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Abstract—This study investigates the performance of a new
statistically driven acute ischemia detection algorithm that
can process data from two bipolar cutaneous or subcutane-
ous leads. During a start-up phase, the algorithm processes
electrocardiogram signals to determine a normal range of
ST-segment deviation as a function of heart rate. The
algorithm then generates upper and lower ST-deviation
thresholds based on the dispersion of the baseline
ST-deviation data. After the start-up phase, persistent
ST-deviation that is beyond either the upper or lower
thresholds results in detection of acute ischemia. To test the
algorithm, we performed long-term (10 day) Holter monitor-
ing in a control group of 14 subjects. We also performed
Holter monitoring during balloon angioplasty, and for 2 days
after surgery, in 30 subjects who underwent elective percuta-
neous coronary interventions (‘‘PCI’’). We determined the
percentage of balloon inflations the algorithm detected
without producing false positive detections within the control
group 10-day daily life data. The algorithm detected 17/17
LAD occlusions, 7/8 LCX occlusions, and 8/9 RCA occlu-
sions. Our results suggest that automatically generated,
subject-specific, heart-rate dependent ST-deviation thresholds
can detect PCI induced myocardial ischemia without resulting
in false positive detections in a small control group.

Keywords—Implantable acute ischemia monitor, ST-segment

deviation, Balloon occlusion.

ABBREVIATIONS

LU Left Up Lead
LD Left Down Lead

INTRODUCTION

A chronically implanted monitor that provides an
early warning of acute ischemic events could greatly
reduce symptom-to-treatment delays that are associated
with increased risk of death and increased irreversible
cardiac tissue damage. Rapid detection and treatment
allows therapy to be delivered while the patient can still
obtain significant benefit. This ‘‘early’’ intervention will
predictably lead to improved patient outcomes.4 The
first implanted ischemia detection and alerting device
(the ‘‘AngelMedGuardian�’’) is currently undergoing a
pivotal FDA trial in the United States.3,5

This device detects ischemia by analyzing electro-
cardiographic (ECG) signals. Electrocardiography is
acknowledged to be imperfect, but nonetheless ‘‘lies at
the center of the decision pathway for the evaluation
and management of patients with acute ischemic dis-
comfort.’’1,2 Specifically, clinicians analyze ST-segment
shifts to diagnose acute ischemic events. Similarly, the
AngelMed Guardian� detects acute ischemia by
detecting abrupt changes in ST-segment voltage.3,5 The
ST-segment is the portion of an ECG signal just after
the QRS complex and before the T-wave.

If a patient’s ST-segment voltage is significantly ele-
vated (>1 mm) above the iso-electric line on a 12-lead
surface ECG, in two or more contiguous surface leads,
the patientmay be diagnosedwith an ST-elevation acute
myocardial infarction, also known as a ‘‘STEMI.’’1,2 In
contrast, if the ST-segment voltage is significantly
depressed (>1 mm) below the iso-electric line on a
12-lead ECG in two or more contiguous surface leads,
the patient may be diagnosed as having unstable angina
(UA) or non-ST-elevation acute myocardial infarction,
known as ‘‘NSTEMI.’’ In some cases this ST-segment
depression may also represent a true STEMI arising
from transmural ischemia in the posterior wall of the left
ventricle (‘‘true posterior MI’’).
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The AngelMed Guardian� was designed to detect all
abrupt changes in ST-deviation regardless of the
polarity of those changes, in order to alert patients of an
acute ischemic event so that they may obtain further
diagnosis and treatment at a hospital. This device detects
acute ischemic events by applying patient-specific, sta-
tistically derived thresholds to ST-segment data, using a
patient’s own baseline ST-segment history as the ‘‘con-
trol.’’ ST-segment data is derived from an electrogram
recorded from a lead implanted at or near the apex of the
right ventricle. A device that could utilize subcutaneous
leads may obviate the potential risks that are associated
with an intracardiac lead, such as intracardiac infection,
cardiac tamponade, and lead fracture. However, sub-
cutaneous signals are generally noisier than intracardiac
signals, such that the algorithm employed by the
AngelMed Guardian� may not be optimal for the rela-
tively noisy subcutaneous environment.

Very few subcutaneous acute ischemia detection
devices are described in the literature. Song et al.10

disclose a monitor that measures ST-segment changes
in two relatively short cutaneous/subcutaneous bipolar
leads and that detects ischemia based on absolute
voltage shifts. Stadler et al.11 describe an ischemia
monitor that measures ST-segment deviation by sub-
tracting a baseline filtered ST time series from a short
term filtered ST time series. Ischemia is detected based
on absolute voltage criteria.

A statistical approach to ischemia detection has
been implemented by Smrdel and Jager,9 who describe
a sophisticated algorithm that classifies a long term
record based on a statistical analysis of the entire
record. However, this algorithm is not directed to real-
time acute ischemia detection, and it is more complex
than is desirable for an implantable device. Similarly,
the computational cost of principal component anal-
ysis based techniques7,8 excluded them from consider-
ation for an implantable device.

We developed a new algorithm, suitable for real
time detection in an implantable device, that employs a
novel statistical scheme to analyze heart-rate depen-
dent ST-segment voltage data and that is tailored to
handle the noisy subcutaneous environment. The
present work first describes our algorithm, and then
assesses its performance with respect to clinical Holter
data collected from two non-standard bipolar body
surface leads.

