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Abstract—Initiation and propagation of cell signaling
depend on productive interactions among signaling proteins
at the plasma membrane. These diffusion-limited interactions
can be influenced by features of the membrane that introduce
barriers, such as cytoskeletal corrals, or microdomains that
transiently confine both transmembrane receptors and mem-
brane-tethered peripheral proteins. Membrane topographical
features can lead to clustering of receptors and other
membrane components, even under very dynamic conditions.
This review considers the experimental and mathematical
evidence that protein clustering impacts cell signaling in
complex ways. Simulation approaches used to consider these
stochastic processes are discussed.
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INTRODUCTION

Cell signaling, used for both intracellular and
intercellular communication, is essential for the heal-
thy physiological functioning of multi-cellular organ-
isms. Ligand binding to a transmembrane receptor
triggers an intracellular signaling cascade that results
in altered cell behavior. The proper integration
of different environmental signals is critically impor-
tant to many biological processes, including cell
survival, differentiation, proliferation, and migra-
tion.10,39,42,49,85,89 Aberrations in signal transduc-
tion have been implicated in numerous pathologies,
from allergy and asthma to many different

cancers.10,15,29,37,39,49,75,81,89 Signal transduction path-
ways have therefore been studied extensively, and
many drugs developed to target them.10,22,29,49,75,81

Knowledge of the structure of the plasma mem-
brane and of signaling processes continues to improve,
due to advances in experimental techniques and
imaging technologies.46,84,87 There is considerable evi-
dence for the concept that the cell membrane is com-
partmentalized into microdomains, such as protein
islands88 and lipid rafts.56 Receptor clustering in small
or large aggregates (illustrated schematically in Fig. 1)
at discrete locations has been noted in many cell
types,1,6,31,39,66,73,89 prompting intense interest in roles
for membrane microdomains in signal propagation
and preliminary mathematical studies to understand
both formation of clusters and their role in cell sig-
naling.8,17,18,21,35,36,48,63,76,77 There is general agree-
ment that the composition of these microdomains is
quite heterogeneous and, further, that their stability is
influenced by the dynamic interactions of the cortical
cytoskeleton with membrane proteins and lipids. The
cytoskeleton also limits diffusion of membrane con-
stituents by forming ‘‘picket fences’’ and ‘‘corrals.’’43,72

The role of these membrane features in promoting or
limiting protein–protein interactions remains contro-
versial, since there is strong potential to both enhance
and inhibit signaling.3,17,55,58 To help resolve these
issues, several groups are developing spatially realistic
mathematical simulations of receptor motion, aggre-
gation/clustering, and activation in the cell membrane.

It is important to note that parameters for these
mathematical models rely on powerful new experi-
mental techniques. High resolution microscopy tech-
niques, such as transmission electron microscopy
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(TEM) and photoactivation light microscopy (PALM),
have been applied to map the spatial distribution of
signaling molecules in fixed cells.47,88 These snapshot
images of protein distributions can be supplemented
with powerful new live cell imaging approaches,
including fluorescence resonance energy transfer
(FRET), fluorescence lifetime correlation spectroscopy
(FLCS) and single particle tracking (SPT) experi-
ments.46 These techniques can generate key informa-
tion regarding the kinetics of protein–protein
interactions, including rates of dimerization, size of
receptor aggregates, and changes in diffusion proper-
ties.50 These rich data sets support the development of
more accurate and detailed mathematical models, that
in turn improve understanding of biological results.

