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Abstract—Biomechanical studies on abdominal aortic aneu-
rysms (AAA) seek to provide for better decision criteria to
undergo surgical intervention for AAA repair. More accurate
results can be obtained by using appropriate material models
for the tissues along with accurate geometric models and
more realistic boundary conditions for the lesion. However,
patient-specific AAA models are generated from gated
medical images in which the artery is under pressure.
Therefore, identification of the AAA zero pressure geometry
would allow for a more realistic estimate of the aneurysmal
wall mechanics. This study proposes a novel iterative
algorithm to find the zero pressure geometry of patient-
specific AAA models. The methodology allows considering
the anisotropic hyperelastic behavior of the aortic wall, its
thickness and accounts for the presence of the intraluminal
thrombus. Results on 12 patient-specific AAA geometric
models indicate that the procedure is computational tractable
and efficient, and preserves the global volume of the model.
In addition, a comparison of the peak wall stress computed
with the zero pressure and CT-based geometries during
systole indicates that computations using CT-based geomet-
ric models underestimate the peak wall stress by 59 ± 64 and
47 ± 64 kPa for the isotropic and anisotropic material
models of the arterial wall, respectively.

Keywords—Abdominal aortic aneurysm (AAA), Patient-

specific, Image-based, Zero pressure geometry, FEA,

Anisotropy.

INTRODUCTION

An abdominal aortic aneurysm (AAA) is an
abnormal widening of the aorta, commonly developed
below the renal arteries and above the iliac bifurca-
tions. The natural course of aneurysm disease is a
progressive aortic enlargement combined with weak-
ening of the wall tissue that may result in aortic rup-
ture.35

The prevalence of AAA is 8.8% in the population
above the age of 65, accounting for more than 15,000
deaths in the US and 8,000 in the United Kingdom
every year.27 The indications for aneurysm repair
(either surgical or endovascular) are largely based upon
the presence of symptoms, aneurysm size, and the rate
of expansion. Patients with symptomatic aneurysms
should undergo repair, regardless of aneurysm diame-
ter. Patients with asymptomatic aneurysms that reach a
diameter of 5.5 cm should be considered for repair.28

Early repair may be beneficial in patients whose aneu-
rysm increases ‡0.5 cm in diameter in 6 months.20,23

Although the criterion for AAA repair varies in
practice, the maximum diameter is the most frequently
used clinical AAA repair indication. However, the
diameter criterion is under controversial discussion
since only 25% of AAAs rupture in a patient’s
lifetime.3 Consequently, small AAAs (<5.5 cm) rup-
ture and large AAAs (>5.5 cm) remain stable,
whereas surgical interventions continue to pose serious
risk especially in elder patients.41 Therefore, alternative
rupture risk indices have been proposed in order to
target patients that require AAA repair. Specifically,
biomechanical parameters like peak wall stress (PWS)
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or peak wall rupture risk (PWRR) have shown to be a
feasible an promising alternative that can be used to
better ascertain the risk of rupture.10,11,13,18,25,31,42–46

The computation of such parameters requests (i)
accurate methods for reliable reconstruction of the
aortic geometry, (ii) appropriate material properties
for the aneurysmatic tissues, and (iii) realistic (physi-
ological) boundary conditions, and (iv) along with
adequate numerical methods must be developed to
solve the biomechanical problem.12

Planar biaxial testing by Vande Geest et al.44 dem-
onstrated that the aneurysmal degeneration of aortic
tissue leads to an increase in mechanical anisotropy,
with the circumferential direction being stiffer. This
study also showed that the aneurysm wall of the
average population is highly nonlinear but rather iso-
tropic. This motivated the development of improved
constitutive models for the AAA wall34,44 permitting
more elaborated computations of AAA and the reas-
sessment of established biomechanical markers of
AAA rupture risk.32–34