MATERIALS AND METHODS

Subjects

Holter data were recorded from both a healthy
population of 14 volunteers (‘‘Control group’’) and 30
volunteers (14 from the University of Utah in Salt

Lake City, UT and 16 from Borgess Medical Center in
Kalamazoo, MI) who underwent balloon inflations
during percutaneous coronary interventions (‘‘PCI
group’’). All of the volunteers were scheduled to
undergo elective PCI. The study protocol was
approved by the Institutional Review Boards of Bor-
gess Medical Center and the University of Utah
Medical Center.

Holter Recording Protocol

Control Subjects

Daily-life recordings were obtained in the Control
subjects, each who were monitored nearly continu-
ously over a 10-day period. Control subjects were
allowed a break of up to 2 h per day (e.g., to take a
shower) but were otherwise monitored. At least some
of the Control subjects engaged in normal activities
such as jogging and weight lifting, and more extreme
activities such as riding on a roller coaster.

PCI Subjects

PCI subjects were monitored for a 1–2 h period
before their PCI procedures, during the procedures,
and then during daily-life for 2–4 days thereafter. In
two PCI group subjects, the daily-life recordings
occurred before their PCI procedures, rather than
after. Inflations lasted between 30 and 230 s, with all
inflations at the University of Utah lasting approxi-
mately 90 s. The treated arteries included: eight left
circumflex (LCX), nine right coronary (RCA), and 17
left anterior descending (LAD).

At Borgess, subjects were excluded from the study
if balloon inflation did not induce changes in
ST-deviation of at least 1 mm in leads V2, V3, I, II
or III, which were monitored during the procedure.
Six out of 24 Borgess patients were excluded based
on these criteria. The inflation times (in seconds) for
these disqualified patients were 31, 24, 25, 125, 45,
and 180, respectively. The corresponding inflated
arteries were: LCX, RCA, RCA, distal LCX, LAD,
and LAD. At Borgess, in the case of an ambiguous
ST-deviation response during the procedure, long
term monitoring was performed, and two out of 18
Borgess patients who were monitored long term were
excluded due to a lack of an inflation induced change
in ST-deviation of at least 0.1 mV in leads V2, V3, I,
II, or III. The arteries were the LCX and posterior
descending artery.

For the University of Utah dataset, three of 17
inflations were excluded due to a failure to produce a
change in ST-deviation of at least 0.1 mV in leads V2,
V3, I, II, or III. The artery in all three cases was the
RCA.
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Instrumentation

Northeast Monitoring (NEMon) Holter monitors
were used for data collection. For the PCI group,
Holter monitors were outfitted with radiolucent leads
from Vermed, Inc. The sampling rate was 360 Hz, the
high pass filter was 0.05 Hz and the low pass filter was
70 Hz. For long term monitoring, 10 s data segments
were acquired every 30 s. For short term pre-PCI and
PCI monitoring, data was acquired continuously to
ensure that the entire inflation sequence was captured.

Data Pre-Processing

In order to emulate the sampling rate limitations of
an implantable medical device, the data were down-
sampled from 360 to 200 Hz. The data were then
processed by an algorithm that automatically detected
and removed gaps and very noisy portions in the
10-day Control group recordings. This preprocessing
was necessary because the records contained noise due
to such factors as electrodes that accidentally fell off or
that were temporarily removed to enable subjects to
take showers. The pre-processing involved performing
beat detection on an entire record and assessing the
record’s high frequency content by summing the
absolute values of the first finite difference of the signal
within segments of the data. Segments of data were
removed if: (i) the high frequency noise exceeded a first
empirically determined threshold, (ii) the number of
detected beats within a segment was smaller than
physiologically possible, or (iii) the detected beats
corresponded to a highly irregular rhythm and the high
frequency noise exceeded a second empirically deter-
mined threshold. This rejection procedure resulted in
the elimination of approximately 5% of the raw data.

For the PCI group, to create a long-term daily-life
dataset which could serve as a baseline for detecting
inflations, data from the 2-day post-surgical period
was inserted into the beginning of a patient’s record.

Long term baseline data was acquired post-procedure
rather than pre-procedure mainly due to practical
issues pertaining to subject recruitment. The data col-
lected during the PCI interval then followed, with the
last 10 s of the inflation repeatedly concatenated into
the end of the record in order to form a 10 min interval
of data. (In real life, dangerous ischemic events gen-
erally last at least 10 min.)

Lead Placement

Figure 1 shows the locations of the two bipolar
leads that we used to record data analyzed by our
ischemia detection algorithm. The figure shows the
leads superimposed on contour maps, published by
Horacek et al.6 that represent changes in ST-deviation
induced by balloon occlusions of the LAD, RCA, and
LCX arteries. In particular, the contour maps show
ST-deviation voltages during balloon occlusion minus
pre-occlusion ST-deviation voltages. The maps are
averages over 15 patients each who experienced LAD,
RCA, and LCX balloon occlusions, respectively.
Based in part on this data, we selected a ‘‘Left Down
Lead’’ (LD) and a ‘‘Left Up Lead’’ (LU). The LD lead
records the voltage difference between the anterior left
chest (V2 lead position) and the lowest rib along the
mid-axillary line while the LU lead records the voltage
difference between the anterior left chest and the left
superior pectoral region.