Key Concepts and Definitions Relevant
to the Consideration of Protein Clustering

in the Plasma Membrane

In this brief review, we focus attention on the
mathematical simulation of protein clustering in the
plasma membrane, an initial step in many signaling
pathways. The protein species considered may be a
surface receptor that is triggered by binding to an
extracellular ligand or an intracellular signaling

partner, such as an adaptor protein or enzyme that
propagates signaling through the cell interior. We de-
fine clustering as the non-random spatial distribution
of a membrane species, which can be observed and
experimentally validated through modern technolo-
gies. ‘‘Snap-shot’’ images of membrane proteins often
capture some level of clustering even before the onset
of ligand binding to receptors or active signaling.89 We
hypothesize that these basal levels of clustering arise
from brief, non-productive interactions among pro-
teins as they encounter one another while diffusing in
the plasma membrane or when proteins are transiently
co-confined in a raft, island or corral (Fig. 1). Thus
clustering in this sense is not synonymous with oligo-
merization, which reflects the direct and measurable
interaction between membrane components. It is
important to point out that stable oligomers cannot be
distinguished from unstable clusters in imaging tech-
niques using fixed cells, such as TEM and PALM.
However, new imaging protocols can now accurately
measure the dynamics of protein–protein interactions
at the molecular scale.46 A recent example from the
Spatiotemporal Modeling Center is the simultaneous
SPT of pairs of EGFR molecules, each labeled by
virtue of binding to different colors of quantum dot
probes; only with two QD-bound receptors were both
coincident and exhibited correlated motion, could they
pass the stringent criteria for oligomerization.50 The
concept of clustering becomes particularly important
as we consider the data suggesting that the spatial
proximity of proteins can promote protein–protein
interactions, including oligomerization, by increasing
the likelihood of productive collisions.

Choosing the Right Modeling Approach

Mathematical models constructed to date to study
signal transduction pathways are of varied complexity.
They can be classified conveniently as deterministic
methods, in which inherent temporal and spatial fluc-
tuations in diffusion and reaction rates are ignored,
and stochastic methods, which attempt to capture
these fluctuations (Fig. 2). The simplest modeling
approach is to assume that the system of interest is well
mixed, without any spatial concentration gradients,
and describe the reactions by a system of ordinary
differential equations (ODEs). The utility of ODE
modeling is enhanced by systematic sensitivity analy-
sis, which examines automatically changes in model
behavior due to parameter variation.60,61 Such a
deterministic, well-mixed approach continues to be
widely used,77 and has produced useful results.7,61

However, these approaches do not take into account
either spatial inhomogeneities or stochastic fluctua-
tions, which can be significant when the number of

FIGURE 1. Schematic representation of microdomains and
receptor clustering. Left: Cartoon representation of features
that can subcompartmentalize the plasma membrane,
including rafts or islands, and the cortical cytoskeletal net-
work. These features are highly dynamic, permitting rapid
exchange by diffusion. Right: Representation of the distribu-
tion of receptors (yellow, blue symbols) in and out of domains
(pink regions) formed by these features. Arrows point to var-
ious states, including monomers, dimers, and aggregates.
Receptors that are transiently trapped in domains are locally
crowded (arrow, top right) and appear as clusters by imaging
technologies. This molecular crowding can be more pro-
nounced upon ligand stimulation, due in part to formation of
dimers and larger aggregates with decreased diffusive
mobility. This review considers the experimental and com-
putational evidence that molecular crowding influences
receptor dimerization/aggregation and recruitment of signal-
ing proteins.

RADHAKRISHNAN et al.2308



molecules in the region of interest is small. At a slightly
higher level of complexity, some spatial description is
provided by dividing the region of interest into sepa-
rate well-mixed compartments. Additional ODEs are
needed to describe inter-compartmental species trans-
location reactions, thus mimicking spatial movement.

These well-mixed, ODE-based continuum pathway
models41 were expanded to include spatial inhomoge-
neity9,71 by solving partial differential equations
(PDEs) that include molecular diffusion effects. Sto-
chastic methods that assume spatially well mixed sys-
tems have also been developed to account for temporal
fluctuations.27,45 Stochastic PDEs include both spatial
information and temporal fluctuations. The most
detailed, and thus most complex, models are fully
spatial, stochastic methods that track the movement of
individual molecules.4,11,17,18,30,35,36,63,78 However, the
computational burden increases rapidly with increas-
ing complexity of the modeling approach. Figure 2
summarizes the various modeling approaches and their
range of applicability.