The reconstructed AAA geometry from CT images
is pressurized, and hence, it is not the zero-pressure
configuration. Specifically, for most CT modalities, the
geometry seen in the images refers to the configuration
that is inflated with the diastolic blood pressure.
Assuming this geometry being the zero-pressure con-
figuration, as it has been done frequently, naturally
generates incorrect deformations and stresses relative
to the in vivo condition. Consequently, recent stud-
ies6,24,29,40 introduced a hypothetical zero-pressure
configuration, which in turn serves as the reference for
biomechanical simulations. Specifically, a more realis-
tic computation of the PWS should consider such a
zero-pressure geometry. When loading the zero-
pressure configuration with the diastolic blood pres-
sure, the deformed AAA is thought to match the AAA
geometry seen in the CT images. This constraint
implicitly defines the shape of the zero-pressure con-
figuration, and a number of alternatives have been
presented to solve this problem.6,24,29 One approach
relies on inverse elastostatic methods. These methods
were first introduced by Shield36 for elastically homo-
geneous materials and zero body forces and later
generalized for elastic materials of any grade by Carl-
son.4 Later, Chadwick5 exploited the duality property
demonstrated by Shield to formulate Shield’s equilib-
rium equations in terms of Eshelby’s energy–momen-
tum tensor. These results were further re-examined by
Govindjee and Mihalic15,16 in order to provide a more
suitable finite element formulation. This formulation
involved minor changes to elements designed for tra-
ditional finite element analysis, and could be applied to
nearly incompressible materials. The formulation
proposed by Govindjee and Mihalic was applied by

Lu et al.24 to find the zero-pressure configuration of
AAAs. It is noted that the inverse method requires
manipulations on the finite element matrices, which
makes its application difficult when using commercial
finite element solvers. However, many of the reported
approaches to compute the zero-pressure configuration
considered shell models of the AAA geometry,24,29 and
all of them investigated only isotropic aneurysm wall
models. Most severely, none of the reported studies
accounted for an intraluminal thrombus (ILT) when
predicting the zero-pressure configuration. An ILT is
seen in almost all clinical relevant AAAs.21

The present work presents an algorithm to deter-
mine the zero-pressure geometry of an AAA and
overcomes the above mentioned limitations. Specifi-
cally, the proposed methodology accounts for the
wall’s anisotropy and the presence of the ILT. The
algorithm is a modification of the method proposed by
Raghavan et al.,29 which continuously updates the zero
pressure geometry based on the displacement field
rather than on an incremental upgrading of the
deformation gradient, as proposed by de Putter et al.6

The proposed approach offers some numerical
advantages with respect to the methodology proposed
by de Putter et al. Most important, our computations
always start from an updated reference configuration,
instead from an initially deformed configuration, such
that the proposed methodology avoids using small
increments at the initial steps. This leads to numerical
efficiency through fast convergence. The proposed
method has been implemented on commercial finite
element analysis software ABAQUS (ver 6.9, Hibbitt,
Karlson and Sorensen, Inc., Pawtucker, RI) using solid
meshes for both the AAA wall and the ILT. The effi-
cacy of the procedure is demonstrated by one idealized
and 12 patient-specific AAA geometries.

METHODS

Image Acquisition and 3D Reconstruction

Twelve non-ruptured patient-specific AAA geome-
tries have been developed for this study. Two of these
models, named A1 and A2, were obtained from med-
ical images at Allegheny General Hospital (Pittsburgh,
PA) from asymptomatic subjects who were eligible for
elective endovascular repair. The term non-ruptured is
used in the context that all CT images were acquired
following a standard imaging protocol before the
subjects underwent repair or during the surveillance
period after diagnosed with AAA. The 3D computa-
tional models were developed through image process-
ing and segmentation of the available CT image slices
(resolution of 512 9 512, average pixel size of
0.769 mm and average slice thickness of 3 mm). The
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DICOM formatted CT images were imported in the
ScanIP module of SimplewareTM (Exeter, UK) for
segmentation. A semi-automatic methodology26,37–39

was followed to segment and create the masks for the
three domains (i.e., lumen, ILT, and AAA wall). Ten
additional non-ruptured AAA geometries, named
B1–B10, were acquired at two hospitals in Stockholm,
Sweden. All AAA images provided a sufficiently high
out-of-plane resolution of the image data and a good
identification of the exterior aneurysm surface. Local
ethics committee approved the collection and use of
anonymized data from human. Aneurysms B1–B10
were reconstructed with the diagnostic software
A4research (VASCOPS GmbH, Graz, Austria), which
was applied by an operator with engineering back-
ground assisted by a radiologist to ensure proper seg-
mentation of the aneurysms. Details regarding the
image segmentation process are given elsewhere.2 All
reconstructed models include the ILT and assumed a
non-homogeneous aneurysm wall thickness varying
between 1.5 and 1.13 mm at the thrombus-free and
covered sites respectively.22

All surface geometries were exported in STereo
Lithography (STL) file format and meshed with the
ANSYS-ICEM software (ANSYS, Inc., Canonsburg,
PA). The resulting 3D models were then subject to
finite element analysis with the software ABAQUS
following the proposed iterative algorithm to obtain
the zero pressure geometry.

