitis 8

Asthma 3

Rhinopharyngitis 5

Asthma + Rhinopharyngitis 1

Others 6

TABLE 3. Contingency table between human scorers for
classifying coughs into wet/Y.

Dataset DS11 Dataset DS2

Scorer 2

Scorer 1

Scorer 2

Scorer 1

WET DRY WET DRY

WET 82 55 60% WET 47 23 67%

DRY 20 228 92% DRY 11 70 86.4%

80.4% 80.6% 310 81% 75.3% 117

K = 0.56 and % agreement = 80.5% for DS1 and K = 0.54 and %

agreement = 77.5 for DS2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.4

0

0.4
Dry Cough

Time in seconds

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-0.4

0

0.4
Wet Cough

Time in seconds

Start

Start End

End

n=3

n=3

FIGURE 2. Typical example of dry cough waveform and wet cough waveform from two patients, ids #35 & #38 respectively in DS1.
Start and end of each coughs were manually marked after listening by a single person, 1st author of the paper. We used n 5 3 to
divide each cough segment into 3 sub-segments.
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were most dominant. Out of 31 selected features, 19
features were contributed from different MFCC com-
ponents. After MFCC formant frequencies made sec-
ond most dominant contribution with 5 features.
Moreover except for 4th formant frequency and pitch
based features, which were completely omitted, all other
features contributed with features from at-least one sub-
segment towards building of final LRM model.

When only selected features Fs were used to re-train
LRMs, mean training sensitivity and specificity were
recorded as 87 ± 1% and 88 ± 0.5% respectively and
validation sensitivity and specificity were 81 and 83%.
The validation kappa agreement between the LRM
and scorers was 0.46 when all the features were used to
train LRM and it increased to 0.58 when only selected

features were used. Table 4(B) gives the detailed
training and validation results after feature selection.

Selection of LRM (<)
From LC11 = 310 designed LRMs using data from

DS11, optimal model < was selected using k-mean
clustering method as discussed in section ‘‘Design of
cough sound classifier’’ [Step 3]. Models were clustered
into two groups, high performance model and low
performance models based on model parameters and
performance measures. Of 310 models, 202 were clus-
tered in high performance model group and 108 into
low performance model group. LRM model #26 has
the lowest mean square error value with respect to
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FIGURE 3. Histogram of signal-to-noise-ratio (SNR) for the cough sound in DS11 and DS2. The mean SNR for the cough sounds
in DS11 was 15.2 6 5.5 db (maximum 5 28.65 db and minimum 5 2.9 db) and that for DS2 was 18.6 6 4.5 db (maximum 5 27.8 db
and minimum 5 11.1 db).
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FIGURE 4. Mean ‘p value’ and standard deviation as error bar, associated with F 5 66 features computed over 310 trained LRMs.
‘p value’ indicates associated significance level of a feature in developing the model.
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centroid of the high performance models. This model
< was chosen and all its parameters were fixed for
future use. < was tested on prospective dataset DS2.

Performance of < on Prospective Dataset DS2

Table 6 gives the classification results of < against
expert scorers. When Scorer 1, wet/dry classification
was used as reference standard, < has the sensitivity of
77.5%, specificity of 76% and kappa agreement of
0.47. For the Scorer 2, results were sensitivity 75%,
specificity 64% and kappa 0.31. When model < was
tested on only those events, in which Scorer 1 and
Scorer 2 agreed on classification (117 cough events),
sensitivity jumped to 84% and kappa value to 0.51.
Table 7 shows the contingency table.

LRM Results When Matched for Age and Gender

Table 8 shows the performance of the LRM on DS11
andDS2whenmatched for age and gender.Due to limited
availability of data we considered only 4 divisions; (i) male
with age £60 months, (ii) femalewith age £60 months, (iii)
male with age >60 months and (iv) female with age
>60 months. According to this table during the model
designing stage, generally no significance difference was
seen in the model validation performance across four
divisions in comparison to when no division was consid-
ered, Tables 4 and 8(A). Similar to this on the prospective
dataset DS2, selected model < performed well across all
division (Tables 6, 8(B)), except in the 3rd division (male
with age >60) where performance were very poor.

