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Abstract—Breast cancer initiation, invasion and metastasis
span multiple length and time scales. Molecular events at
short length scales lead to an initial tumorigenic population,
which left unchecked by immune action, acts at increasingly
longer length scales until eventually the cancer cells escape
from the primary tumor site. This series of events is highly
complex, involving multiple cell types interacting with (and
shaping) the microenvironment. Multiscale mathematical
models have emerged as a powerful tool to quantitatively
integrate the convective-diffusion-reaction processes occur-
ring on the systemic scale, with the molecular signaling
processes occurring on the cellular and subcellular scales. In
this study, we reviewed the current state of the art in cancer
modeling across multiple length scales, with an emphasis on
the integration of intracellular signal transduction models
with pro-tumorigenic chemical and mechanical microenvi-
ronmental cues. First, we reviewed the underlying biomolec-
ular origin of breast cancer, with a special emphasis on
angiogenesis. Then, we summarized the development of
tissue engineering platforms which could provide high-
fidelity ex vivo experimental models to identify and validate
multiscale simulations. Lastly, we reviewed top-down and
bottom-up multiscale strategies that integrate subcellular
networks with the microenvironment. We present models of
a variety of cancers, in addition to breast cancer specific
models. Taken together, we expect as the sophistication of
the simulations increase, that multiscale modeling and
bottom-up agent-based models in particular will become an
increasingly important platform technology for basic scien-
tific discovery, as well as the identification and validation of
potentially novel therapeutic targets.
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INTRODUCTION

Breast cancer is one of the predominant cancers
diagnosed among women, and the second leading
cause of cancer death.66 In the past, most experimental
cancer research has focused on the genetic and
molecular scale malfunctions which deregulate cell
growth.10 Understanding the deregulation of the wir-
ing which controls central molecular programs is a
daunting and multifaceted problem. These molecular
pathways are large, and contain complex architectural
features such as redundancy, feedback and cross-
talk.148 While this complexity ensures robustness and
efficiency, it also complicates the reprogramming of
signal flow and the interpretation of experimental
findings. For example, Jones et al. showed in a study
of pancreatic cancer patients that on average each
patient had 63 genetic alterations spread throughout
12 core signaling pathways.69 Thus, there was not a
single dominant malfunction or pathway. Rather a
combinatorial interplay of malfunctions acting in
concert deregulated cellular function. This integration
underscores the realization that cancer is a systems
disease, even at the subcellular length scale.

Unfortunately, tumorigenesis involves far more
than just malfunctions in signal transduction pathways
in homogenous cell populations. Breast tumors are
highly heterogenous, involving the simultaneous
transmission and processing of many chemical and
mechanical signals between multiple cell types within a
time- and spatially-varying microenvironment. Fur-
thermore, this cellular variety often includes diverse
genetic populations within the same cell type. For
example, Navin et al.104 sequenced single cells in high-
grade (III) ductal carcinomas and found a complex
polygenomic population containing approximately
63% normal and 37% tumor cells, with a large fraction
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of leukocytes. Interestingly, within the same tumor,
they identified four major genetically diverse
tumorigenic cell subpopulations. Thus, understanding
and ultimately reprogramming the integration of cen-
tral programs such as proliferation, differentiation or
death within multiple cell types, or genetic variants of
the same cell type, in concert with the chemical and
mechanical cues of the microenvironment is a grand
challenge.

To attack a complex disease like breast cancer, we
must build comprehensive experimental and compu-
tational tools which integrate intracellular signaling
architectures with the extracellular microenvironment.
Multiscale simulation methods, in combination with
novel in vitro tissue engineering platforms, are rapidly
evolving to meet this critical challenge. In this study,
we review the current state of the art in cancer mod-
eling across multiple length scales, with an emphasis on
the integration of intracellular signal transduction
models with pro-tumorigenic chemical and mechanical
microenvironmental cues. First, we review the
underlying biomolecular origins of breast cancer with a
special emphasis on angiogenesis. Next, we summarize
the development of tissue engineering platforms which
could provide high-fidelity ex vivo experimental models
to identify and validate multiscale simulations. Fol-
lowing that, we review top-down and bottom-up
multiscale computational strategies that integrate sub-
cellular networks with the microenvironment and
tumorigenesis. We present models of a variety of
cancers, in addition to breast cancer specific models.
Thus, as our understanding of the complexity of these
processes evolves, multiscale simulation could be a
critical tool which provides fundamental biological
understanding and potentially important clinical in-
sight.