Material Models

We consider the material of the aneurysm wall and
ILT as hyperelastic. For the wall, isotropic and
anisotropic constitutive equations were used, where as
for the ILT, isotropic behavior has been assumed. We
postulate the existence of a strain-energy function
(SEF) W from which the stress–strain behavior of the
material can be derived. To express W as a function of
the invariants we employ the multiplicative decompo-
sition for the deformation gradient F ¼ FvolF into a
volumetric part Fvol ¼ Jþ1=3I and an isochoric part
F ¼ J�1=3F, with the volume ratio J ¼ detF>0 and
detF ¼ 1. Under these considerations the SEF W can
be written as

W C; a0ð Þ ¼ U Jð Þ þW I1; I2; I4
� �

; ð1Þ

where C ¼ FTF is the right Cauchy-Green tensor and
a0 denotes a unit vector along the direction of anisot-
ropy of the tissue which is assumed to coincide with the
circumferential direction of the vessel. The volumetric
elastic response U and isochoric elastic response W of
the material are given scalar-valued functions of J and
the invariants I1; I2; I4, which are expressed in terms of

C ¼ F
T
F, the modified right Cauchy-Green tensor, and

a0 as

I1 ¼ trC; I2 ¼
1

2
trC
� �2�trC2
h i

;

I4 ¼ a0 � C � a0:
ð2Þ

The second Piola-Kirchoff stress tensor can be
obtained from the defined SEF as19:

S ¼ JpC�1 þ 2J�2=3
X4

i¼1
i 6¼3

@W

@Ii
DEV

@Ii

@C

� �
ð3Þ

where p = dU/dJ is the constitutive equation for the
hydrostatic pressure p, and DEV(�Þ ¼ ð�Þ � 1

3 ð�Þ :½
C�C�1 is the deviatoric operator in the Lagrangian
description. The Cauchy stress tensor can be derived
from the previous definition as

r ¼ J�1FSFT ð4Þ

For the case of isotropy, the material response of
the aneurysm wall tissue was characterized by the
SEF7:

Wiso
wall ¼ j J� 1ð Þ2þD1 eD2 I1�3ð Þ � 1

� �
ð5Þ

where D1 and D2 are material parameters and j is the
volumetric modulus.

For the case of anisotropy, the aneurysmal wall
tissue was modeled by a SEF34:

Waniso
wall ¼ jðJ� 1Þ2 þD1 eD2 I1�3ð Þ � 1

� �

þ k1
k2

ej2 I4�1ð Þ2
� �

� 1 ð6Þ

where D1, D2, k1, k2 are material parameters. This
approach was used due to the lack of histologic evi-
dence regarding the fiber distribution in aneurysmal
tissue. The wall’s stiffer response corresponds to its
circumferential direction, i.e., as it has been verified
through biaxial testing in Vande Geest et al.44

The material parameters for the constitutive models,
Eqs. (5) and (6), were obtained by means of a nonlinear
regression analysis of the mean biaxial test for aneu-
rysmal tissue reported in Vande Geest et al.44 Table 1
shows the identified model parameters for both con-
stitutive models. Figure 1 shows the fit for the isotropic
model, Eq. (5), to the original data reported by Vande
Geest (R2 = 0.943), where as Fig. 2 shows the same
results for the anisotropic model (R2 = 0.953). Both
models produce comparable results since the mean
stress–strain data reported in Vande Geest et al.44

shows little degree of anisotropy. We also note that,
even though our material model takes into account the
behavior of aneurysmal tissue, either model (Eqs. (5)
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and (6)) does not distinguish between distinct wall
layers. While the healthy arterial wall is made of
intima, medial and adventitia layers, this normal
structure is lost at the onset of aneurysmal disease.14

The ILT has been modeled as an isotropic hyper-
elastic material with the SEF proposed by Di Martino
and Vorp8:

WT ¼ C20 I2 � 3
� �

þ C02 I2 � 3
� �2

; ð7Þ

where C20 and C02 are material constants with
dimensions of stress and I2 the second modified

invariant. The reported parameters used were
C20 = 28 kPa and C02 = 28.6 kPa.