Mathematical simulation of events in the
plasma membrane faces unique challenges. Membrane

proteins are constantly undergoing random motion in
the plane of the membrane, where the diffusion rate is
influenced by the environment, such as hindrance by
microdomains, and thus varies both spatially and
temporally. Optimally, the spatial location of every
protein needs to be predicted, in order to capture
clustering imposed by membrane topography and to
predict the outcomes of both transient and prolonged
protein–protein binding events. Fully spatial, stochas-
tic methods offer capabilities that can capture accu-
rately the dynamics of these events, but can be
associated with prohibitively high computation cost.
Novel hybrid approaches show promise for solving
some of these computational challenges.

Finally, this section would not be complete without
introducing the unique power of rule-based
approaches.20,33 Here, molecular interactions in sig-
naling networks are treated as systems of encoded
rules. Molecules are represented as structural objects
that have modular domains and associated states rep-
resenting conformations or covalent modifications of
these domains. Importantly the input files and model
specification blocks are compatible with multiple types

FIGURE 2. Classes of mathematical models for molecular processes in cells and the scales at which they are applicable to
signaling processes. A possible quantitative guide is the size of the largest element that can be treated as spatially homogeneous
(horizontal axis) and the typical number of molecules of one species in the element (vertical axis). The suggested spatial resolution
is determined by the size of the biological element of interest and current computational capabilities. Spatially resolved models are
resource-intensive, and are therefore generally applied to small subsystems. Cell-level models of large signaling networks are
typically well mixed; spatial Monte Carlo studies rarely scale beyond a few hundred nanometers. A promising approach for multi-
scale applications is a combination of compartment-based models at the large scales and fully spatial simulations focused on a
few important processes within small structural elements of the membrane. Temporal fluctuations arise largely from the discrete
and stochastic nature of the underlying molecular processes. The relative magnitude of temporal fluctuations (DN) decreases as
the number of particles increases. The discrete nature of the particle number can thus be ignored when N is significantly greater
than 1. That is, deviations from the expected average behavior can be neglected when the expected magnitude of the fluctuations
is small compared to N.
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of computational approaches, including coupled
ODEs that result in deterministic solutions of reaction
kinetics as well as stochastic methods.

APPLICATIONS IN SPECIFIC SIGNALING

PATHWAYS

Sections below briefly summarize mathematical
models that have been developed to study signal
transduction pathways, with emphasis on methods
developed by our group and others to capture the
influence of clustering and other spatial aspects. We
focus on three representative signal transduction
pathways (EGFR, Ras/MAPK, and GPCR) where
protein clustering has been implicated, and on the
modeling approaches used to approach this unique set
of challenges.

Our Group’s Focus: Spatial Aspects of Signaling
Through the Epidermal Growth Factor Receptor

A member of the ErbB family of plasma membrane
receptors, EGFR is critically important to many bio-
logical processes, including embryonic development
and carcinogenesis.10,39,89 Upon binding any one of
several ligands, including EGF, the ErbB receptors
homo- or hetero-dimerize. Dimerization is followed by
transphosphorylation of tyrosine residues in receptor
cytoplasmic tails, which enables recruitment of cyto-
solic signaling proteins. The reader is referred to
Figs. 2 and 3 in the article by Telesco and

Radhakrishnan74 within this same issue, for diagrams
of EGFR/ErbB1 dimerization, phosphorylation, and
adaptor protein recruitment. Subsequently, these
complexes activate many different signaling cascades,
including the Ras-MAPK pathway discussed in the
next section.

There exists considerable experimental evidence for
preexisting clusters of resting EGFR (Fig. 3) and for
dynamical changes after addition of ligand.1,6,39,66,73,89

We have built simulation platforms at different levels
of complexity, in order to evaluate the impact of
EGFR clustering in the plasma membrane.

