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Abstract—Movement science has traditionally understood
high-dimensional fluctuations as either antithetical or irrele-
vant to low-dimensional control. However, fluctuations inci-
dent to changeful, sometimes unpredictable stimulation must
somehow reshape low-dimensional aspects of control through
perception. The movement system’s fluctuations may reflect
cascade dynamics in which many-sized events interact nonlin-
early across many scales. Cascades yield fractal fluctuations,
and fractality of fluctuations may provide a window on the
interactions across scale supporting perceptual processes. To
test these ideas, we asked adult human participants to judge
whole or partial length for unseen rods (with and without
added masses). The participants’ only experience with the
objects came from supporting them across their shoulders
during quiet standing. First, the degree of fractal temporal
correlations in trial-by-trial series of planar Euclidean dis-
placements in center of pressure (COP) significantly improved
prediction of subsequent trial-by-trial judgments, above and
beyond prediction by traditional predictors of haptic percep-
tion and conventional measures of COP variability. Second,
comparison with linear surrogate data indicated the presence
of nonlinear interactions across scale in these time series. These
results demonstrate that high-dimensional fluctuations may
serve a crucial role in the cascade dynamics supporting
apparently low-dimensional control strategies.

Keywords—Movement coordination, Postural sway, Multi-

fractality, Surrogate data, Control, Fluctuations.

INTRODUCTION

Movement variability poses amajor challenge for the
movement sciences. There is at oncemuch consistency in
the patterning of coordinated movements and a great

deal of fluctuation. The number of anatomical param-
eters free to vary is immense, but coordinated move-
ments appear to follow relatively few functional
parameters. A prevalent notion is that low-dimensional
control strategies recruit anatomical degrees of freedom
as needed, to suit intentions and task constraints.3

Fluctuations are reined in, recruited, and selectively
unleashed for deployment of low-dimensional move-
ment patterns.2 The challenge for movement science has
been weaving the consistent with the erratic into an
organism that must coordinate with its environment.

This coordination requires tailoring control strate-
gies through perception. Novel stimulation produces
lower-order changes and fluctuations that percolate
through the system to engender more global low-
dimensional changes, such as changes in intention or in
strategy.33 The movement system reflects a complex
interweaving of events of different scales, a veritable
cascade of effects. We propose that movement vari-
ability provides a window on cascade-like dynamics
governing relationships between fluctuation and control
and between organism and environment. Cascades
entail nonlinear dependence in which large fluctuations
engender smaller fluctuations and in which smaller
fluctuations support and constrain larger fluctuations
over very many scales, yielding fractal patterns of fluc-
tuation.32 The fractality of fluctuations in themovement
system may support the perceptual detection of infor-
mation crucial for the control of biological systems.

Exogenous Stimulation and Endogenous Fluctuations
Reflect Cascade Dynamics

What may be counterintuitive is that the high-
dimensional fluctuations in the movement system exert
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powerful effects on control, even when control seems so
robustly low-dimensional. We may see these nonlin-
earities simply by applying white-noise mechanical
stimulation, that is,mechanical fluctuationswithout any
correlation over time. Such stimulation can stabilize
postural sway20 as well as the rhythmic oscillations
underlying gait28 and respiration.4 In all cases, the
stimulation is below conscious awareness. The nonlin-
earities of the movement system somehow exploit fluc-
tuations, translating unnoticeable perturbations into
more robust control. Often loosely described as ‘‘sto-
chastic resonance,’’ these sometimes salutary effects of
noise have proven challenging to frame within a coher-
ent theoretical framework.15Unlikewhite noise, healthy
fluctuations endogenous to heartbeat, interbreath, and
interspike intervals are temporally correlated over long
ranges of time. The variability of intervals between
heartbeats, breaths, and neural spikes grows according
to power-law relationships with time.18,19,31 Because
power-law exponents relating fluctuations to time are
fractional, these fluctuations are called fractal. Fractal
fluctuations in heartbeat,11 interbreath,30 and interspike
intervals,35 reflect nonlinear dependence across scales
consistent with cascade dynamics.