Finite Element Models

The proposed algorithm was validated using an
idealized model of a thick wall cylinder subject to
internal pressure. In addition, the algorithm was
applied to 12 three-dimensional AAA patient-specific
geometries. Table 2 summarizes the geometric char-
acteristics and mesh sizes used for each of the 12 AAA
geometries. Each geometry was discretized with linear
tetrahedrons and nearly isotropic meshes. The total
number of elements per AAA model ranged between
430,000 and 635,000 elements, and had at least three
elements across the arterial wall thickness in order to
capture the stress gradients in the wall. Figure 3 shows
the finite element meshes for models A1 and A2.

The isotropic and anisotropic material models for
the arterial wall were implemented in the material user
subroutines UHYPER (for the isotropic material
model) and UANISOHYPER_INV (for the aniso-
tropic material model) within the finite element soft-
ware ABAQUS. The constraints due to the thoracic
aorta and common iliac arteries were simulated by
restraining the longitudinal displacement while allow-
ing displacements in the radial direction.

The assessment of the direction of anisotropy has
been performed following the procedure proposed by
Alastrue et al.1 In this procedure, the model is sub-
jected to a sub-diastolic pressure using the isotropic
material model described by Eq. (5). Then, the direc-
tion of anisotropy is made coincident with the direc-
tion of maximum principal stress. The result obtained
when this procedure is applied is a dominant circum-
ferential direction of the fibers shown in Fig. 4 for
models A1 and A2. Note that the aneurysmal model
considers uniform mechanical properties, and we made
no distinction between the aneurysm and the adjacent
vasculature. A refined model should consider the var-
iation in the mechanical properties between the arterial
and aneurysmal tissues since otherwise stress concen-
trations would appear at the interfaces.

Internal pressures of 10.6 kPa (80 mmHg) and
16 kPa (120 mmHg) were applied to the lumen surface
to simulate the diastolic and systolic pressures,
respectively. The diastolic pressure was used during the
iterative algorithm to find the unloaded configuration,
as this was considered the intraluminal pressure when
the images were acquired. The systolic pressure was
used to find the largest stresses on the AAA.

To test the quality of the mesh used for the calcu-
lations, a sensitivity analysis was performed on model
A2 subject to diastolic pressure. Table 3 shows the
peak principal stress (PWS) in the AAA wall for
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FIGURE 1. Biaxial experimental data from Vande Geest
et al.44 vs. predicted results by the isotropic SEF Eq. (5) in the
(a) circumferential and (b) longitudinal directions.

TABLE 1. Material parameters for the isotropic, Eq. (5), and
anisotropic, Eq. (6), aneurysmal wall tissue constitutive

models.

Model D1 (kPa) D2 j (kPa) k1 (kPa) k2

Isotropic 0.214 41.3 104 – –

Anisotropic 0.214 41.3 104 0.212 130

A Pull-Back Algorithm to Determine the Unloaded Vascular Geometry 697



different mesh densities. As these results demonstrate,
for meshes of more than 300,000 elements, the maxi-
mum principal stress changes less than a 3% with re-
spect to the finest mesh used, while giving a sufficient

number of elements through the arterial wall as shown
in Fig. 3a (a minimum of three elements at any section
of the model). Details regarding the ILT and arterial
wall mesh for all models are given on Table 2.

Zero-Pressure Geometry Algorithm

The algorithm to reconstruct the zero-pressure
geometry of an AAA model from the CT image based
geometry is explained in the following. The main
purpose of this algorithm is to find the zero-pressure
configuration, i.e., a reference configuration that
deforms into the geometry Ximage that is seen in the CT
images when subjected to the diastolic pressure, Pdiast.
The proposed algorithm keeps the mesh connectivity
unchanged and iteratively updates the nodal coordi-
nates. When working with the anisotropic material, the
local circumferential direction is also consistently
pulled-back to the zero-pressure configuration.

The iterative algorithm is outlined in Fig. 5, where B
denotes a configuration of the AAA. The initial zero-
pressure configuration B0 corresponds to the geometry
that was reconstructed from the CT image, Ximage,
where X represents a Nn 9 3 matrix that stores the
nodal coordinates of the finite element mesh. Here, Nn

denotes the total number of mesh nodes, and for an
anisotropic material model (faniso = 1) the circumfer-
ential direction is also provided at the element level.
Now iterative algorithm starts and of the zero-pressure
configuration is updated until the error norm, i.e., the
absolute maximum nodal distance between Ximage and
the deformed configuration from inflating the current
zero-pressure configuration, Xdef, is less than a pre-
scribed tolerance tol.