THE BIOMOLECULAR ORIGINS OF BREAST

CANCER

Breast cancer is a highly heterogenous disease which
can be broadly subdivided into three major subtypes:
hormone receptor-positive tumors, ERBB2-amplified
tumors and a third category collectively referred to as
triple-negative tumors. The molecular understanding
of each subtype, along with the possible treatments for
each,58 continues to evolve. High-throughput analyti-
cal technologies, such as gene expression profiling or
rapid whole-genome sequencing, have been used to
great effect to characterize the tumor type and micro-
environment,2,114 and specific gene signatures associ-
ated with stages of the disease.25,104,115,147 The
traditional tumor initiation hypothesis posits that
genetic transforming events in single cells, e.g., TP53

mutations110 or epigenetic changes,64 leads to clonal
expansion and the accumulation of additional genetic
changes. However, mutations in genes classically
associated with breast cancer, e.g., BRCA1, BRCA2
and TP53, account for less than 25% of the excess risk
associated with family history.115 Thus, there are likely
other transformation pathways that initiate the dis-
ease. For example, this traditional view has recently
been challenged by the cancer stem cell (CSC)
hypothesis in which differentiated cancer cells, which
are unable to self-renew, are the progeny of a popu-
lation of self-renewing CSCs.16,106,115. These
tumorigenic cells can then recruit (or phenotypically
transform) many other cell types which collectively
form the microenvironment of the growing tumor
(Fig. 1). Interactions between the tumorigenic cells and
the microenvironment, and even the cellular composi-
tion of the microenvironment, is a complex function of
many factors.73 It is thought that autocrine and bidi-
rectional paracrine signaling regulates the tumorigenic
cell population (including CSCs), and these cells in
turn secrete factors which influence the makeup and
behavior of the microenvironment.82,116 However,
soluble signals are likely not the only important cues.
Physical changes, solid stresses, matrix stiffness, fluid
pressure and other biomechanical forces have also
been implicated in tumorigenesis and may influence the
recruitment of other cell types including circulating
tumor cells (CTCs), fibroblasts and immune cells
(recently reviewed by Shieh et al.127 and Lu et al.86).
The complexity of the tumor microenvironment may
even play a critical role in drug resistance (see Correia
et al.29). However, CSCs/CTCs and their respective
role in driving tumorigenesis remains controversial.
Yet another hypothesis, which builds upon an older
idea, is that tumorigenesis is actually a malfunctioning
wound-healing process.96 Whatever the initiation
events and source of heterogeneity, it is agreed that the
complexity of breast tumorigenesis complicates our
understanding of the disease, and ultimately limits the
development of effective targeted treatment options.

The transition from localized ductal carcinoma to
invasive and ultimately metastatic breast cancer is a
critical milestone impacting the clinical management
and outcome of the disease. One of the central pro-
grams associated with this transition is angiogenesis
(Fig. 1). Tumor angiogenesis is stimulated by many
factors, including reduced oxygen tension (i.e.,
hypoxia) which up-regulates the secretion of pro-
angiogenic signaling molecules by tumorigenic cells.56

Vascular endothelial growth factor (VEGF) is the most
potent angiogenic factor secreted by tumor cells in
response to hypoxia.39,43 Anti-angiogenic therapies
aimed at disrupting the molecular coupling between
hypoxia, VEGF signaling, and tumor angiogenesis
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initially showed great promise.40 Several of the regu-
latory axes which control VEGF expression in the
microenvironment, for example the role of oxygen ten-
sion, are relatively well understood. Oxygen in the
microenvironment is sensed by hypoxia inducible factor
1a (HIF1a) and the generationof reactive oxygen species
(ROS).79,100 HIF1a mediates the initial phase of the
angiogenic program by forming a transcriptionally
active complex with HIF1b and co-activators such as
p300. The stability of the HIF1a subunit is oxygen-
dependent.117 In normoxic conditions, hydroxylation at
two prolyl residues (P402 and P564) by PHD proteins
promotes the association ofHIF1awith theVonHippel-
Lindau (VHL) E3 ubiquitin ligase and subsequently
leads to degradation. An additional hydroxylation site
at N803 near the C-terminus of HIF1a is regulated by
the asparaginyl hydroxylase FIH. Hydroxylation at
N803 does not influence stability; rather, it blocks the
interaction of the HIF1a C-terminal domain with tran-
scriptional co-activators such as p300. Activated HIF1
up-regulates the expression of many factors including