Endogenous Fluctuations in Movement: Cascade-Driven
Medium for Perturbations

Fluctuations may underwrite coordination between
the movement system’s control strategies and a
changeful, unpredictable environment. The fractal
structure endogenous to fluctuations is flexible enough
to mimic and rapidly adjust to the nonlinear, cascade-
driven structure of even unpredictable perturba-
tions.13,25,27 Although white-noise stimulation supports
the flow of information through the nervous system,6

fractal fluctuationsmay support the flow of information
further.16 Due to the cascade-like nonlinear dependence
across scales, fractal structure may vary with time,
space, and fluctuation size, yielding ‘‘multifractal’’
fluctuations crucial to neural and cognitive dynamics
coordinating movement with environment.8,10 For
example, strengthening and subsequent weakening of
fractal fluctuations in both gaze and hand movements
predicts emergence of novel control strategies in visuo-
spatial reasoning.1,24 Fractal fluctuationsmay be crucial
for how themovement systemperceives its surroundings
and responds to stimulation.13

Cascade Dynamics of Movement Generate Fractal
Fluctuations Supporting Perceptual Use of

Environmental Information

To move smoothly through the environment, the
movement system needs to match actions both to

bodily and environmental constraints. Actions such as
walking and reaching require judgments on the fly as
to how far and fast to extend a given limb, with or
without vision. Thus, the movement system generally
depends on haptic perception,33 and an extensive body
of research has addressed how human participants
judge geometric properties (e.g., length) of objects they
cannot see but can only experience haptically.34 In the
present section, we suggest that, similar to movement
science, haptic perceptual research is caught up
between complementary ways of considering percep-
tual exploration: low-dimensional wielding or high-
dimensional fluctuations. We then discuss how fractal
fluctuations endogenous to movement may moderate
haptic perception.

Exploratory movements involving wielding by the
hand help human participants to detect mechanical
information in unseen objects. Low-dimensional rota-
tional patterns in wielding offer up to the perceptual
apparatus different elements of the mass distribution.
Specifically, length judgments of unseen, wielded
objects depend on moments of inertia, on-diagonal
terms from the inertial tensor specifying resistance to
rotation.34 Judgments of partial length, that is, of
segment length to either side of the grasping hand,
depends on the first inertial moment Ixx and off-diag-
onal terms, e.g., Iyz.

5 Potentially surprising is that low-
dimensional wielding is not necessary. Even in static
limb postures, the persisting, unintentional fluctuations
support detection of mechanical information.34 So,
high-dimensional fluctuations embedded in explor-
atory movements mediate perception of mechanical
distributions in a task environment.

Furthermore, the fractality of fluctuations in
exploratory movement predicts how the movement
system uses mechanical information for haptic per-
ception. Research in wielding-based haptic perception
has found, first, that the time series of Euclidean dis-
placements in manual wielding trajectories exhibited
long-range temporal correlations associated with
fractality and, second, that trial-by-trial changes in
fractality for wielding on each trial helped to predict
effects of inertial properties on the trial-by-trial per-
ceptual judgments of length.23 This effect of fractal
fluctuations extends to wielding by the foot instead of
the hand.26 Providing visual feedback on each trial
following judgments leads participants to tailor their
judgments over trials, and for both hand and foot
wielding, the fractal fluctuations in wielding predict
how well participants learn from feedback using the
same limb and how well this training transfers to the
untrained limb.26 In both cases, fractal fluctuations in
wielding promotes perceptual learning when the par-
ticipant receives feedback during training blocks
between pretest and posttest blocks.23,26
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While previous findings suggest that greater frac-
tality can promote perceptual learning under training
by feedback, the relevance of fractality to perceptual
judgments has been more generally demonstrated by
testing the inclusion of full-factorial interactions with
the already full-factorial interactions of task proper-
ties, inertial properties, and conventional measures
(i.e., mean and standard deviation) of exploratory
fluctuations. Given that perception and action may
depend on interactions across many scales,33 effects of
fractality in this domain will not likely be limited to
simple main effects and lower-order interactions. This
full-factorial approach keeps the inquiry conservative,
saturating the model with all likely predictors. Before
parsing these immense models into significant effects, it
is important first to establish that fractality is a key
factor after controlling for all interactions of conven-
tionally relevant experimental details. Because we will
not provide feedback in this quiet-standing haptic task,
we do not expect fractality to predict better perceptual
learning and improved accuracy. Rather, because
increased fractality indicates the weakening of con-
straints for exploring new relational structure and
because feedback can diminish fractal fluctuations,1,8,14

we may predict that fractality will simply increase across
the span of the experiment.