DISCUSSION

In this paper we proposed an automated, objective
method to classify cough sounds into wet and dry
categories. As far as we know, this is the first attempt
to develop objective technology for the dry/wet clas-
sification of pediatric cough sounds, espcially in dis-
eases such as pneumonia. Our work is also unique for
the reason that we proposed and validated methods to
classify a given cough event into dry/wet groups in
contrast to existing work,5,14 which are limited to
qualitaively describing chracteristics of cough events
pre-classified by a human observer. The results pre-
sented in this paper are based on 536 cough events
from 78 subjects, compared to existing work which use
no more than 30 coughs in their descriptive analyses.
For these reasons we do not have any other work to
directly compare our results against.

The reference method used for the assessment of our
technology is the subjective classification of cough
sounds into wet/dry classes by two pediatric respira-
tory physicians from different countries. These scorers
were blinded to the actual clinical diagnosis of the
subjects. In an event-by-event cough classification, the
two experts agreed with each other at a Moderate
Level (kappa value of j = 0.54). In Chang et al.,3

inter-clinician agreement for wet/dry cough is reported
as j = 0.88. However it should be noted that, in
Chang et al.3 clinicians assessed wetness of cough at
the patient level but not at individual cough level.
When we computed the agreement between scorers at

TABLE 4. LRM performance before and after the feature selection.

Sensitivity Specificity Accuracy PPV NPV K

(A) When all the features were used to develop LRM

Consensus of scorer

1 & scorer 2

Training 91.76 ± 0.68

[91.69–91.84]

92.65 ± 0.45

[92.6–92.7]

92.45 ± 0.5

[92.36–92.47]

81.80 ± 1

[81.68–81.91]

96.90 ± 0.3

[96.87–96.93]

0.8125 ± 0.1

[0.8112–0.8138]

Validation 62 84 78 59 86 0.46

Scorer 1 wet/dry

class

Training 87.15 ± 0.95

[86.9–87.4]

87.49 ± 0.89

[87.26–87.72]

87.40 ± 0.90

[87.17–87.63]

71.53 ± 1.84

[71–72]

94.97 ± 0.40

[94.87–95.07]

0.6977 ± 0.02

[0.69–0.70]

Validation 53 78 71 47 82 0.3

Scorer 2 wet/dry

class

Training 81.96 ± 1.01

[81.7–82.23]

82.24 ± 0.97

[81.98–82.49]

82.14 ± 0.98

[81.89–82.4]

71.83 ± 1.37

[71.48–72.19]

89.18 ± 0.78

[88.98–89.38]

0.6224 ± 0.01

[0.6173–0.6276]

Validation 45 67 59 43 69 0.12

(B) When selected all the features were used to develop LRM

Consensus of scorer

1 & scorer 2

Training 87.36 ± 0.61

[87.29–87.43]

87.82 ± 0.43

[87.77–87.87]

87.70 ± 0.46

[87.65–87.75]

72.07 ± 0.87

[71.98–72.17]

95.07 ± 0.25

[95.05–95.10]

0.7041 ± 0.01

[0.7029–0.7053]

Validation 81 83 82 63 92 0.58

Scorer 1 wet/dry

class

Training 82.75 ± 0.57

[82.60–82.89]

83.06 ± 0.52

[82.92–83.19]

82.98 ± 0.52

[82.84–83.11]

63.78 ± 1.18

[63.47–64.08]

93.03 ± 0.27

[92.96–93.10]

0.60 ± 0.01

[0.59–0.60]

Validation 76 79 78 57 90 0.5

Scorer 2 wet/dry

class

Training 75.66 ± 0.57

[7.5.51–75.81]

75.92 ± 0.58

[75.77–76.07]

75.83 ± 0.57

[75.68–75.98]

63.44 ± 0.96

[63.19–63.69]

84.95 ± 0.61

[84.79–85.11]

0.49 ± 0.01

[0.4916–0.4975]

Validation 72 73 72 59 82 0.43

Statistics provided in the table are mean ± standard deviation. 95% confidence interval for mean of the training dataset is provide at bottom.

For scorer 1 and scorer 2 sample size is C1 = 385 cough events from N1 = 60 patients in dataset DS1. Out of 385 cough events scorers had

wet/dry consensus on C11 = 310 cough events.
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the patient level, the kappa value increased to j = 0.66
(Substantial Agreement). These numbers further illus-
trate the subjective nature of dry/wet classification.