VEGF and Interleukin-8 (IL-8).146 On the other hand,
ROSpromotes nuclear factor jB (NF-jB) activation.100

NF-jB also regulates both VEGF and IL-8 expres-
sion.100,146 The exact relationship between ROS and
NF-jB activation is unclear; ROS has been hypothe-
sized to activate serine kinases which in-turn phopsho-
rylate the N-terminal serine residues (S32/S36) on
IKK.44 Unfortunately, the initial success of the anti-
VEGF-A monoclonal antibody bevacizumab has been
reexamined in light of clinical evidence suggesting anti-
VEGF therapy often prolongs patient survival by only
months, without offering an enduring cure.72 Studies
have also emerged questioning the overall survival
advantage of bevacizumab in combination with che-
motherapeutics,98 while other studies suggested that
even short-term exposure to potent anti-angiogenic
therapiesmight actually induce invasiveness.36,108 These
studies, in combinationwith potential safety concerns,27

led theUS Food andDrugAdministration (USFDA) to
remove the breast cancer indication from the bev-
acizumab label.

FIGURE 1. Schematic of the tumor microenvironment. Breast cancer initiation, invasion and metastasis span multiple length and
time scales. Molecular events at short length scales lead to an initial tumorigenic population, which left unchecked by immune
action, acts at increasingly longer length scales until eventually the cancer cells escape from the primary tumor site. One of the
central programs associated with this transition is angiogenesis. Tumor angiogenesis is stimulated by reduced oxygen tension
(i.e., hypoxia) which up-regulates the secretion of pro-angiogenic signaling molecules, e.g., VEGF, Interleukin-6 (IL-6) and Inter-
leukin-8 (IL-8) by tumorigenic cells and other cell types in the tumor microenvironment. These signals then initiate autocrine and
paracrine programs which shape the chemical, mechanical and cellular composition of the microenvironment.
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The finding that anti-VEGF therapy may induce
invasiveness seemingly contradicts years of dogma
suggesting VEGF-induced vessel recruitment is essen-
tial for cancer progression. Carmeliet and coworkers
recently reviewed two of the leading hypotheses
explaining this apparent contradiction.84 The first has
suggested that reduced angiogenesis selects for a
hypoxia-tolerant tumorigenic population that is better
adapted to the low-oxygen microenvironment.18 These
hyper-tolerant tumorigenic cells thrive in the noxious
microenvironment by adapting their metabolism or
escape by inducing invasive programs such the epi-
thelial mesenchymal transition (EMT).18 The role of
EMT in cancer progression and metastasis has long
been recognized.55,140 However, this population of
hyper-tolerant tumorigenic cells may also recruit other
vascular precursor cell types, for example angiocom-
petent bone marrow-derived cells,52 or co-opt existing
vasculature that is not inhibited by anti-VEGF ther-
apy.15 Ebos and coworkers suggested a second
hypothesis where VEGF inhibitors induce a chroni-
cally inflamed state characterized by the expression of
several factors including stromal cell-derived factors
1-alpha (SDF1a), placenta growth factor (PlGF),
interleukin-6 (IL-6), erythropoietin, osteopontin, and
other cytokines.35 These cytokines may then recruit
angiogenic bone marrow-derived endothelial and
myeloid progenitors,70 many of which express vascular
endothelial growth factor receptor 1 (VEGFR1), thus
their recruitment is not blocked by VEGF inhibitors.70