We now test the perceptual relevance of fractal
fluctuations under conditions in which the intended
low-dimensional movement is minimal. Recent work in
haptic perception has shown that wielding by the torso
(i.e., intentionally swaying one’s stance about the hips)
yields comparable perceptual judgments as those fol-
lowing wielding by the hand.17 We now test haptic
perceptual judgments following the torso’s equivalent
to static holding, namely, quiet standing. Previous
perceptual work has only examined fractal fluctuations
in wielding by freely moving limbs. Whereas freely
moving limbs can be dedicated to wielding with the
intention to perceive, quiet stance may itself enlist so
many attentional and physiological constraints as to
dissociate incident postural fluctuations from fluctua-
tions for perception. Hence, examining haptic percep-
tion in quiet standing allows an intriguing test of the
effects of fluctuations in the movement system.

Hypotheses

Given the findings of cascade dynamics through the
movement system,10–12,25,30,35 we expect that the
movement system’s fractal fluctuations will influence
perceptual judgments even when they are incidental to
whole-body stabilization, and we will test three
hypotheses following from this expectation. The fluc-
tuations in COP during quiet standing have been
shown to be fractal.9 Our first hypothesis is that the

fractal temporal correlation of Euclidean displace-
ments in COP during quiet standing moderates the
effect of mechanical information for haptic perceptual
judgments of length for unseen objects. We will
examine haptic perceptual judgments of whole and
partial length in order to make this test more general:
we expect that fractality will improve predictions of
perceptual length already accounting for key inertial
properties and conventional measures of postural
variability above and beyond partial- or whole-length
task differences in the haptic-perceptual task. Our
second hypothesis is that, in the absence of feedback,
fractality will increase over the course of the experi-
ment. Our third hypothesis is that fractality of
Euclidean displacements in COP reflect the nonlinear
interactions across scales found in cascade dynamics.
Specifically, we will compare the multifractality against
linear surrogate time series, and we predict a significant
difference between multifractality of original series and
that of surrogate series.

METHOD

Participants, Apparatus, and Procedure

Fourteen adult participants provided informed
consent according to the University of Connecticut
institutional review board and the Declaration of
Helsinki.

Center of pressure (COP) datawere collected by using
an AMTI force platform (Advanced Mechanical Tech-
nology, Inc., Watertown, MA, USA) and a 64-channel
Run Technologies (Mission Viejo, CA) Datapac 2000
analog-to-digital collection system. The force fluctua-
tions were sampled at a rate of 100 Hz.

Wooden rods (2.54-cm diameter) cut in three
lengths (Table 1) were secured across the center of the
participant’s seventh cervical vertebra with a hollow
PVC tube (12-cm diameter) attached to shoulder
straps. Blinders worn around the head occluded visual
information about the rods (Fig. 1).

TABLE 1. Stimulus details regarding lengths and placement
of weighting.

Rod length (cm) Placement of weighting

72 None

72 Left end

72 Right end

96 None

96 Left end

96 Right end

120 None

120 Left end

120 Right end
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On each trial, recording started after the rod was
secured in the PVC tube. Participants were instructed
to stand still, judge the rod’s length, and to step off the
plate with their right foot when prepared to register a
response (this movement marked the end of this phase
and was omitted from subsequent data analysis). The
response marker was positioned on a plank (2¢ 9 4¢)
supported 130 cm above the ground and 250 cm in
front of the participant. In partial-length trials, the
zero point on the plank aligned with the participant’s
mid-line; in whole-length trials, it was 80 cm to the
participant’s left. Participants directed the experi-
menter to adjust the response marker so that its dis-
tance from the 0-cm position matched the perceived
length (whole or partial) of the attached rod until
satisfied with their judgment. The same rods were used
for whole and partial length judgments. Partial judg-
ments addressed the extent of the rod from its center at
the participant’s spine to its extent to the participant’s
left-hand side. The participant could move the marker
to any distance between 0 and 160 cm in partial-length
trials and between 0 and 320 cm in whole-length trials.
The participant used the marker to register the rod’s
perceived length on each trial, and the experimenter
recorded the marker’s distance from the zero point and
reset it to the zero point at the end of each trial. Par-
ticipants had no practice trials, no feedback concerning

accuracy, and only haptic information about the
stimuli.

Each participant completed 27 blocked trials for
both the whole-length and partial-length tasks, with
order of task counterbalanced across participants. 18
trials in each task involved perception of rods weighted
with a 150-g mass placed 1/8 L from the rod’s end,
with weighted side counterbalanced and weighting
randomized within block (Table 1).