Algorithm Overview

The algorithm evaluated here simulated a data col-
lection paradigm suitable for an implanted device.
Specifically, in order to conserve both memory and
power, 10-s long data segments were processed once
every 30 s. The algorithm extracted ST-segment infor-
mation from each 10-s segment of the daily life data and
computed statistically based, heart-rate dependent
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-130

+115

Front BackFront BackFront Back
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FIGURE 1. Holter electrode placement. The two bipolar leads analyzed for ischemia detection are the ‘‘left-down’’ (LD) and ‘‘left-
up’’ (LU) leads, which are shown superimposed on body surface maps of ST-deviation shifts caused by balloon occlusion. The
contour maps are averages over groups of 15 patients who experienced LAD, RCA, and LCX balloon occlusions, respectively. Data
from Horácek et al.6 Units are lV, contour interval varies.
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ischemia detection ‘‘metrics’’ that were functions of the
normal variability of ST-deviation. An ‘‘acute ische-
mia’’ detection occurred when a metric exceeded a
corresponding detection threshold for longer than
5 min.

A high level flowchart of the ischemia detection
algorithm and associated signal pre-processing is shown
in Fig. 2. The initial step involves acquisition of a 10 s
data segment, which is then filtered, amplified, and
converted to digital form. The first algorithmic step is
the assessment of the high frequency noisiness of the
segment by summing the absolute values of the first finite
difference of the signal for the entire segment, and
comparing the result to an empirically determined
threshold. Beat detection is performed only on segments
that are not too noisy. The RR interval between suc-
cessive beats is determined, and beats associated with an
abnormally short RR interval (e.g., premature ventric-
ular contractions) are excluded from further analysis.

The next step involves examining the QRS mor-
phology of remaining beats by applying tests to vari-
ous QRS parameters. For example, the time between
the maximum positive and maximum negative slopes
must be within a selected range for the beat to be
analyzed further. The ST-deviation for each accepted
sinus beat is then computed according to the voltage
difference between automatically determined ST and
PQ portions of each beat (described below). The
ST-deviation of an exemplary beat is shown in Fig. 3.

The ST-deviation of each beat is then compared to
both the last value in the filtered ST-deviation time series
(labeled ‘‘Current Long Term ST Deviation’’ in Fig. 2)
and the median long term ST-deviation (computed over
amulti-hour prior time period), to ensure that the beat’s
calculated ST-deviation is close to at least one of these
ST-deviation measures. (This test is not performed
during an initialization phase because no long term long-
term ST-deviation is yet available.) If the current beat’s
ST-deviation varies substantially from both of these
measures, its ST-deviation value is likely the result of
noise and is thus rejected. The ST-deviations of accepted
beats are averaged to generate an ST-deviation value for
the current segment, which is provided to an exponential
average filter, which updates the ST-deviation time ser-
ies (‘‘Current Long Term ST Deviation’’).

For each of a number of non-overlapping heart rate
ranges, the system maintains ST-deviation statistics.
This scheme allows heart rate dependence of ST-devi-
ation to be taken into account. To determine the heart
rate range associated with a current segment, the
average segment heart rate is computed and then
provided as an input to an exponential average filter.
The output of the exponential average filter is the
current long term heart rate (labeled as such in Fig. 2)
which determines the heart rate interval associated
with the current long term ST-deviation.

Once a day, the ST-deviation statistics are analyzed
to determine a person’s normal ranges of heart-rate
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FIGURE 2. Algorithm flowchart. A block diagram of the acute ischemia detection algorithm. Dashed lines indicate feedback. See
text for details.
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dependent ST-deviation. In the final step, ischemia
detection metrics are computed based on both the
current long term ST-deviation and the normal range
of ST-deviation for that heart rate. More specifically,
the ischemia detection metrics are functions of the
‘‘distance’’ between the current long term ST-deviation
and the upper and lower boundaries of ST-deviation
for a particular subject. Separate metrics are formed
for the LD and LU leads, respectively. Metrics that
combine information from the two leads are also
generated. Both the separate lead metrics and combi-
nation lead metrics are compared to respective
thresholds, and the algorithm detects acute ischemia
when any one of the metrics is above its threshold for
at least 10 consecutive segments, which is equivalent to
5 min (30 s/segment 9 10 segments = 300 s).

As will be further described below, the algorithm
requires various parameter values to generate
ST-deviation vs. heart rate histograms. All of these
parameter values were set based on a combination of
theoretical and empirical considerations. The same
parameter values were applied to both Control and
PCI data sets.

PQ/ST Segment Determination

With regard to the Fig. 2 flowchart, the determi-
nation and measurement of PQ and ST points are
performed in the block labeled ‘‘Computation of
PQ/ST Points and ST Deviation.’’ Both PQ and ST
points are automatically determined by locating
waveform regions of low curvature within a fixed
window referenced to a QRS fiducial point. These
candidate regions are then adjusted based on the ST
and PQ point locations of previously processed QRS
complexes. The adjustment ensures that the locations

of ST and PQ points, relative to a QRS fiducial point,
are similar from beat to beat.