Both of these hypotheses involve the recruitment of
immunomodulatory cell types by the secretion of
cytokines and other factors. The integration between
the immune system, inflammation and cancer pro-
gression (including the modulation of the CSC popu-
lation) is an emerging area with classical roots.34 The
immune system can both inhibit and stimulate
tumorigenesis, where these influences are mediated by
complex mechanisms.93 Inflammatory signals, such as
Interleukin-6 (IL-6) and IL-8, are secreted by many cell
types in the microenvironment.147 IL-6 is known to
promote breast cancer progression,125,126 and serum
levels of both IL-6 and IL-8 correlate with patient
outcome.14,124 Interestingly, both IL-6 (via the GP130
receptor) and IL-8 (via the CXCR1 receptor) have also
been shown to directly regulator breast cancer stem cell
(BCSC) self-renewal.64 The expression of both of these
cytokines is regulated by NF-jB,12 thereby potentially
linking this critical signaling axis with ROS formation
in hypoxic environments.

Ex Vivo Experimental Models

The development of effective anti-angiogenic ther-
apies depends critically upon a comprehensive

understanding of proliferation and vascularization
programs and the interaction of these programs with
the microenvironment. Multiscale simulation tools in
combination with high-fidelity ex-vivo experimental
models can help unravel this complexity.111 However,
multiscale models require fine-grained training and
validation data to be successful. Unfortunately, wide-
ranging but fine-tuned experimental control of the
receptor signaling cascades involved in angiogenesis or
other tumorigenic processes is not possible with cur-
rent in vitro and in vivo approaches. For example,
conventional angiogenesis models (e.g., tube formation
on Matrigel) fail to capture: (i) the intrinsic, three-
dimensional morphology and diffusion-limited for-
mation of intratumor niches, (ii) microscale integration
of multiple cell types within physiologically relevant
architectures, and (iii) coupling to a vascular interface
that provides systemic convective transfer of endocrine
signals and other cellular nutrients. Tissue engineering
approaches to model tumor physiology have recapit-
ulated the reaction-diffusion processes of solid tumors
and begun to elucidate the microphysiological details
of the angiogenic and other tumorigenic processes.
These advancements have been enabled by new syn-
thetic materials,88 development of microfluidic lab on a
chip technologies33,63 as well as a new appreciation for
the significant role played by the microenvironment in
shaping tumor progression.86 The integration of
microfluidic and three dimensional tissue engineering
technologies permits control over and monitoring of
the soluble microenvironment experienced by
cells.21–26 Nelson et al.105 developed one of the first
three-dimensional patterning techniques to construct
multicellular epithelial tissues in three-dimensional gels
composed of extracellular matrix (ECM) proteins.
Using this patterning technology, they later explored
the signaling forces driving cell organization in engi-
neered three dimensional mammary ducts101 as well as
how complex interactions between mammary progen-
itor cells and the microenvironment drive cell fate
decisions.75 Using three-dimensional polymeric scaf-
folds to mimic the tumor ECM, we recently showed
that dimensionality (i.e., two-dimensional vs. three-
dimensional), hypoxia, and integrin engagement play a
critical role in VEGF and IL-8 up-regulation.42,43

Zheng et al.153 created ex-vivo microvascular networks
using human umbilical vein endothelial cells (HU-
VECs) seeded into microfluidic circuits formed via soft
lithography in a type I collagen gel. They quantified
sprout formation following exogenous administration
of vasculogenic medium throughout the device. Seok
and coworkers used a similar three-dimensional
microfluidic strategy to explore sprouting in the pres-
ence of angiopoietin 1 (ANG-1) and VEGF gradi-
ents.68,128 Engineered culture systems could advance
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studies of tumor vascularization by faithfully repli-
cating the in vivo microenvironment, while providing
highly quantifiable, and controlled conditions. Micro-
fluidic devices have also been used to reconstruct
realistic microenvironmental mimics to study other
processes important in breast tumorigenesis e.g., dif-
ferentiation and migration.62 These experimental tools
and others, such as bead-based methods,103 when
combined with mathematical models of signaling
driving the evolution of the microenvironment, could
unravel the complexity of tumor vascularization and
perhaps identify molecular targets for improved pro-
angiogenic therapies.