Analyses

Data analysis involved three methods, namely,
detrended fluctuation analysis (DFA), growth curve
modeling (GCM), and comparison of multifractal-
spectrum widths for original series with multifractal-
spectrum widths for iterative amplitude-adjusted
Fourier transform (IAAFT) surrogates.21 DFA and
GCM helped to test the first and second hypotheses.
DFA estimated fractal-scaling exponents H for the
series of planar Euclidean displacements (PED) in
COP. GCM tested whether this scaling exponent H
significantly improves prediction of perceptual judg-
ment above and beyond inertial properties, task
properties, and conventional measures of postural
variability. Comparison with IAAFT surrogates served
to test the PED time series for cascade dynamics.

Detrended Fluctuation Analysis

DFA assesses the strength of temporal correlations
in a time series.18 For time series x(t) of length N, the
first step of DFA is to integrate x(t) into a random-
walk trajectory y(t):

yðtÞ ¼
XN

i¼1
xðiÞ: ð1Þ

Next, linear trends yn(t) are fitted to nonoverlapping
n-length windows of y(t). The average root mean-
square (RMS) error for window sizes yields fluctuation
function F(n):

FðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=NÞ

X
½yðtÞ � ynðtÞ�2

q
ð2Þ

for n<N/4. On standard scales, F(n) is a power law

FðnÞ � nH; ð3Þ

where H is the scaling exponent.12,18 Temporally
uncorrelated series yield H � .5, but scaling exponents
in the range. 5<H � 1 indicate long-range temporal
correlations associated with fractal scaling, with
stronger fractal scaling yielding exponents closer to
H ¼ 1. H can be estimated as the slope from the log-
arithmic scaling of Eq. (3):

FIGURE 1. Schematic of experimental apparatus shown
from the left side (left panel) and from behind (right panel).
Rods were affixed at the participant’s seventh cervical verte-
bra using 12-cm hollow PVC tube by straps over the shoul-
ders, crossing the back and tied in front. Blinders blocking
peripheral vision prevented participants from seeing the rods.
Gray rectangles below the feet represent the force plate.
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logFðnÞ � H log n: ð4Þ

A customary test that fractal-ranged H reflects
temporal correlations is to compare DFA results for
the original series with results for the same numbers in
shuffled order. An estimated H reflects temporal cor-
relations when it exceeds that of the shuffled series’ H.

Growth Curve Modeling

GCM is a regression method ideal for testing the
effects of time-varying predictors on longitudinal data,
effective for studying trial-by-trial responses in per-
ceptual learning.23,26 Because GCM uses maximum
likelihood (ML) estimation, improvement in model fit
is assessed not as change in R-squared but as changes
in a deviance statistic (22 times the log-likelihood
[LL]) between two nested models, in which one model
contains all terms in the other. When adding m pre-
dictors, the change in 22 LL is tested as a chi-square
(v2) with m degrees of freedom. Significantly large v2

indicates significantly improved prediction.22

The dependent measure of GCM was perceived
length. The predictors included inertial properties (i.e.,
Ixx and Iyz), task (i.e., 1 or 0 when judgments are of
partial or whole length, respectively), trial number
within block (i.e., 1–27), block number, meanPED,
SDPED (i.e., sample mean and sample standard devia-
tion of PED of COP, respectively), SDAP, and SDML

(sample standard deviation of anterior–posterior [AP]
and mediolateral [ML] positions, respectively), and H.

Comparison of Multifractal Spectrum with IAAFT
Surrogate Comparison

Different-sized fluctuations within the same time
series may exhibit different temporal correlations. So,
time-series fluctuations may be multifractal as opposed
to simply fractal. Incorporating a parameter q to
accentuate gradually different-sized fluctuations in the
same time series generalizes DFA into a test for mul-
tifractality.