For a discrete signal x(n), the ST point for the ith
QRS complex in the jth data segment is searched
within a fixed window (W1) defined W1 = [Su(i) + a,
Su(i) + b], where Su is a point on toward the end of
the QRS complex and a and b are positive integers
subject to b> a. Exemplary values of a and b are 2 and
12 samples, respectively. W1 and Su are shown in Fig.
3, which is a sample QRST waveform. The typical
QRS shape for both of the candidate leads (LD and
LU in Fig. 1) is characterized by a large final upstroke
known as an S wave. For these QRS complexes, Su is
the first sample after the nadir of the S wave at which
x¢(k1)< c*x¢(Smax(i)), where Smax(i) is the sample at
which the first finite difference of the ith QRS S wave
reaches its maximum value, x¢(k1) is the first finite
difference of signal x(n) at sample k1, and c is an
empirically determined parameter that we set at 5/8.

Within W1, a search is performed for consecutive
samples at which the second finite difference of the
waveform is less than a threshold that is referenced
to QRS amplitude: |x¢¢(n)|< d*QRSAav(j), where
QRSAav(j) is the average QRS amplitude of normal
beats within the jth segment and d is an empirically
determined parameter that we set to 1. If consecutive
samples (k2, k3) satisfying this condition are found,
then the ST point (ST) is set according to k1 and an
adaptive window (W2). In particular, if k2 falls within
W2, then ST(i) is set equal to k2. If k2 is outside ofW2,
then ST(i) is set equal to whichever of the boundaries
of W2 is closer to k2. The equation for the ST point
(when a qualifying pair of samples (k2, k3) is found), is
as follows:

STðiÞ ¼ max min k2;max W2ð Þð Þ;min W2ð Þð Þ; ð1Þ

Su(i)

W1

QRSF(i)

STint

W2

Computed
ST point

Computed
PQ point

ST Deviation

FIGURE 3. Beat fiducial points. A heart beat ECG tracing marked with various points and windows associated with the com-
putation of the ST point. See text for details.
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where W2 = [QRSf(i) + STint(t)-c, QRSf(i) +
STint(t) + d], QRSf(i) is the index of a QRS fiducial
point for beat i, c and d are positive integers that we set
to the value of 1, and STint(t) is the current value (at
discrete time index t) of an average of past values of the
QRS to ST interval: ST() 2 QRSf(). STint is then
updated according to an exponential average filter:

STint tþ 1ð Þ ¼ a �STint tð Þþ 1� að Þ � ST ið Þ�QRSf ið Þð Þ
ð2Þ

STint is initialized to an empirically determined value.
For dominant S wave QRS morphologies, QRSf(i) is
equal to the index at which the slope of the QRS of
beat i reaches its minimum value.

PQ points are determined in an analogous manner.
ST-deviation is then set equal to the difference in
average signal amplitude at the three samples centered
on the ST and PQ points respectively. Figure 3 dia-
grammatically shows ST-deviation with respect to a
particular heart beat.

Ischemia Detection Metrics—‘‘Distance Markers’’

The general detection strategy was to compare the
ST-deviation of current heart beats with previously
determined normal upper and lower boundaries for a
person’s ST-deviation. With regard to Fig. 2 flowchart,

this analysis occurs in the block labeled ‘‘Statistical
Analysis; Threshold Setting (Periodic).’’ Ischemia
detection metrics were based on the ‘‘distance’’
between a current ST-deviation measurement and
these (heart rate dependent) boundaries that define a
normal state of each patient. We tested two types of
‘‘distances’’: an absolute distance from the boundary
(e.g., if a current ST-deviation is 0.1 mV beyond a
boundary, the metric’s value is 0.1 mV); and a relative
distance from the boundary, based on the dispersion of
the data (e.g., if a measure of the dispersion is 10 U,
and a current ST-deviation is 2 U beyond a boundary,
then the relative metric is 2/10 = 0.2).

Relative distances were determined by ‘‘distance
markers.’’ Returning to the above example, the 10 U
measure of dispersion is a ‘‘distance marker.’’ Details
of the relative distance marker calculation process will
be described with reference to Fig. 4, which is a plot of
ST-deviation vs. heart rate derived from 2 days of LD
lead data from a Control subject. The y-axis value for
each point (blue circle) in the plot is a ‘‘Current long
term ST-deviation’’ value (Fig. 2) while the x-axis va-
lue is the corresponding ‘‘Current long term heart
rate’’ value.