MULTISCALE MODELING METHODS IN

CANCER

Many factors act in concert to drive tumor forma-
tion. These forces act across multiple length and time
scales, involve heterogenous cell populations and in-
volve both biophysical and biochemical cues. To
understand how these disparate forces drive tumor
formation generally, and breast cancer tumorigenesis
in particular, we need to develop predictive multiscale
models. Multiscale models of tumorigenic processes
e.g., growth-factor induced proliferation or angiogen-
esis dynamics are not new. Mathematical models
exploring this space of problems have been developed
since the 1970s (see Quatub et al.119 for a review
angiogenesis models). A wonderful compilation of
recent work in multiscale modeling has been organized
in a book edited by Deisboeck and Stamatakos.31 The
individual chapters (authored by several groups)
describe the application of agent based and continuum
modeling strategies to study several cancer types,
including breast cancer. Moreover, several journals
have dedicated special issues to multiscale simulation
methods and their application to cancer modeling.121

While the objectives of multiscale simulation studies
have not changed in several decades, current models
are significantly more sophisticated. This increased
sophistication has largely been driven by increased
biological understanding and the rapid increase in
computing power.

Multiscale strategies can broadly be organized into
continuous, discrete and hybrid approaches. Continu-
ous approaches use continuum mechanical principles
encoded in partial differential equations (PDEs) or
integral partial differential equations (IPDEs) to
describe the variation of population-averaged phe-
nomena, e.g., tumor cell density as a function of space
and time. Continuum models offer the advantage of
easily describing whole tumor dynamics, including
complex physical phenomena such as interstitial

pressure gradients and convective transport from the
tumor.65 For example, Murray and coworkers used
continuum approaches to model prostate cancer137 and
many aspects of glioma formation,136 including the
response to treatment.135 More recently, Swanson and
colleagues used continuum approaches to model glial
progenitor cell recruitment.94 Continuous approaches
have also been used to explore therapeutic antibody
distribution in tumors,142 as well as the design of
therapeutic antibodies.120 While these and other con-
tinuum studies have generated nontrivial insights,
continuum models are limited to a population-aver-
aged picture of the tumor. This is an issue if you are
interested in population distributed behavior at the
cellular and subcellular length scales, or the behavior
of your system is strongly stochastic. On the other
hand, discrete approaches such fully stochastic simu-
lations, can predict emergent properties generated by
interactions between individual cells.23 Fully stochastic
methods, such as the next subvolume method (NSM),
naturally integrate stochastic reaction dynamics with
physical models.57 Unfortunately, stochastic methods
such as NSM typically scale poorly with problem size.

Agent Based Models (ABMs)

In between continuum and fully discrete approaches
are hybrid strategies. Perhaps the best known hybrid
strategy in the cancer and complex systems community
is agent based modeling (ABM).17 ABMs are a class of
simulation in which combinations of autonomous ac-
tors or agents are embedded in a spatially and tem-
porally varying computational universe. Both the
agents and universe may have state, meaning variables
or variable combinations which describe the current
configuration of the system. The stateful agents indi-
vidually interact with the universe (and each other)
using predefined rules. These interactions can be two-
way, i.e., the state of the agents can be informed by the
universe (often governed by continuum mechanics),
and conversely the state of the universe can inform the
agents (Fig. 2). Integration between the behavior of
the agents and the microenvironment occurs naturally
by making the behavior rules functions of spatially or
temporally distributed microenvironmental variables.
Arguably, ABMs have had the largest impact simu-
lating morphogen-induced developmental pro-
grams50,141 as well as immunological processes such as
cell trafficking.9 However, ABMs have also proven
useful in modeling tumorigenesis,1,134 subprocesses
such as normal and pathological angiogenesis30,81 and
microvascular patterning.112 ABMs have also been
used extensively in ecology,51 epidemiology,22 crowd
behavior102 as well as non-biological fields such as
transportation management.17 Thus, ABM is a
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powerful technique with wide applicability to a broad
spectrum of problems, not just modeling cancer pro-
gression.