Our classifier technology was trained on coughs
from the training set (set DS1) using only events where
both scorers reached consensus. As the output of the
training process we identified a good Logistic Regres-
sion Model (<) and fixed its parameters. The model
was then tested on the Prospective Set (Set DS2) in
several different ways. The highest sensitivity and
specificity (84 and 76%) of classification were achieved
when we tested < against consensus events within DS2.
It is interesting to note that these numbers were con-
sistently higher than what we got by testing against
individual classification outcomes of each scorer.

Another salient feature of our method is that it has a
high negative predictive value (NPV = 93%), when
scorer consensus data is used as the ground truth. This
means that if the model classifies a cough as non-wet

(dry), it is most likely that the two expert scorers would
independently reach the same conclusion. However,
the positive predictive value of our method compared
to human scorers is lower (PPV = 55%). Thus, a siz-
able fraction of coughs classified by the model as wet
ends up being consensus-classified as dry by human
scorers. This phenomenon appears to be explained by
the results presented by Chang et al.3 which found that
expert human scorers underscore wet coughs. In
Chang et al.3 they systematically compared subjective
dry/wet classifications of expert clinicians with bron-
choscopic indications of airway mucus. They reported
that clinician’s classification of dry cough do not nec-
essarily indicate the absence of secretions. Certain sit-
uations in airways, for instance small amounts of
secretions, may not be reflected in cough sounds at a
sufficient magnitude to be detected by a human
observer. One of the possible reasons for a lower PPV
value found in our method can be this weakness in the

TABLE 6. Performance of < on dataset DS2 prospective
study dataset.

Sensitivity Specificity Accuracy PPV NPV K

Against individual scorer when tested on all the cough events (151)

from DS2

Scorer 1 77.5% 76% 76% 54% 90% 0.47

Scorer 2 75% 64% 67% 43% 87% 0.31

Tested on only those events when both Scorer 1 and Scorer 2

agreed on class

84% 76% 78% 55% 93% 0.51

TABLE 7. Contingency table for selected LRM tested on
dataset DS2.

Scorers

Wet Dry

LRM

Wet 26 21 55%

Dry 5 65 93%

84% 76% 78%

K = 0.51.

TABLE 5. F 5 66 features were computed from each cough segment by using n 5 3 at section ‘‘Design of cough sound clas-
sifier’’ [Step 1].

Features

BSG NGS FF1 FF2 FF3 FF4

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Selected � � � � � � � �

Features

Pitch LogE Kurt ZCR MFCC0 MFCC1

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Selected � � � � � �

Features

MFCC2 MFCC3 MFCC4 MFCC5 MFCC6 MFCC7

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Selected � � � � � � � � � �

Features

MFCC8 MFCC9 MFCC10 MFCC11

1 2 3 1 2 3 1 2 3 1 2 3

Selected � � � � � � �

‘�’ indicates that feature was selected for designing the final model at section ‘‘Design of cough sound classifier’’ [Step 2].
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gold standard, human scorers, used to generate our
performance statistics. This hypothesis needs to be
carefully validated against bronchoscopic findings in
the future.

The ability to correctly detect airway mucus can be
particularly important in the management of suppu-
rative lung diseases.3,4 Cough is an early symptom of
diseases such as pneumonia, bronchitis and bronchi-
olitis. The accurate assessment of this symptom is a
crucial factor in diagnosing acute diseases or the
monitoring of chronic symptoms and treatment effi-
cacy. It is known that in children, wet coughs are more
likely to be associated with lower respiratory tract
infections.4 The subjective classification of wet coughs
has low sensitivity as a method of detecting airway
mucus, even in the hands of expert clinicians. Accu-
rate, objective technology for the classification of dry/
wet coughs is currently unavailable either at the com-
mercial or research levels. To the best of our knowl-
edge, this work is the first attempt in the world to
develop such technology.

We present the first ever approach to automate dry-
wet classification of coughs. The results presented in this
paper can be improved by syetematically optimizing the
parameters and fine tuning the training processes of our
classifier. Our heuristic model selection process makes
the reported results pessimistic estimates. We also
believe that the feature set can be improved and the
classification accuracy of the method can be further
increased. However before an optimization attempt,
issue we need to resolve is to improve the ‘gold standard’
used in the clinical diagnosis. A carefully controlled
bronchoscopy study will be best suited as the gold
standard. We recognize that the optimization work is
needed before taking the technology to the clinical

practice, but we consider this out of the scope of this
paper due to reasons explained above.