Approaches and Methodology

Our first attempt to develop a spatial model of the
EGFR pathway was a simple compartmental model
that accounted for receptor density differences
observed in the plasma membrane, with some regions
having high-receptor density and others displaying
low-receptor density.52 The focus of this study was to
explore whether the added computational complexity
associated with spatial modeling was justified. Our
initial goal was to determine if the non-uniform
receptor distribution in the cell membrane could
account for the experimentally observed, concave-up
Scatchard plot for binding of EGF ligand to its
receptor. We simply optimized the distribution of
receptors into high- and low-density regions, and were
able to determine the parameter space that allowed for
a concave-up Scatchard plot. This first attempt at
compartmentalized spatial modeling showed that

FIGURE 3. Experimental results and mathematical model predictions of EGFR clustering. (a) Experimental evidence for EGFR
clustering in absence of ligand. Electron micrograph of gold particle-labeled EGF receptors in resting A341 cells (~2 million EGFR/
cell), reveals a non-random distribution and provides evidence for receptor co-confinement. (b) Spatial domain used in lattice-free
Monte Carlo simulation.35 The spatial domain simulated by the off-lattice Monte Carlo procedure was a square of area 2 lm2,
representative of a small region in the plasma membrane. This region was modified to include many islands or preferred domains
(the gray rectangles within the membrane patch), to simulate the receptor-trapping microdomains seen in (a). Movement of
receptors into and out of the simulated microdomains over a time period of 30 s is indicated by the thin colored tracings. Receptor
trapping in the microdomains was reproduced mathematically by stipulating that receptors had a greater probability of entering
these regions than of leaving them. (c) Simulation predictions of receptor clustering in absence of ligand. The predicted particle
positions after 30 s of simulation time are indicated by the black dots. The Hopkins statistical test (inset) was used to test the
randomness of receptor distribution. The right shift of the distribution (compared to the random or normal distribution shown in
red) confirms the clustered nature of the receptors. The predicted receptor distribution compares well with the experimental
observation in (a). (d) Simulations using a coupled spatial/nonspatial stochastic algorithm (CSNSA) support the conclusion that
EGFR clustering promotes activation of the adaptor SOS. ODE models confirm this conclusion, using a fast diffusion coefficient to
override contributions from membrane spatial organization (from Hsieh et al.35 and Costa et al.18).
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accounting for the spatial organization of receptors
was highly valuable, and should be pursued, to enable
both qualitative and quantitative understanding of cell
signaling involving (at least) the EGFR.

This study convinced us of the utility of spatial
modeling of membrane-bound receptors and of its
importance in understanding cell signaling. We
have now accumulated extensive experience in devel-
oping spatially realistic simulations of the cell
membrane and also addressed the initiation of signal-
ing.13,17,18,35,36,51–54 Next, we summarize our develop-
ment of lattice-based and lattice-free (or off-lattice)
methods, as well as our use of hybrid approaches.

Lattice-Based Monte Carlo (MC) Approaches

In lattice-based models, molecules are located at
discrete grid points in the spatial domain and diffusion
is restricted to movement to an unoccupied neighboring
point. Lattice-based MC simulations have become very
popular in the physics, chemistry, materials, and engi-
neering communities, as they provide spatio-temporal
information at significantly reduced computational
cost, compared to off-lattice simulations.5,14,16,28,90 The
MC method is a coarse graining of molecular dynamics
(MD) simulations,5 because MD is impractical for rare
event dynamics, such as hopping between deep minima
of a potential energy surface. The MC method sto-
chastically solves an underlying master equation using
pseudo-random numbers, by constructing the proba-
bility with which the various states of the system have
to be weighted according to a Markov process.
MC simulations can provide continuous time infor-
mation. Gillespie26,27 established the foundations of
time-dependency for chemical reactions in a spatially
homogeneous system. His approach is easily applicable
to arbitrary complex computational systems, and is
often referred to as the kinetic or dynamic MC method.
Despite important algorithmic implementations (e.g.,
dependency graphs,25 lists of neighbors, binary-tree
search, etc.), MC simulations are seriously plagued by
(1) the presence of fast reactions that occur in the large
biochemical networks seen in biology and (2) the exe-
cution of one event at a time.