Step i At the kth iteration an elastic problem is
solved that considers the k 2 1th zero-pressure
geometry as its stress-free reference configura-
tion. Constitutive relations and boundary con-
ditions apply as described in the previous section.
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FIGURE 2. Biaxial experimental data from Vande Geest
et al.44 vs. predicted results by the anisotropic SEF Eq. (6) in
the (a) circumferential and (b) longitudinal directions.

TABLE 2. Characteristics of the 12 patient-specific AAA models.

Model Max diameter (cm) Max ILT thickness (cm) Arterial wall elements ILT elements Total elements

A1 5.1 1.1 322,228 110,985 433,213

A2 5.0 1.8 247,850 198,876 446,726

B1 5.1 2.0 354,865 181,423 536,288

B2 4.2 1.1 336,766 242,191 578,957

B3 5.1 1.4 285,509 291,834 577,343

B4 5.0 2.1 287,576 199,300 486,876

B5 5.4 0.9 346,193 288,170 634,363

B6 5.1 2.4 308,788 239,911 548,699

B7 4.4 0.2 368,482 243,630 612,112

B8 4.8 2.1 338,181 213,913 552,094

B9 5.1 2.1 333,169 279,490 612,659

B10 4.7 1.0 292,151 282,051 574,202
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Step ii When the elastic problem is solved, the
kth zero-pressure geometry is computed by
adding the difference Xk

def � Ximage to the
k 2 1th zero-pressure geometry.
Step iii When using an anisotropic constitutive
model (faniso = 1), the circumferential direction
is pulled-back to the kth zero-pressure configu-
ration, i.e., nk ¼ Fk

� ��1
n with the deformation

gradient Fk :¼ @Ximage

@Xk
Z

.

Step iv: The error norm is computed, and if it is
less than tol, or the number of iterations is
greater than the maximum allowed, maxiter the
iteration is terminated.
Step v: The iterator k is incremented.

RESULTS

Validation

The algorithm was validated with an idealized
cylindrical geometry. Because of the symmetry, only a

FIGURE 3. Finite element meshes of AAA geometries: (a)
model A1 (inset shows a detail of the wall mesh) and (b) model
A2.

FIGURE 4. Circumferential direction of the AAA models: (a)
model A1; (b) model A2. Circumferential directions were
obtained according to the procedure proposed in Alastrue
et al.1
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quarter of the cylinder was considered. The problem
was set up such that its zero-pressure configuration
corresponded to a cylinder of 20 cm length, an external
diameter of 8 cm, and a uniform wall thickness of
0.5 cm. A quarter of the cylinder was discretized with
15,700 linear tetrahedral elements, and the arterial wall
was assumed to be anisotropic with the circumferential

direction being stiffer. Specifically, the SEF of Eq. (6)
and material properties given in Table 1 were used for
the computation. The pressurized geometry, Ximage,
was then obtained by inflating the cylinder at a pres-
sure of 10.6 kPa (80 mmHg). Figure 6 shows the
pressurized and the zero-pressure geometries. The
algorithm’s tolerance was set to 0.003 cm, i.e., less than
a 0.1% relative difference between the actual and cal-
culated zero-pressure geometries. The algorithm
requires five iterations to reach the desired tolerance
(see Fig. 7). Noteworthy is that the algorithm con-
verged remarkably fast; after the second iteration the
error is less than a 0.15%.

AAA Models

The algorithm described in ‘‘Zero-Pressure Geom-
etry Algorithm’’ section was executed with a tolerance
error of 0.2 mm (less than the image resolution). The

FIGURE 5. Zero-pressure geometry algorithm. The algorithm continuously updates the reference configuration of the AAA until
the difference between the original CT-image and the deformed configuration obtained from the current zero-pressure geometry,
X k

def, is less than a prescribed tolerance, tol.

TABLE 3. Predicted peak PWS for model A2.