Another possible limiting factor to this study is the
biasedness of the cough sound database towards dry
coughs; almost 70% cough sounds are dry as perceived
by expert human scorers. However, with all these
factors, our method can currently classify wet and dry
coughs with high sensitivity (84%) and specificity
(76%) and with a good agreement (j = 0.51) with the
expert human scorers.

The results presented in this paper used manual
identification of cough segments from long sound
recordings. Once the sounds were identified, the dry/
wet classification was fully automated. We currently
developing automated cough identification technique
and the results will be published elsewhere.

CONCLUSION

Proposed method in this paper can classify the
cough sounds into dry and wet classes with high
accuracy and good agreement with pediatricians. This
is the first known method for wet/dry classification,
presented with complete training and testing results on
significantly large cough samples. It is also the first
effort to automate the wet/dry classification in pedi-
atric population with range of respiratory infectious
diseases. It carries the potential to develop as a useful
clinical tool for long term cough monitoring and in the
assessment of treatment efficacy or in characterizing
the lower respiratory tract infections. It will be essen-
tially useful in clinical or research studies where tem-
poral patterns of cough quality (wet/dry) from hour to
hour basis are needed.

TABLE 8. LRM validation results for dataset DS11 and prospective dataset DS2 with age and gender matched.

Sensitivity Specificity Accuracy PPV NPV K

(A)

Validation results for dataset DS11. All the features were used to train the LRM

Age £60 months, Male (#121 cough events) 59% 83% 76% 57% 84% 0.41

Age £60 months, Female (#145 cough events) 58% 88% 80% 63% 85% 0.47

Age >60 months, Male (#20 cough events) 89% 64% 75% 67% 87.5% 0.51

Age >60 months, Female (#24 cough events) 100% 83% 83% 20% 100% 0.28

Validation results for dataset DS11. Selected features were used to train the LRM

Age £60 months, Male (#121 cough events) 73.5% 78% 77% 57% 88% 0.47

Age £60 months, Female (#145 cough events) 84% 87% 86% 70% 94% 0.67

Age >60 months, Male (#20 cough events) 89% 64% 75% 67% 87.5% 0.51

Age >60 months, Female (#24 cough events) 100% 91% 92% 33% 100% 0.47

(B)

Prospective Study dataset DS2

Age £60 months, Male (#36 cough events) 92% 87.5% 89% 78.5% 95% 0.76

Age £60 months, Female (#27 cough events) 87.5% 95% 92.5% 87.5% 95% 0.82

Age >60 months, Male (#30 cough events) 50% 54% 53% 14% 87.5% 0.02

Age >60 months, Female (#24 cough events) 86% 71% 75% 54.5% 92% 0.48
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The methods proposed in this paper should be
available for simultaneous implementation with other
potential technologies such as microwave imaging and
ultrasound imaging that may be capable of detecting
consolidations and mucus in lungs.

APPENDIX 1: COMPUTED FEATURES

For each sub-segment xi following features com-
puted.

a) Bispectrum Score (BGS): The 3rd order spec-
trum of the signal is known as the bispectrum.
Unlike the power spectrum (2nd order statis-
tics) based on the autocorrelation, bispectrum
preserves Fourier phase information. The
bispectrum can be estimated via estimating the
3rd order cumulant and then taking a 2D-
Fourier transform. The 3rd order cumulant
C(s1,s2) was estimated using Eq. (3) as defined
in Abeyratne.1 By applying a bispectrum win-
dow function (minimum bispectrum-bias
supremum window described in Mendel13) to
the cumulant estimate, windowed cumulant
function Ci

wðs1; s2Þ was obtained.

Ci s1;s2ð Þ

¼ 1

L

XL�1

k¼0
xi tð Þxi tþs1ð Þxi tþs2ð Þ; s1j j�Q; s2j j�Q

ð3Þ

In Eq. (3) Q is the length of the 3rd order
correlation lags considered. We used Q as 5%
of the length of cough sub-segment. The bi-
spectrum Bi(x1,x2) of the segment xi was esti-
mated using Eq. (4). We used FFT length of
512 points.

Bi x1;x2ð Þ¼
Xs1¼þ1
s1¼�1

Xs2¼þ1
s2¼�1

Cyi s1;s2ð Þe�j s1x1þs2x2ð Þ ð4Þ

In the frequency domain, a quantity Pi(x;/,q)
can be defined for the data segment xi such that

Pi x; /; qð Þ ¼ Bi x;/xþ qð Þ ð5Þ

describing a one-dimensional slice inclined to
the x1-axis at an angle tan21/ and shifted from
the origin along the x2-axis by the amount q
(2p < q < p).2 For this work we set / = 1 and
q = 0 so that the slice of the bispectrum con-
sidered is inclined to the x1-axis by 45� and
passes through the origin. Then Bispectrum
Score (BSG) is computed using Eq. (6). In Eq.