The algorithm for computing relative distance
markers divides the heart rate into between 10 and 12
non-overlapping bins B1, B2,…,BN. For example, in
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FIGURE 4. A scatter plot of filtered ST-deviation vs. filtered heart rate for a subject from the Control group. The upper and lower
series of red circles are ‘‘distance markers’’ that form the basis for computing relative ischemia detection ‘‘metrics.’’ An ischemia
detection metric is a measure of the abnormality of a particular ST-deviation measurement. Higher values of the metric correspond
to greater levels of abnormality. If a current ST-deviation measurement is within the normal range (e.g., within the cluster of blue
circles) for a given heart rate, the metric value is 0. If a current ST-deviation measurement is outside of the normal range but not
beyond the pertinent red circle, the metric value is between 0 and 1. If a current ST-deviation measurement is beyond the pertinent
red circle, the metric value is greater than 1.
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Fig. 4, the sixth bin (B6) includes values associated
with the heart rate range from about 111 to 121 beats
per minute. The median ST-deviation for each bin x
(STm(Bx)) is computed. The upper and lower
boundaries for each bin are then computed by deter-
mining the ST-deviation values above and below
which there are only a small number (e.g., 10) of
points. This boundary location approach was imple-
mented because the ST-deviation data is non-
Gaussian (due in part to exponential averaging of the
ST-deviation time series) and tends to be character-
ized by relatively sharp boundaries with outlier points
that result from noise.

For each bin x with at least a minimum number
(Na) of elements, provisional upper and lower ‘‘dis-
tance markers’’, denoted by Du1(Bx) and Dl1(Bx)
respectively, are set based on measures of the disper-
sion of the data that are functions of the bin medi-
ans (STm) and the upper and lower boundaries STu
and STl, respectively. In particular, Du1(Bx) =

STm(Bx) + 2*(STu(Bx) 2 STm(Bx)) and Dl1(Bx) =

STm(Bx) + 2*(STl(Bx) 2 STm(Bx)). In Fig. 4,
(STl(B6) 2 STm(B6)) is indicated by the label V.

The provisional distance markers are then adjusted
in two ways. First, both positive and negative distance
markers for a particular heart rate bin (e.g., B6) are
adjusted based on the upper and lower boundaries of
ST-deviation over all heart rate bins. The use of this
global upper and lower boundary information enables
all distance markers to be set based on a relatively
larger data set, i.e., the set of all ST-deviations over all
heart rate bins, than the data in a single heart rate bin.
The final upper and lower distance markers (for bins
with at least Na elements) for bin x is:

Dl Bxð Þ ¼Dl1 Bxð Þ � Dl1 Bxð Þ �Dl1 maxbinð Þð Þ
�min 1; Dl1 Bxð Þ �Dl1 maxbinð Þð Þ=Sð Þ ð3Þ

DuðBxÞ ¼Du1ðBxÞ þ Du1 maxbinð Þ �Du1ðBxÞð Þ
�min 1; Du1 maxbinð Þ �Du1ðBxÞð Þ=Sð Þ ð4Þ

where Du1(maxbin) and Dl1(maxbin) are the provi-
sional distances for the bin with the largest lower and
upper ST-deviation boundaries, respectively and S is
a parameter that governs the amount of adjustment.
The value of the parameter S depends on the range of
ST-deviation; if that range is 1000, then a preferred
value for S is 2000. Na is an empirically determined
parameter that was set at 10. According to the above
equation, the closer that a provisional distance is to the
maximum distance marker, the less the adjustment.
Figure 4 shows an example of the global adjustment
effected by Eqs. (3) and (4). The provisional distance
marker for bin B3 is labeled.

Second, lower distance markers Dl1(Bx) are
adjusted to enhance sensitivity to ST depression if
subjects did not exhibit ST depression during the
baseline period in a particular lead. In particular, for
these subjects/leads, the lower distance markers were
increased according to:

DlðxÞ ¼ max DlðxÞ;STl minbinð Þ �Wð Þ; ð5Þ

where W is a parameter that depends on the range of
ST-deviation; if that range is 1000, then a preferred
value for W is 200. The application of Eq. 5 may result
in the increase of lower distance markers, which in turn
makes it more likely that even slight negative
ST-deviations will be detected as acute ischemia. If
there are less than Na points in a particular bin cor-
responding to a particular heart rate range, then
ischemia detection did not occur when the heart rate
was within the range.

Final Ischemia Detection Metrics

Relative metrics are based on the distance markers
(Eqs. (3)–(5)) and result in a unitless measure of the
degree of abnormality of a current ST-deviation. For
example, a positive ST-deviation in the LD lead may
be 75% beyond a person’s normal (heart rate depen-
dent) LD lead upper ST-deviation boundary, measured
as a percentage distance to the upper distance marker.

More specifically, the final upper and lower metrics
(Mu(Bx) and Ml(Bx)) that are compared to thresholds
to detect ischemia are:

MlðBxÞ ¼max 0; STcurrent Bxð Þ � STl Bxð Þð Þð =

Dl Bxð Þ � STl Bxð Þð ÞÞ ð6Þ

MuðBxÞ ¼max 0; STcurrent Bxð Þ � STu Bxð Þð Þð =

Du Bxð Þ � STu Bxð Þð ÞÞ ð7Þ

Thus, for example, if a current ST-deviation is
below the upper boundary (STu(Bx)), then Mu(Bx) is
0. As an example of an ST-deviation that results in a
positive metric, in Fig. 4, the Ml(B6) for the data point
labeled as ‘‘E’’ is approximately 0.75. To detect acute
ischemia, this value of 0.75 is then compared to a
threshold.