Fðq; nÞ ¼ 1

N

XN

v¼1
½yðtÞ � ynðtÞ�2
n oq=2

" #1=q
ð5Þ

Fðq; nÞ � nHðqÞ; ð6Þ

logFðnÞ � HðqÞ log n; ð7Þ

where Eqs. (2), (3), and (4) equal Eqs. (5), (6), and (7)
when q = 2. H(q) generalizes scaling exponent H, with
H(q) for greater and lesser q reflect larger and smaller
fluctuations, respectively. Because multifractal DFA
can be unstable for negative values of q, we computed

multifractal DFA for :5 � q � 50, incrementing q by
.5. A Legendre transformation of H(q) yields a ‘‘mul-
tifractal spectrum’’ of fractional values a(q), as in

aðqÞ ¼ HðqÞ þ qH0ðqÞ: ð8Þ

whereas H(2) indexes fractality, the width of a(q) is a
crucial indicator of multifractality.10–12 We included
only those values of a(q) for which the corresponding
H(q) was estimated from a fluctuation function with
correlation coefficient r ‡ .99.

Multifractal analysis of original series and of the
original series’ IAAFT surrogate allows a test for
cascade dynamics. IAAFT surrogates preserve the
linear features (i.e., mean, variance, and autocorrela-
tion) of an original series while destroying the original
series’s sequence. These surrogates are produced by
taking the inverse Fourier transform of the original
series’ amplitude spectrum and a shuffled version of its
phase spectrum, replacing the rank-ordered values of
the resulting series with the rank-ordered values of the
original series, and repeating iteratively until the rank-
order replacement leaves the original amplitude spec-
trum intact. Testing our third hypothesis of cascade
dynamics involves multifractal analysis of the original
series and a sample of its IAAFT surrogates. A sig-
nificant difference between an original series’s multi-
fractal spectrum from that of IAAFT is evidence of
nonlinear interactions across many scales.10–12

RESULTS

Raw COP Data and Planar Euclidean displacement
(PED) Time Series

COP series (Fig. 2, top panel) yielded PED series as
the distance between consecutive pairs of COP posi-
tions (Fig. 2, bottom panel). Fourteen participants
completing 27 trials in two tasks generated 756 (i.e.,
14 9 27 9 2) PED series. Ten trials were excluded due
to unanticipated, large movements (e.g., sneezing or
coughing). The remaining 746 PED series had average
duration of 813.25 values (SE = 12.92), within the
range of acceptable series length for DFA.7

DFA estimated trial-by-trial H for PED series
(M = .82, SE = .007) in the fractal range, exceeding H
for shuffled versions (M = .47, SE = .002), paired-
samples t(745) = 43.90, p< .001 (e.g., Fig. 3). These
results are not spuriously due to the force plate’s sam-
pling rate. Downsampling original series to produce 50-
and 25-Hz series yielded H also in the fractal range
(M = .76 and .70, SE = .008 and .008). Effects in
models reported below replicated for both downsam-
plings’H estimates, with finalmodel predictions (Step 5)
agreeing with original-H model, r = .997 and .992.
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Hypothesis 1 Effect of trial-by-trial fractality on
haptic judgments during quiet standing

Figure 4 shows average length judgment by to-be-
perceived length.

There were four main steps in building a GCM of
trial-by-trial judgments. Table 2 summarizes these
steps in terms of the highest-order interactions (Note:
each step included all component lower-order interac-
tions and main effects). Step 1 is the base model using
the inertial properties of the rods and the interaction
Iyz*task.

5 Step 2 includes block number, trial number
within block, and their interactions with predictors
from Step 1. Step 3 incorporated conventional mea-
sures of COP fluctuation (SDAP and SDML; and
meanPED and SDPED). This ensures that effects of trial-
by-trial fractality (in Step 4) are not reducible to effects
of simply ‘‘moving more’’ or ‘‘moving more variably.’’

Table 2 shows v2 test statistics for model improve-
ment at all steps beyond the base model. The crucial v2

test statistics were those for Steps 4a, v2(80) = 141.83,
p< .0001, and 4b, v2(80) = 122.61, p< .01, incorpo-
ratingH and its interactions with predictors from Steps

3a and 3b, respectively. That is, trial-by-trial H helps
to predict the use of inertial properties for generating
haptic perceptual judgments. Table 3 shows correla-
tions between actual judgments and predictions from
Step 4b; Fig. 5 illustrates this comparison. Table 2 also
includes further modeling combining Steps 3a and 3b
and confirming again that effects of H persist even
after including conventional measures of postural
variability. Table 4 lists significant unique effects of the
last model in Step 5 (a subset of 280 effects). These
effects indicate unique interactions of H with Ixx but
not Iyz. However, significant interactions of H and Iyz
may be statistically overshadowed by null higher-order
interactions. Judgments showed no main effect of H.