(6) we used x1 = 90 Hz, x2 = 5 kHz,
x3 = 6 kHz and x4 = 10.5 kHz.

BSG ¼
Rx2

x1 P xð ÞRx4

x3 P xð Þ
ð6Þ

b) Non-Gaussianity Score (NGS):7 NGS gives
the measure of non-gaussianity of a given
segment of data. The normal probability plot
can be utilized to obtain a visual measure of
the gaussianity of a set of data. The NGS of
the data segment xi can be calculated using
Eq. (7). Note that in Eq. (7), p and q represents
the normal probability plot of the reference
normal data and the analyzed data, respec-
tively, with j ranging from the values 1 2 N.

NGS ¼ 1�
PN

j¼1 q j½ � � pð Þ2
PN

j¼1 q j½ � � �qð Þ2

 !
ð7Þ

c) Formants frequencies: In human voice analysis
formants frequencies (FF) are referred as the
resonance of the human vocal tract. In cough
analysis, it is reasonable to expect that the res-
onances of the overall airway that contribute to
the generation of a cough sound will be repre-
sented in the formant structure; mucus can
change acoustic properties of airways. We in-
cluded 1st four FF (F1, F2, F3, F4) in our fea-
ture set. Past studies in the speech and acoustic
analysis have shown that F1–F4 corresponds to
various acoustic features of airway.11,15 We
computed F1–F4 by peak picking the Linear
Predictive Coding (LPC) spectrum of cough
sounds. For this work we used 14th order LPC
model with the parameters determined via the
Levinson-Durbin recursive procedure.16

d) Pitch: In speech analysis, pitch is defined as the
fundamental frequency of the vocal cord.18 Sev-
eral algorithms have been proposed in the liter-
ature to estimate the pitch of a voiced acoustic
signal. In this paper we used classical method of
‘autocorrelation with center clipping’20 to com-
pute the pitch of an cough sub-segment.

e) Log Energy(LogE): The log energy for every
sub-segment was computed using Eq. (8)

LogE ¼ 10log10 eþ 1

N

XK

k¼1
xi tð Þ2
� � !

ð8Þ
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In Eq. (8) e in (%) is and arbitrarily small
positive constant added to prevent any inad-
vertent computation of the logarithm of 0.

f) Zero crossing (Zcr): The number of zero
crossings were counted for each xi sub-seg-
ments.

g) Kurtosis (Kurt): The kurtosis is a measure of
the peakedness associated with a probability
distribution of segment xi, computed using
Eq. (9). l and r is the mean and stand devia-
tion of the segment xi respectively.

kurt ¼ E xi k½ � � lð Þ4

r4
ð9Þ

h) Mel-frequency cepstral coefficients (MFCC):
MFCCs are commonly used in the music and
speech audio signal analysis.12,27 They repre-
sent the short term power spectrum of an
acoustic signal based on a cosine transform of
a log power spectrum on a non-linear mel-scale
of frequency. We included the 12 MFCC
coefficients in our feature set.

APPENDIX 2

Kappa statistic is widely used in situations where the
agreement between two techniques should be com-
pared. Below are the guidelines for interpreting the
Kappa values.

Kappa Interpretation

<0 Less than chance agreement

0.01–0.20 Slight agreement

0.21–0.40 Fair agreement

0.41–0.60 Moderate agreement

0.61–0.80 Substantial agreement

0.81–1 Almost perfect agreement

APPENDIX 3

Definition of the statistical measures used to eval-
uate the performance of the LRM.

True Positive (TP)—Wet cough correctly identified
as ‘WET’ by LRM.

False Positive (FP)—Dry cough incorrectly identi-
fied as ‘WET’ by LRM.

True Negative (TN)—Dry cough correctly identified
as ‘DRY’ by LRM.

False Negative (FN)—Wet cough incorrectly iden-
tified as ‘DRY’ by LRM.

Accuracy ¼ TPþ TN

TPþ FPþ TNþ FN
ð10Þ

Sensitivity ¼ TP

TPþ FN
ð11Þ

Specificity ¼ TN

TNþ FP
ð12Þ
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