The ST-deviation metrics of individual leads were
combined by simple addition to derive combination
metrics. There are four possibilities: (1) both leads are
characterized by relative ST elevation, in which case
Mu(Bx),LD > 0 and Mu(Bx),LU > 0, where the amen-
ded subscript refers to the relevant lead (LD or LU);
(2) the LD and LU leads are characterized by relative
ST elevation and ST depression, respectively, in which
case Mu(Bx),LD > 0 and Ml(Bx),LU > 0; (3) the LD
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and LU leads are characterized by relative ST depres-
sion and ST elevation, respectively, in which case
Ml(Bx),LD > 0 and Mu(Bx),LU > 0; and (4) both LD
and LU leads are characterized by relative ST depres-
sion, in which case Ml(Bx),LD > 0 and Ml(Bx),LU > 0.
Therefore, the corresponding four ‘‘combination met-
rics’’ are: (1)Mu(Bx),LD + Mu(Bx),LU; (2)Mu(Bx),LD +
Ml(Bx),LU; (3) Ml(Bx),LD + Mu(Bx),LU; and (4)
Ml(Bx),LD + Ml(Bx),LU.

The absolute detection metrics for individual leads
are:

MAl Bxð Þ ¼ max 0; STl Bð Þ � STcurrent Bxð Þð Þð Þ ð8Þ

MAu Bxð Þ ¼ max 0; STcurrent Bxð Þ � STu Bxð Þð Þð Þ ð9Þ

The 12 ischemia detection metrics are listed in Table 1.

Metric Evaluation

The baseline period for establishing distance mark-
ers was 2 days for both the Control group and the PCI

group. For each Control group subject, the maximum
value of each of the 12 metrics was computed during
the entire post-baseline period (e.g., all recorded data
not included in the 2-day window used to create the
distance markers). For each PCI group subject, the
maximum value of each of the 12 metrics was com-
puted over the balloon inflation period. In order to
determine the maximum value of a metric for a par-
ticular artery, the maximum value of the metric was
computed for each heart rate bin, and the maximum
value of the metric for that artery was the maximum of
this set. Within a particular heart rate bin, the maxi-
mum values of the Mu and MAu metrics were calcu-
lated according to the pertinent metric equation (Eqs.
(7) or (9)) with the STcurrent variable set equal to the
ST-deviation of the 10th most positive ST-deviation
value within the heart rate bin. The maximum values
of the Ml and MAl metrics were calculated in an
analogous manner.

Ten segments of data correspond to 5 min, which is
the minimum duration required in our study to detect
ischemia. Accordingly, at least ten consecutive seg-
ments must exceed threshold before ischemia is de-
tected. Thus, the ST-deviation of the tenth most
positive segment is a reasonable choice for assessing
the detection capability of the algorithm. (Similarly, as
previously described in the Methods section, the
10th most positive ST-deviation defined the upper
ST-deviation boundary for each heart rate bin.)
Analogously, the Ml and MAl metrics were calculated
with the tenth lowest ST-deviation value within the
heart rate bin.

Performance Measures

Our assessment of algorithm performance was pre-
mised on the constraint that false positive ischemia
detections were unacceptable. A false positive would
have occurred if ischemia had been detected (using
thresholds computed with the first 2 days of daily-life
data) in any Control group subject in any of the last
8 days of data.

To avoid false positives for each of the detection
metrics, the maximum value of each detection metric
(Mmax) was computed over all Control subjects over
the last 8 days of control subject data. We then created
a performance measure based on the percentage of
proper detections (i.e., number of detections/number
of responding inflations) as a function of the ‘‘dis-
tance’’ from Mmax: percentage of true positive detec-
tions with a detection threshold set at (1 + SF)*
Mmax, where SF is a ‘‘safety factor’’ parameter that
varied from 0 to 5. Setting SF to 0 would cause the
performance measure to be assessed using a threshold
set at the maximum value for a detection metric across

TABLE 1. The 12 detection metrics.

Metric Description

Threshold

(at 0.5 safety

factor)

Mu,LD LD lead relative metric for

upper boundary

1.4

Ml,LD LD lead relative metric for

lower boundary

1.0

Mu,LU LU lead relative metric for

upper boundary

2.2

Ml,LU LU lead relative metric for

lower boundary

2.7

Mu,LD + Mu,LU Both leads’ ST deviation

above respective

upper boundaries

2.6

Mu,LD + Ml,LU LD lead ST deviation above

LD lead upper boundary;

LU lead ST deviation

below LU lead lower

boundary

0

Mu,LU + Ml,LD LD lead ST deviation below

LD lead lower boundary;

LU lead ST deviation

above LU lead upper

boundary

0.96

Ml,LU + Ml,LD Both leads’ ST deviation

below respective lower

boundaries

1.16

MAu,LD LD lead absolute metric

for upper boundary

51 lV

MAl,LD LD lead absolute metric

for lower boundary

63 lV

MAu,LU LU lead absolute metric

for upper boundary

201 lV

MAl,LU LU lead absolute metric

for lower boundary

338 lV
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our 14 Control subjects, such that a false positive in the
Control group is avoided without any safety margin.

RESULTS

Ischemia Detection

Table 2 summarizes the responding arteries and
detections with the safety factor set to 0.5. The algo-
rithm detected 17/17 LAD occlusions, 7/8 LCX
occlusions, and 8/9 RCA occlusions. Note that four
patients each had two different arteries obstructed by
balloon inflation, so the 34 arteries correspond to 30
different patients.