NE PWS (kPa) DPWS (%)

149,949 260 –

300,845 305 14.8

446,726 300 21.7

815,588 310 3.2

Results for different meshes are shown, where NE denotes the

number of elements. Change in PWS, DPWS, is computed

between two consecutive mesh densities.
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zero-pressure geometry for the 12 patient-specific AAA
geometries was computed with isotropic and aniso-
tropic material models. The difference between the
CT-based geometry and the computed zero-pressure
geometry for model A2 is shown in Fig. 8. Isotropic
and anisotropic material models predicted almost the
same zero-pressure configuration. The maximum dis-
placement between CT-based and the computed zero-
pressure geometries was about 14% and 16% for the
isotropic and anisotropic model, respectively. For all
models together the maximum difference between
CT-based and zero-pressure geometries was 5.25 ±

1.21 and 5.35 ± 1.11 mm for the isotropic and aniso-
tropic material models, respectively.

The computed PWS was 332 ± 160 and
357 ± 167 kPa for the isotropic and anisotropic
material models, respectively, based on the zero-pres-
sure geometry. These stresses are well in the range of
failure stress reported in the literature. See for example
by Raghavan et al.30 (336–2,351 kPa with a median of
1266 kPa for ruptured and non-ruptured aneurysms),
or Di Martino et al.9 (820 ± 90 kPa for electively
repaired aneurysms). However, the fact that we are
using linear tetrahedral may prevent the prediction of
accurate enough through the thickness stress gradient.
It is important to mention that For model A1, the
stress field obtained with the CT-based and the zero-
pressure reference geometries is shown in Fig. 9. For
the anisotropic wall model the predicted PWS was
630 kPa and 810 kPa for CT-based and the zero-
pressure reference geometries, respectively. Hence,
PWS increased approximately by 28% when consid-
ering the zero-pressure geometry. Results for the iso-
tropic model are very similar. However, it is noted that
the anisotropic model leads to slightly higher stresses.
For model A1 the location of the maximum principal

stress was found at the bulge within a thrombus-free
region of the arterial wall (see Figs. 9c and 9d).

In all analyzed cases, PWS using the CT-based
geometry was lower than PWS obtained with the zero
pressure geometry, regardless of the material model
used (see Fig. 10). Specifically, for isotropic and
anisotropic models PWS was underestimated by 21%
(SD 17%) and 14% (SD 14%), respectively. The dif-
ference between the predicted PWS for the CT-based
and the zero-pressure geometry for both material
models was tested with a paired, two-sided signed rank
test. This test found that computations based on the
zero-pressure geometry will predict a larger PWS than
based on the CT-based geometry with larger proba-
bility (p = 0.005 for both isotropic and anisotropic
material models). In addition, the difference between
the predicted PWS based on the zero-pressure geom-
etry for the isotopic and anisotropic material models of
the wall was also tested for significance. In this case, no
statistical difference was found (p = 0.093).

Figure 11 shows the PWS as a function of the
maximum AAA diameter. These results used the
anisotropic material model and considered the zero-
pressure geometry as their reference and stress-free
configuration. Although PWS somehow increases with
the diameter, no clear correlation between both vari-
ables is seen (q = 0.15, p = 0.64). Specifically, the
highest PWS is seen in model A1 that has a diameter of
5.1 cm, whereas for B2, with the largest diameter, PWS
was lowest. Figure 12 shows the cross-sections at
which PWS was predicted. In order to focus the iliac
arteries are hidden the image.

FIGURE 6. Idealized geometry used to validate the algorithm
to compute the zero-pressure geometry. The cylinder in green
corresponds to the pressurized geometry used as input
information to compute the zero-pressure geometry. The
wireframe corresponds to the zero-pressure geometry identi-
fied by the algorithm.

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

iteration

er
ro

r 
(%

)

0.14% 0.13% 0.11%

1.37%

11.81%

0.10%

FIGURE 7. Convergence plot for the idealized geometry. The
algorithm takes five iterations to reach the required tolerance
(0.1%). Already, after the second iteration the error is less than
0.2%.
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Finally it is reported that the algorithm required
between 5 and 13 iterations (on average 8 iterations) to
find the zero-pressure geometry with a tolerated error
of less than 0.2 mm. Figure 13 shows the convergence
of the algorithm for aneurysm model A2, where iso-
tropic and anisotropic wall models were considered.
Note that after 4 iterations the error norm is already
below the resolution of the CT images. The iterative
procedure was also found to be globally volume pre-
serving. Table 4 shows the percentage difference
between the volumes of the final zero pressure and the
CT-based geometries for models A1 and A2; the
observed changes are negligible.