There are two schools of thought governing ABM
rule formulation. Top-down approaches, which have
traditionally been the most popular strategy, encode
system attributes as coarse-grained empirical rules
which describe global control mechanisms. Often these
rules are based on experimental observations, thus top-
down ABMs can predict sophisticated cellular behav-
ior without mechanistic information.23 Furthermore,
software packages, e.g., NetLogo129 or CompuCell4

facilitate ABM formulation and simulation, making
this strategy easy to implement. On the other hand,
bottom-up approaches use mechanistic signal trans-
duction pathway models to inform the behavior of
agents. Each agent in the simulation is equipped with
these signaling networks. Thus, the signaling profile of
each agent can vary as a function of time and position,
within the microenvironment. This integration allows
agents to make complex decisions which vary as the

extracellular microenvironment varies. Moreover, if
these signaling programs result in secretion, the agents
can transform the local extracellular matrix or initiate
autocrine or paracrine signaling programs. The
advantage of a bottom-up strategy is the direct cou-
pling of agent behavior with cellular or subcellular
signaling programs. Arguably one of the most
advanced examples of a bottom-up biophysical tumor
simulation is the recent vascularized tumor growth
model of Perfahl et al.113. In the Perfahl et al. study, a
comprehensive simulation that integrated several bio-
physical and biochemical facets of tumorigenesis e.g.,
blood flow, angiogenesis, vascular remodeling, extra-
cellular transport and nutrient-dependent cell cycle
dynamics was used to explore three-dimensional tumor
formation. While the solid tumors simulated were not
breast tumors, the strategy used in the Perfahl et al.
study could be easily adopted to model breast
tumorigenesis. Of course the Perfahl et al. study was
build upon or extended several other important pre-
vious multiscale studies.91,107 The integration of

FIGURE 2. Schematic of a generic bottom-up ABM strategy. A three-dimensional computational domain representing the
microenvironment is discretized into well-mixed microcompartments. The extracellular state e.g., the concentration of pO2 or
VEGF in each of the microcompartments is governed by the solution of continuum mass balances equations (partial differential
equations). Agents representing different cell-types, each equipped with perhaps many signal processing networks, are embedded
into the computational microenvironment and allowed to evolve according to rules that are functions of the output of the signaling
networks. The agents make decisions about possible actions e.g., move, proliferate, differentiate etc. by evaluating the network
models. Thus, the decisions of the agents depend upon both the position and temporal state of the agent.
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subcellular networks with macroscopic tumor forma-
tion, also potentially allows bottom-up ABMs to be
useful as in silico surrogates for therapeutic target
identification, or ultimately to understand the mor-
phological outcome of cellular mutations. For exam-
ple, Rejniak et al. used the IBCell framework to
simulate the formation of epithelial structures e.g.,
hollow acinar structures which were qualitatively
consistent with three dimensional MCF10A cell cul-
ture studies.122 This study was important in two ways.
First, it an excellent case study of the integration of
experimental tools with multiscale simulation. Second,
the authors performed a parameter sampling calcula-
tion that identified regions of distinct epithelial mor-
phologies. These possible configurations were then
validated with engineered MCF10A cell lines. The
latter aspect of this study firmly established that bot-
tom-up multiscale models could be used as predictive
tools. However, including mechanistic information can
also be a disadvantage; intracellular signal transduc-
tion models are difficult to formulate, identify and
validate. This is especially true in breast cancer because
of the multiple cytokine and growth-factor signaling
axes involved in the disease.76 Thus, one of the central
challenges to using bottom-up ABMs is the identifi-
cation of the signal transduction models used in the
rule sets. Typically, these models are formulated as a
coupled system of nonlinear ordinary differential
equations (ODEs), however many other model for-
mulations could be possible.71

To formulate and solve ODE signaling models
requires a deep understanding of both network struc-
ture and model parameters. The rates of biochemical
or biophysical transformations within ODE models
can be described using a variety of kinetic formula-
tions, e.g., mass-action kinetics.24 These various kinetic
forms have a variety of parameter types that must be
estimated or measured. The parameter estimation
problem is often very difficult, given the underdeter-
mined and noisy nature of most training data sets.
Moreover, signal transduction models typically exhibit
complex behavior with respect to inputs and their
parameters. For example, models of growth factor,
hormone signaling, differentiation and MAPK signal-
ing all showed threshold or switch-like behavior.7–138.
Thus, it is often impossible to uniquely identify
parameters in signaling models, even with extensive
training data.46 Despite identification standards47 and
the integration of model identification with experi-
mental design,11 parameter estimation remains chal-
lenging. Towards this issue, a number of groups have
turned to ensemble methods. Instead of identifying a
single (but uncertain) model, the goal of an ensemble
approach is to identify a family of models consistent
with, and constrained by, the available experimental