Figure 5a shows the ranges of ST-deviation (over all
heart rates) in the LD lead. The range of ST-deviation
which occurred during the baseline is coded in blue.
The minimum (green) and maximum (red) values seen
in the post-baseline periods are also shown for both
Control subjects and patients (classified by occluded
artery). In 4 patients, there were inflations in two dif-
ferent arteries rather than in a single coronary artery.
Accordingly, the baseline range (blue) is the same for
both arteries of the pair (e.g., the 2nd and 3rd from the
top in the LAD group correspond to the same indi-
vidual; the inflation of this patient’s diagonal branch of
the LAD was considered separately from the inflation
to the middle portion of the main LAD). In the Con-
trol subjects, the maximum and minimum ST-devia-
tion values recorded during both the baseline and post-
baseline periods (i.e., across the full 10 day period)
were approximately 190 and 220 lV, respectively for
the LD lead. In the Control group, during the baseline
period, the ST-deviation for any individual subject did
not exceed a total range of 100 lV, and the average
total range across subjects was 79 lV. Within the
Control group, the greatest difference between post-
baseline maximum and baseline maximum (i.e., larg-
est red bar) was 23 lV while the greatest difference
between post-baseline minimum and baseline mini-
mum was 20 lV (i.e., largest green bar).

During baseline recordings, the PCI patients gen-
erally showed a wider range of ST-deviations than the
Control group. LAD inflations produced ST-devia-
tions of >200 lV in 11/17 subjects. RCA or LCX
inflations produced ST depression in 15/17 subjects
whereas 14/17 of the RCA and LCX records exhibited
no ST depression during the baseline period.

Figure 5b shows analogous data for the LU lead.
Compared to the LD lead, the LU lead data generally
shows a smaller dispersion in baseline ST-deviation
with an average range across Control subjects of
63 lV. However, for the PCI group, the greatest dif-
ference between the baseline and post-baseline maxi-
mum (red boxes) was 33 lV, with the greatest
difference between the baseline and post-baseline
minimum (green boxes) differing by 32 lV. Both of
these ST-deviation related differences between baseline

TABLE 2. True positive detections with the Safety Factor set
to 0.5.

Artery

Detections

(SF = 0.5)

Transmural ischemia

(ST-elevation over

affected artery)/

subendocardial ischemia

LAD (main branch) 15/15 14/1

LAD (first diagonal) 2/2 2/0

LCX (posterior) 5/6 5/0

LCX/Ramus (lateral) 2/2 2/0

RCA 8/9 9/0

Total 32/34 (=0.94) 33/1

Lateral

Diagonal

ST Range During 2 Day Baseline

Post-baseline ST < STmin Post-baseline ST > STmax 

-300 -200 -100 0 100 200 300 400 500

Control

LAD

RCA

LCX

Subendocardial

ST Deviation (µV)

Diagonal

-300 -200 -100 0 100 200 300 400 500

Control

LAD

RCA

LCX

ST Range During 2 Day Baseline

Post-baseline ST < STmin Post-baseline ST > STmax 

ST Deviation (µV)

Lateral

Subendocardial

(a)

(b)

FIGURE 5. (a, b) Maximum and minimum changes between
baseline to post-baseline conditions. Bar chart of baseline
(blue) and post-baseline/inflation maximum (red) and mini-
mum (green) ST-deviation values for the LD and LU leads
respectively for each subject/artery. The maximum and mini-
mum ST-deviations over all heart rate ranges during the
baseline period are denoted by STmax and STmin, respec-
tively. If the post-baseline/inflation maximum or minimum
ST-deviation is less than STmax or greater than STmin,
respectively, then there is no red or green bar.

Implantable Acute Ischemia Monitor 2635



and PCI conditions are about 50% larger than those
found for the LD lead.

LAD inflations produced ST elevation in the LU
lead in most (13 of 17) subjects. In subject 18, an LAD
inflation produced substantial ST elevation in the LU
lead but only a small ST change in the LD lead. One
inflation of the mid-LAD (‘‘Subendocardial’’ in
Fig. 5b) produced ST depression in the LU lead
without any substantial change in the LD lead.

Overall, the LU lead was less sensitive to RCA and
LCX occlusions than the LD lead. However, in two
lateral occlusions within the LCX group (one obtuse
marginal and one Ramus branch) the LU lead was
more sensitive than the LD lead. In particular, for
these two occlusions, the LU lead registered ST
depression whereas the LD lead registered moderate
ST elevation (see lower of the two ‘‘Lateral’’ arrows in
Figs. 5a and 5b) and slight ST depression (see upper of
the two ‘‘Lateral’’ arrows in Figs. 5a and 5b).

Figure 6a shows the maximum and minimum post-
baseline values of the LD relative detection metrics.

For the PCI group, the figure shows only the largest
values of the metric that were found within the data
collected during PCI inflations. The dashed vertical
line in Fig. 6a represents an ischemia detection thresh-
old of 1.4 for Mu,LD, which corresponds to a safety
factor of 0.5 (See Table 2). At this threshold, use of the
Mu,LD metric would detect 14/17 LAD occlusions
without causing a false positive in the control group.
Figure 6b shows corresponding results for the LU
lead.