FIGURE 2. Example data from a single trial from a single par-
ticipant leading up to a length judgment. The top panel shows
the planar trajectory of the center of pressure (COP) during quiet
standing sampled at 100 Hz. The bottom panel shows the cor-
responding time series of planar Euclidean distances (PED)
separating each consecutive point in the top panel.

FIGURE 3. Fluctuation functions for a single planar Euclid-
ean distance (PED) time series (black) and for a series of the
same numbers in shuffled order (grey, dashed). The linear fit
for the original series’s fluctuation function has a slope of
H 5 .82. The linear fit for the shuffled series’s fluctuation
function has a slope of H 5 .44.

FIGURE 4. Length judgments depicted by average perceived
length sorted by task and by length to be judged.
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Hypothesis 2 Increase in fractality across trials in the
absence of feedback

In the absence of feedback, fractality increased over
all 54 trials. Table 5 lists coefficients for a GCM of H
as a function of ‘‘trial54’’ (defined as trial number from
1 to 54) and Task. Trial54 led to greater H (B = .0032,
SE = .0009, p< .01).

Hypothesis 3 Comparing original multifractal
spectra those for IAAFT surrogates

We tested whether fractality resulted from nonlinear
interactions across scales as in cascade dynamics. 628 of
746 (i.e., 84.18%)PEDseries exhibitedmultifractal spectra
with ranges of a(q) significantly different from those for
samples of 50 corresponding IAAFT surrogates, more
often than chance (i.e., 50%), v2(1) = 348.66, p< .0001.

DISCUSSION

We predicted that fractality of fluctuations in
quiet stance would (1) contribute to haptic perception,

(2) increase across trials without feedback, and (3)
indicate cascade-like nonlinear interactions across
scales. Results were consistent with all hypotheses.

High-dimensional fluctuations are key evidence of
the cascade structure of the movement system. Fluc-
tuations serve to support the relationship between
control and changing environmental structure. The
fractality of fluctuations moderates the movement
system’s detection of mechanical information (e.g.,
inertial properties) for haptic perception. This moder-
ating effect is not simply incidental to low-dimensional
wielding movements23,26 but extends to static postures.
That postural fluctuations poise the movement system
to detect perceptual information even as it stands in
place is not a new point.29 The new point is that
fractality is a key property of these fluctuations.

The relevance of fractality to perception and control
may point to the deeper cascade dynamics at play in
the movement system. The cascade structure of tem-
poral variation in COP fluctuations may thus entail
that large postural excursions engender smaller pos-
tural excursions and in which smaller postural excur-
sions in turn support and constrain larger fluctuations
over very many scales. When we consider the dynamics
of coordinated movement and try to find a place for
movement variability, it is not enough to respect the
traditional divide between low-dimensional control
strategies and high-dimensional fluctuations. The
causal contingencies likely spread more messily across
the scales of analysis. Small events such as tremor and
twitch may not be so negligible when considering the
smooth and seemingly well-behaved, low-dimensional
stuff of control. The fractal patterning of fluctuations
in the movement system does not reflect the sum of
independent factors following a similar, scale-invariant
pattern but rather a cascading network of nonlinearly
interwoven events. Fractality thus emerges from the
interplay of events spreading across multiple scales of
the movement system at once. It suggests that these

TABLE 2. Chi-square statistics indicating improvement in prediction with each step of growth curve modeling.

Step Predictors v2 df p

1 Ixx + Iyz*Task

2 Ixx*Block*Trial + Iyz*Task*Block*Trial 31.84 15 <.01

3a Ixx*Block*Trial*SDAP*SDML + Iyz*Task*Block*Trial*SDAP*SDML 106.55 60 <.001

3b Ixx*Block*Trial*MeanPED*SDPED + Iyz*Task*Block*Trial*MeanPED*SDPED 167.59 60 <.0001

4a Ixx*Block*Trial*SDAP*SDML*H + Iyz*Task*Block*Trial*SDAP*SDML*H 141.83 80 <.0001

4b Ixx*Block*Trial*MeanPED*SDPED*H + Iyz*Task*Block*Trial*MeanPED*SDPED*H 122.61 80 <.01