Our Spatial Kinetic Monte Carlo (SKMC)
method52,53 utilizes a modified null-event, lattice-based
MC algorithm.18,54 The spatial domain, representing a
small region of the plasma membrane, is a two-
dimensional square lattice of side ‘, divided into a large
number of much smaller square bins of side a (�‘).
The SKMC algorithm consists of first randomly
selecting an occupied lattice site, and then choosing
either a successful (reaction or diffusion) or unsuc-
cessful (null) event, based on calculated probabilities.
If a successful event is chosen, it is executed. The

transition rate Cd
i!j, for diffusion of species from any

site i (i.e., lattice point i) to a nearest-neighboring site j
is defined as

Cd
i!j ¼

1

4
CDri 1� rj

� �
; j 2 Bi;

where Cd ¼ 4D=a2 and D is the diffusion coefficient of
the species located at site i. The term Bi denotes the set
of four possible nearest-neighboring sites to which
diffusion can occur in two dimensions from site i.
Because species are allowed to diffuse only to an
unoccupied site, we define an occupancy function rj for
each of the four nearest-neighboring sites, in order to
simplify the procedure for computing the transition
rate for diffusion. For any site k (=i or j), rk is set
equal to 1 if the site is occupied, or to 0 if the site is
unoccupied. The transition rate for a chemical reaction
at site i, Cr

i , depends on the reaction type and is directly
related to the standard reaction rate.

The probability pxi of an event x (=r reaction or d
diffusion) at site i is computed by using the relation

pxi ¼ Cx
i =Cmax

where Cmax is a normalization constant, defined as

Cmax ¼ 4
Cd

4
þmax

X

all forward reaction events

Cr

 ! !

þmax
X

all backward reaction events

Cr

 !0

where the multiplicative factor of 4 accounts for
events occurring in the four directions of the two-
dimensional square lattice. Finally, the time step Dt
used to advance the simulation time is computed as
Dt ¼ 1=Cmax.

Rule-Based, Non-lattice Simulator

Our non-lattice, stochastic simulator is an alterna-
tive approach.35,36 In the lattice-free method, particles
are not confined to discrete points in space but are
randomly repositioned upon undergoing a diffusion
event. Receptors and other proteins in the 2D mem-
brane and 3D cytosolic space are represented by
sphere-like particles with radii determined from
experimental data and their coarse-grained molecular
models. At each time step, species diffusion is simu-
lated as Brownian motion (Fig. 3). In addition, species
have the potential to react with spatially nearby spe-
cies. This simulator was designed for flexible model
development and deployment by a modularized and
rule-based approach. It tracks the individual reactions
of multistate molecules and accommodates complex
situations.
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Hybrid Approaches

We continue to improve our basic SKMC algo-
rithm, leading to increased efficiency and speed of the
simulations. One significant advance was the coupling
of our lattice-based SKMC simulations on the cell
membrane to well-mixed stochastic simulations within
the cytosol.18 In Costa et al.,18 we describe the devel-
opment of an algorithm that couples a spatial sto-
chastic model of membrane receptors with a nonspatial
stochastic model of cytosolic reactions. Our novel
hybrid algorithm provided a computationally efficient
method to evaluate the effects of spatial heterogeneity
on the coupling of receptors to cytosolic signaling
partners. For well-mixed systems results obtained
using a compartmental ODE method compared well
with those generated with our hybrid model. Thus, for
sufficiently high receptor copy number, the far simpler
ODE model may be adequate. However, for spatially
inhomogenous systems where the receptors numbers
are low, the hybrid method was significantly superior
to the ODE model.