Figure 7 plots the true positive detections of ische-
mia which occurred in the PCI data as a function of the
safety factor for the LD and LU leads separately (blue
and red, respectively). Detections which rely upon a
rule which requires either lead to detect ischemia for a
true detection to occur (i.e., the union of detections) is
plotted in green. Using both the union of the detec-
tions and also utilizing the combination metrics
described in Table 1 led to detection results shown in
black. For the separate leads, both relative (metrics
5–8) and absolute (metrics 9–12) ischemia detection
metrics listed in Table 1 were used. In each subject, if
at least one absolute or relative metric was above
threshold then the result was a successful detection.

Non-Responders

Three of the 11 patients whose data were excluded
from the analysis had LCX occlusions. The remaining 8
had LAD or RCA (with one a posterior descending ar-

-10 -8 -6 -4 -2 0 2 4 6 8 10
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RCA

LCX

Normalized, ST Deviation, Composite Value
Below lower boundary Above upper boundary

Lateral

Diagonal

-6 -4 -2 0 2 4 6 8 10 12 14

Below lower boundary

Control

LAD

RCA

LCX

Above upper boundary

Normalized, ST Deviation, Composite Value

Lateral

Diagonal

(a)

(b)

FIGURE 6. (a, b) Relative metrics. Bar chart of maximum (red)
and minimum (green) relative metric values over the entire
post-baseline/inflation period for the LD and LU leads
respectively for each subject/artery. See text for further details.
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FIGURE 7. Performance curves. Percentage of proper
detections without false positives for different combinations
of leads and metrics. The ‘‘safety factor’’ is a measure of
‘‘distance’’ between the detection threshold (to which metrics
are compared) and the smallest threshold that will avoid false
positives. A ‘‘safety factor’’ of 0 means that the detection
threshold is just slightly above the level that avoids any false
positive detections in the control group.

HOPENFELD et al.2636



tery) occlusions. For five of the non-responders who
weremonitored long term, both theLDandLU leads, as
well as limb leads I, II and III, and precordial lead V2,
were examined for evidence of any inflation induced ST
shift. In all of these patients except for one, none of the
leads showed an inflation induced ST shift of even
0.05 mV. One patient, who had an RCA inflation,
exhibited at least 0.1 mV of negative ST shift in lead V2
relative to the ST-deviation level at inflation onset. This
patient showed a large increase in ST-deviation that
started shortly before inflation onset; the maximum
inflation induced ST-deviation was not substantially
different than the pre-catheterization ST-deviation.

DISCUSSION AND LIMITATIONS

Our results suggest that automatically generated,
patient specific, heart-rate dependent ST-deviation
thresholds can detect myocardial ischemia that results
from balloon inflations, without false positive detec-
tions in a small Control group. Our data does not
establish that the detection of ischemia would occur
with a similar efficacy in the detection of ambula-
tory acute ischemic events. First, our Control group
consisted of 14 people, a relatively small population. A
larger control groupmight have resulted in largerMmax
values, which in turn would have shifted the perfor-
mance curves in Fig. 7 lower. Second, balloon inflation
recordingsweremade on supine,motionless subjects in a
relatively noise free environment; real life recordings
might be noisier. Also, our daily-life (baseline) record-
ings for the PCI groupweremade during a two day post-
operation period, during whichmany subjects may have
been relatively sedentary due to their recent surgeries.
This may have resulted in relatively decreased disper-
sions of ST-deviation data, which would have improved
our results compared to real life situations. On the other
hand, the short duration of the balloon inflations may
have resulted in ST-deviations smaller than those of real-
life ischemic events.

The statistically based ischemia detection approach
mitigates the effects of ‘‘noise’’ sources such as axis
shifts and slow ST-deviation drift. The ST-deviation
values that result from these sources tend to become
part of an individual’s baseline ST-deviation statistics
and therefore do not result in false positive ischemia
detections. Of course, if axis shifts result in very large
dispersions of ST-deviation, then ischemia detection
thresholds will be higher, and detection sensitivity
correspondingly reduced. Axis shifts within our dataset
resulted in ST-deviation dispersions that were far
smaller than the changes induced by PCI.

ST-deviation changes resulting from many types of
conduction abnormalities that affect QRS duration are

mitigated by performing QRS morphology checks and
excluding abnormal beats from ischemia detection. To
the extent that a conduction abnormality doesn’t
substantially affect QRS duration but causes an
ST-deviation change, the corresponding ST-deviation
values may become part of an individual’s baseline
statistics. The resulting effect on the algorithm is sim-
ilar to that of axis shifts: a larger ST-deviation dis-
persion will reduce detection sensitivity.

It is known that some patients may not develop
significant ST shifts during balloon inflations (termed
‘‘non-responders’’). We cannot rule out ischemia in the
non-responder group, especially for the LCX occlu-
sions. If all three excluded LCX patients are considered
false negatives, then each of the detection percentages
shown in Fig. 7 should be reduced by 0.08 (3/37).

In conclusion, we have shown that an algorithm
based on patient specific, heart-rate dependent
ST-deviation thresholds can accurately detect balloon
inflations in a relatively small dataset. Future work will
involve testing the algorithm on larger datasets.
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