3c Ixx*Block*Trial*SDAP*SDML + Iyz*Task*Block*Trial*SDAP*SDML

+ Ixx*Block*Trial*MeanPED*SDPED + Iyz*Task*Block*Trial*MeanPED*SDPED

Compared with 3a 80

180.86 <.0001

Compared with 3b

119.82 <.0001

4c Ixx*Block*Trial*SDAP*SDML*H + Iyz*Task*Block*Trial*SDAP*SDML*H Ixx

*Block*Trial*MeanPED*SDPED + Iyz*Task*Block*Trial*MeanPED*SDPED

Compared with 3c 80

126.24 <.001

5 Ixx*Block*Trial*SDAP*SDML*H + Iyz*Task*Block*Trial*SDAP*SDML*H Ixx

*Block*Trial*MeanPED*SDPED*H + Iyz*Task*Block*Trial*MeanPED*SDPED*H

Compared with 4c 60

111.87 <.0001

TABLE 3. Correlation coefficients for relationship between
actual judgments and Step 4b predictions.

Participant r

1 .88

2 .74

3 .94

4 .87

5 .94

6 .94

7 .97

8 .83

9 .83

10 .90

11 .90

12 .75

13 .90

14 .92

Fractal Posture Haptic 1631



FIGURE 5. Comparison of actual length judgments for four example participants with model predictions from Step 4b, showing
the participants for whom model predictions correlated with the two highest and the two lowest correlation coefficients r. Panels
include the partial- and whole-length judgments in the order that each participant completed the task. Note that partial-length
judgments are systematically lower than whole-length judgments. Model predictions from Step 4b (grey lines) shown in the figure
correlated with actual judgments (black lines) as follows, r 5 .94 (top-left panel), r 5 .97 (top-right panel), r 5 .74 (bottom-left
panel), and r 5 .75 (bottom-right panel). These correlation coefficients indicate the strength of a linear relationship between
perceptual judgments and what the model predicts following inclusion of H and its interactions with all terms in Step 3b.

TABLE 4. Significant unique effects from model in Step 5.

Predictors B SE p

Significant unique effects excluding fractality

Ixx*SDAP .0151 .0072 <.0001

Ixx*SDML 2.0140 .0068 <.05

SDAP*SDML 2194,700.0000 87,930.0000 <.05

Ixx*Block*SDAP 2.0117 .0041 <.01

Trial*SDAP*SDML 10,740.0000 4933.0000 <.05

Ixx*Trial*MeanPED 2.0512 .0200 <.05

Ixx*MeanPED*SDPED 2189.7000 54.3100 <.01

Ixx*Block*Trial*SDAP .0005 .0002 <.05

Trial*SDAP*SDML*Task 25610.0000 2385.0000 <.05

Ixx*Block*MeanPED*SDPED 94.9100 29.9700 <.01

Ixx*Trial*MeanPED*SDPED 12.8900 3.3380 <.0001

Ixx*Block*Trial*MeanPED*SDPED 26.3940 1.8550 <.01

Significant unique effects including fractality

Ixx*SDAP*H 2.0159 .0072 <.0001

Ixx*SDML*H .0175 .0075 <.05

SDAP*SDML*H 206,000.0000 81,330.0000 <.05

Ixx*Block*SDAP*H .0118 .0042 <.0001

Ixx*Block*SDML*H 2.0093 .0042 <.01

Ixx*Trial*SDML*H 2.0009 .0004 <.05

Trial*SDAP*SDML*H 211,520.0000 4538.0000 <.05

Ixx*Trial*MeanPED*H .0552 .0231 <.05

Ixx*MeanPED*SDPED*H 182.3000 49.0400 <.0001

Ixx*Block*Trial*SDAP*H 2.0005 .0003 <.05

Ixx*Block*Trial*SDML*H .0005 .0002 <.05

Task*Trial*SDAP*SDML*H 5815.0000 2289.0000 <.01

Ixx*Block*MeanPED*SDPED*H 290.8300 27.1400 <.01

Ixx*Trial*MeanPED*SDPED*H 212.6300 3.0220 <.0001

Ixx*Block*Trial*MeanPED*SDPED*H 6.2810 1.6840 <.0001
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nonlinear interactions across scales are crucial for the
movement system to operate smoothly within a
changing context. The fractality—and more broadly,
multifractality—of cascade dynamics is essentially a
statistical snapshot catching the movement system in
the act of coordinating low-dimensional, relatively
stable patterns and plans with the high-dimensional,
relatively fleeting field of perturbations and stimula-
tions.
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