data. This strategy has been used in systems biology
and other fields like weather prediction to identify
parameter rich models using incomplete or sparse
data.74–109 Their central value is the ability to constrain
model predictions despite uncertainty in the model
parameters (and sometimes structure). For example,
Sethna and coworkers showed that an ensemble of
growth factor signaling models gave good predictions
despite incomplete parameter information (sometimes
only order of magnitude estimates).20 They further
showed that model ensembles were predictive using
many different mathematical model formulations.54

Model ensembles have also been hypothesized as a
general coarse-grained means to capture population
distributed phenomena when stochastic simulation is
too expensive. For example, the population specific
translation regulation77 or the response of a patient
population to treatment.87 There are several numerical
techniques to generate model ensembles. Battogtokh
et al. introduced a Metropolis-type random walk
strategy97 to estimate an ensemble of models describ-
ing the quinic acid gene cluster of Neurospora crassa.13

This Monte Carlo strategy was later modified by
Tasseff et al. to control for ensemble correlation in
models of prostate cancer,138 and later Retinoic Acid
(RA) induced differentiation of hematopoietic pre-
cursors cells.139 A similar Markov-Chain Monte Carlo
technique was developed by Song et al. to generate a
family of models describing Neutrophil trafficking in
Sepsis.132 Other strategies such as the Pareto optimal
ensemble technique (POET), a multiobjective optimi-
zation strategy which uses simulated annealing to
sample parameter space, have also been pro-
posed.130,131 POETs has been used, in combination
with cross-validation, to generate predictive ensembles
for several networks including fundamental programs
such as translation initiation.77 Taken together, iden-
tification of intracellular signal transduction models
that are parameter rich will continue to be a challenge.
However, ensembles are one strategy to develop rea-
sonably predictive models which could be useful for
ABM simulations, despite uncertainty.

Perhaps the more fundamental challenge to devel-
oping predictive signal transduction models is repre-
senting the signaling network architecture. Yeast Two-
Hybrid (Y2H),41, Fluorescence Resonance Energy
Transfer (FRET)150 or Chromatin Immunoprecipita-
tion (ChIP) combined with DNA-microarrays
(ChIP-chip) or high-throughput DNA-sequencing
(ChIP-seq) techniques92 have all been used to estimate
protein–protein or protein–DNA interactions. These
techniques when combined with low-throughput
immunoprecipitation have been the basis for most
experimental network discovery. Computational motif
discovery,99 network discovery and reconstruction
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using high-throughput data sources145,149 or text min-
ing,3,38 have also contributed significantly to network
identification. These studies and many others have led
to comprehensive on-line network databases such as
STRING,67 NetworKIN,80 PhosphoSitePlus60 or
KEGG6 which continue to evolve as new information
is made available. On-line model repositories such as
the BioModels database78 have also been created to
archive published signal transduction models. Thus, as
more network architecture information becomes
available, and model development continues to evolve
perhaps the challenge of developing comprehensive
signal transduction simulation models will decrease.
However, for the foreseeable future, biologically real-
istic network models are likely to be parameter rich
and data poor, even with the advent of advanced
analytical techniques.

Despite identification challenges, there are several
examples where bottom-up strategies have been used
to integrate subcellular data with the microenviron-
ment.32 Deisboeck and coworkers developed a number
of ABM simulations exploring growth-factor signaling
within brain and non-small cell lung cancer (NSCLC)
tumors. An ODE-based epidermal growth factor
(EGF) signaling model was embedded within two- and
three-dimensional computational domains, where the
spatial-temporal dynamics of the microenvironment
domain was governed by PDEs. This framework was
then used to explore a number of complex questions:
the role of epidermal growth factor receptor (EGFR)
density in tumor progression,8 the influence of genetic
instability in tumor heterogeneity,152 the components
that control the proliferation-to-migration switch for
brain tumors,151 and the role of EGF and TGFb signal
integration in non-small cell lung cancer.144 Macklin
et al. used an ABM approach to investigate breast
ductal carcinoma in situ (DCIS),90 using patient-spe-
cific molecular and cellular measurements to calibrate
their model. Likewise, Frieboes et al. used multiscale
modeling to identify specific functional relationships
linking tumor growth and regression to the underlying
phenotype of breast cancer following chemotherapy.45