DISCUSSION

The importance to determine the AAA zero-
pressure configuration is indicated by a number of
publications in the past few years, and that it is gen-
erally accepted that PWS estimations that use the CT-
based geometries can lead to errors.6,24,29,40 Previously
reported approaches assumed an isotropic wall and
neglected the presence of ILT. This over-simplifies the
biomechanical problem and questions the reliability of
stress predictions. In addition, only few of the pro-
posed methodologies consider the three-dimensional
solid AAA wall.6,40 The present work introduced a

FIGURE 8. Difference between the zero-pressure and CT-based geometries (in cm) for aneurysm A2: (a) isotropic material model
and (b) anisotropic material model.
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novel methodology to predict the zero-pressure
geometry of patient-specific AAAs and overcomes the
above mentioned limitations. In contrast to
approaches that consider the CT-based geometry as
the reference configuration,6,40 the present algorithm
continuously updates the AAA reference configura-
tion. Therefore, after convergence, the reference con-
figuration corresponds to the zero-pressure geometry
of the AAA. This has noticeable numerical advantages
over the previously reported methodologies based on
incremental upgrading of the deformation gradient.6,40

Specifically, much larger increments can be used to find
the zero-pressure. This is because in the present
methodology, loading always starts from a zero-load
reference configuration, instead of a loaded reference
configuration as in the case of methodologies based on
upgrading the deformation gradient.6,40 When starting

from a loaded configuration, the configuration is sup-
posed to be in equilibrium with the applied pressure.
Therefore, the inner pressure has to be incremented
slowly as the deformation gradient is updated in order
to avoid ill conditioning of the tangent matrix during
the finite element analysis. This restriction implies a
significantly larger number of iterations to converge to
the zero-pressure geometry of the AAA. The algorithm
presented in this work is a modification of the method
proposed by Raghavan et al.,29 which consists in
finding a scaling factor, k, such that the zero pressure
geometry can be obtained approximately as
Xz :¼ Ximage � kU; where U is the normalized dis-
placement field obtained by applying the diastolic
pressure to the CT-based geometry. However, the
methodology proposed by Raghavan et al. can only
give approximate solutions as for any patient-specific

FIGURE 9. Maximum principal stress for model A1 (in kPa). (a) Isotropic model based on the CT-based geometry; (b) Anisotropic
model based on the CT-based geometry; (c) Isotropic model based on the zero-pressure geometry; and (d) Anisotropic model
based on the zero-pressure geometry.
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AAA it cannot be guaranteed that the vector U will be
the same for any pressure increment applied to the
model due to material and geometric nonlinearities.

Our simulation showed that in all 12 patient-specific
geometries the proposed algorithm found the zero-
pressure geometry in less than 13 iterations with a
tolerated absolute error of 0.2 mm (or 1% relative
error). Even more remarkably, setting the accuracy to
the resolution of CT images (<0.7 mm), the algorithm
identified in all cases the zero-pressure geometry in less
than five iterations. Our results also showed that the
proposed algorithm preserved the tissue volume glob-
ally, i.e., the zero-pressure and CT-based geometries
had the same volume. This feature is particularly
important for three-dimensional solid simulations of

cardiovascular tissue, since the arterial wall and ILT
are typically considered incompressible. This algorith-
mic feature is the direct consequence of using quasi-
incompressible material descriptions (for the wall and
the ILT) to predict the zero-pressure geometry. How-
ever, this kinematic restriction cannot be guaranteed at
element level (Gauss points), as we observed local
volume changes greater than 50%. It is important to
point out that the proposed methodology is not absent
of numerical problems due to distortion of the mesh
during the iterative process. To mitigate this type of
numerical problems, we make use of nearly isotropic
meshes with a very regular distribution of element size.
Using this approach we have found a good perfor-
mance in all analyzed AAA geometries.

In this work, the material behavior had little influ-
ence on identifying the zero-pressure geometry (see
Fig. 8). Specifically, the zero-pressure geometries
obtained from isotropic and anisotropic material
models differed by less than 3%. Similarly, PWS pre-
dictions were rather insensitive to the choice of the
AAA wall model (see Figs. 9 and 10). This observation
is partly caused by the biaxial stress–strain data
reported in Vande Geest et al.,44 which reflects an
almost isotropic response of the AAA wall (see Fig. 1).
Consequently, the models (5) and (6) were able to fit
the data quite well with the anisotropic model out-
performing the isotropic one slightly (R2 = 0.94 for the
isotropic material vs. R2 = 0.95 for the anisotropic
model). We used such a phenomenological approach
to model the constitution of the aortic wall, although
recently the collagen fiber distribution has been
reported.14 According to these data, an orthotropic
collagen orientation distribution should be considered
in a histological model. However, at least at a mac-
roscopic length-scale, considering the detailed collagen
organization might not have significant advantages
over our approach.