Simulations of the factors controlling tumor shape and
morphology is another area where ABMs have made
an impact. For example, Engler et al. used multiscale
modeling to investigate how emergent properties of
adhesion-directed multicellular structures sculpt the
tissue, promote its functionality, and maintain its
homeostasis.37 While the majority of bottom-up deci-
sion networks are mechanistic, non-mechanistic net-
work models have also been used to guide agent
behavior. For example, Gerlee and Anderson used a
neural network formulation where extracellular vari-
ables formed the input layer, intracellular variables
were the hidden layer and phenotype was the output

layer.48 The neural-network agent framework was used
in several studies of the general properties of invasion
and tumorogenesis,5,49 including the response of the
tumor to treatment.59 Potentially, other hybrid mech-
anistic models, such as discrete logic models, could also
be used in the ABM rules.123

There is growing enthusiasm for using signaling
assisted multiscale models as tools for therapeutic
target discovery and validation.143 However, the sig-
naling models used to date have not been compre-
hensive, typically containing perhaps two abstracted
pathway architectures at most. Thus, while the concept
of using bottom-up ABMs for drug discovery is
intriguing, the description of the biology must be sig-
nificantly expanded to capture the intricate responses
of signaling architectures to perturbation. Increasing
the level of detail of the signaling architectures used by
agents brings several challenges. We have already
mentioned the challenges of network model identifi-
cation. Assuming we already have identified network
models, the next big challenge is then the scaling per-
formance of the simulation. While the exact perfor-
mance of bottom-up ABM simulations is problem-
specific, in the worst case we would expect exponential
scaling with the number of agents. Thus, detailed
simulations using many bottom-up agents, each
equipped with multiple decision networks, is not trac-
table on single processor machines. However, this is a
common issue faced in many multiscale modeling
application domains. For example, combustion appli-
cations often have chemical reaction networks with
hundreds or thousands of species which are coupled to
turbulent flow models. For these problems, Pope and
coworkers developed the in situ adaptive tabulation
(ISAT) algorithm which minimizes expensive function
updates. Interestingly, the ISAT strategy has resulted
in speed-ups of up to a thousand-fold for complex
combustion calculations.85 While ISAT has not been
applied to bottom-up ABMs, this and other high-
performance computing strategies could be adapted to
facilitate increasingly detailed multiscale simulations.

CONCLUSIONS

Breast cancer initiation, invasion and metastasis
span multiple length and time scales. Molecular events
at short length scales lead to an initial tumorigenic
population, which left unchecked by immune action,
acts at increasingly longer length scales until eventually
these cells escape from the primary tumor site. This
series of events is highly complex, involving multiple
cell types interacting with (and shaping) the microen-
vironment. Multiscale mathematical models have
emerged as a powerful tool to quantitatively integrate
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the convective-diffusion-reaction processes occurring
on the systemic scale, with the molecular signaling
processes occurring on the cellular and subcellular
scales. In this study, we reviewed the current state of
the art in cancer modeling across multiple length
scales, with an emphasis on the integration of intra-
cellular signal transduction models with pro-tumori-
genic chemical and mechanical microenvironmental
cues. First, we reviewed the underlying biomolecular
origin of breast cancer, with a special emphasis on
angiogenesis. Then we summarized the development of
tissue engineering platforms which could provide high-
fidelity ex vivo experimental models to identify and
validate multiscale simulations. Lastly, we reviewed
top-down and bottom-up multiscale strategies that
integrate subcellular networks with the microenviron-
ment. Taken together, we expect as the sophistication
of the simulations increase, that multiscale modeling
and bottom-up agent-based models in particular will
become an increasingly important platform technology
for basic scientific discovery.
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