The most remarkable changes in stress predictions
were observed when changing between the CT-based
and the zero-pressure geometries for the stress-free
reference configuration of our simulations. Specifically,
PWS obtained with the CT-based geometry was sta-
tistically significant lower than those obtained with the
zero-pressure geometry. This observation hold for
isotropic and anisotropic materials and was in agree-
ment6,40 as well as in disagreement24 with previous
reports. It is noted that previous conclusions have been
derived without considering the ILT. Our results also
point to the importance of considering ILT in biome-
chanical AAA simulations. The stress fields shown in
Figs. 9 and 12 indicate that, in addition to AAA
morphology and local wall curvature,25,38 the ILT
plays an important role in the biomechanical AAA
rupture risk assessment. Similar conclusions were

FIGURE 10. Predicted peak principal stresses in the AAA
wall. Results use the CT-based (striped bars) and the zero-
pressure (gray bars) geometries for their stress-free reference
configurations. Predictions are based on an isotropic (a) and
anisotropic (b) constitutive descriptions of the AAA wall.

FIGURE 11. Peak principal stresses in the wall compared to
the diameter of AAAs Predictions considered an anisotropic
constitutive model for the AAA wall and the zero-pressure
geometry as their stress-free reference configuration. The
trend line shows a slight increase in the PWS with the maxi-
mum AAA diameter.
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reported from a retrospective study that compared
ruptured and non-ruptured cases.13

Unfortunately, we did not have access to patient-
specific intraluminal blood pressure and used instead

mean diastolic and systolic arterial pressures of
80 mmHg (10.6 kPa) and 120 mmHg (16.0 kPa),
respectively, for all our cases. Using patient-specific
pressure data would have directly influenced the

FIGURE 12. Cross-sections, where the PWS was predicted. Color-coded principal stresses plot (left) and segmented tissues with
the ILT in red and the arterial wall in blue (right) are shown. Predictions considered an anisotropic constitutive model for the AAA
wall and the zero-pressure geometry as their stress-free reference configuration.
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predicted wall stress, but would not have changed our
conclusions regarding the importance of using the
zero-pressure geometry in stress predictions. Finally, it
is also noted that our computations did not consider
residual stresses (and strains) in the zero-pressure
configuration. Although well documented for healthy
tissue, to the authors’ knowledge there are no adequate
experimental data available for AAA residual stresses.

CONCLUSION AND FUTURE WORK

A methodology was proposed to predict the zero-
pressure geometry of aneurysms that is suitable for
general three-dimensional solid models. Specifically, it
allows for isotropic and anisotropic AAA wall models
and considers the ILT. The proposed iterative method
is stable and predicts the zero-pressure geometry with
few iteration steps. However, since the methodology is
based on finite element models, the quality of the initial
mesh is vital for the performance of the algorithm.

Our results indicate a statistically significant influ-
ence of the zero-pressure geometry on the PWS as

compared to predicted PWS based on the CT-based
geometry. However, the choice of the material model is
not as important since we did not find statistically
significant differences in the predicted PWS based on
the zero-pressure geometry with either material model
for the AAA wall. The modeling of 12 patient-specific
AAA geometries indicates that there must be other
structural characteristics in the geometry that have an
influence on the PWS. It is noted that in most cases the
PWS was located at the bare arterial wall of the bulge
that was not covered by the ILT. These results suggest
that the geometrical configuration of the ILT relative
to the arterial wall may be an influential factor not
only on the ensuing peak wall stress, but also on its
location within the lesion. This observation is in
agreement with Wang et al.47 which reports that the
modeling of ILT to the 3D stress analysis AAA has a
profound influence on the magnitude and distribution
of wall stresses.

Finally, although we have only considered AAAs in
this work, the algorithm can be applied to a variety of
biological structures under pressure, e.g., the heart,
atria, and brain aneurysms among others. The results
achieved with our algorithm underscores the important
effect of using the zero-pressure geometry to compute
PWS values, which is also in agreement with previous
studies.
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