EGFR Density, Through Clustering or Overexpression,
Influences Signaling Output

We have applied these methods to study the early
molecular mechanisms involved in EGFR signaling.
For example, we applied the lattice-based spatial sto-
chastic model of the plasma membrane to examine the
influence of cytoskeletal corral openings on EGFR
clustering.17 Clustering was shown to depend on both
receptor concentration and picket fence density. For
high picket fence densities, clustering increased with
increasing receptor concentration in the range exam-
ined. Conversely, low receptor concentrations com-
bined with small corral sizes inhibited clustering; at
normal to high receptor concentration, maximal clus-
tering occurred at an intermediate corral size
(~100 nm). These results indicate that both the number
of clusters and the average cluster size are likely to be
complex functions of receptor density and microdo-
main size. It follows that compartmentalization of the
plasma membrane could either inhibit or enhance sig-
naling, concepts that require further exploration.

The non-lattice, rules-based simulator allowed us to
explore the effect of EGFR overexpression and its
relation to carcinogenesis.35 We postulated that
increased receptor density in membrane microdomains
or protein islands might lead to more frequent interac-
tions between non-ligand bound receptors and, further,
that large numbers of these short-lived interactions
might explain EGFR signaling known to occur even in
the absence of ligand.6 One important aspect was con-
sideration of EGFR extracellular domain conforma-
tion, based upon structural studies showing that the

resting EGFR is predominantly in a ‘‘closed’’ confor-
mation. Binding of ligand is proposed to stabilize the
extended conformation and expose the dimerization
arm. In our simulations, we assumed that the resting
EGFR ‘‘fluxes’’ between the open and closed states, but
spends 99% of its time in the closed state. This property
translates to a low probability that two diffusing
monomers will collide under conditions where both
expose their dimerization arms and are therefore com-
petent to form a complex. The 2D simulation space
included membrane microdomains that transiently
trapped receptors (as in Fig. 3), setting up clusters
undergoing dynamic exchange. Remarkably, at levels of
receptors typical ofmost normal cells, co-confinement in
membrane microdomains lowered the threshold for
ligand-independent receptor dimerization but resulted
in very modest signaling output. When the simulation
space was populated with densities typically seen in
tumors with EGFR gene amplification, which can
express millions of EGFR per cell, the percent of acti-
vated receptors could exceed 10% with our parameter
values. Clustering had little effect in these cases, since the
overall density on the membrane was already very high.

We have used both lattice and non-lattice models to
consider how spatial aspects might affect the recruit-
ment of signaling molecules to the phosphorylated
EGFR tail.18,36 In Hsieh et al.,36 we also considered
the combinatorial complexities associated with the
facts that EGFR has multiple phosphorylation sites
and, further, that each phosphotyrosine site is capable
of binding multiple partners. We used coarse-grained
molecular docking simulations to show that steric
hinderance can impose important constraints on the
composition of adaptor proteins capable of docking
simultaneously on the EGFR tail. Modeling predic-
tions in Hsieh et al.36 were quantitatively consistent
with experimental data for the kinetics of both EGFR
phosphorylation and recruitment of adaptor proteins.
Importantly, both papers provide mathematical support
for the conclusion that clustering of receptors can
amplify signaling by promoting sequential binding of
adaptor proteins. These results provide confidence in
our models, and have led to ongoing studies of other
growth factor receptors that initiate signaling through
dimerization, particularly VEGFR, as well the hete-
rodimerizing members of the ErbB family. This field
continues to advance, as demonstrated by the hybrid
approaches of Radhakrishnan and colleagues74 that
consider ErbB structural and diffusion properties using
increasingly complex models. Additional aspects of cell
surface topography, such as the induction of mem-
brane curvature by endocytic adaptor proteins, are
new concepts that will provide important insight into
the control of signal transduction through the bio-
physical principles of membranes.
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Work by Others: The Case of Signaling
via Ras/MAPK Pathways

The Ras superfamily consists of over 100 small
GTP-binding proteins (or GTPases), which respond to
various extracellular stimuli to regulate important
signal transduction pathways.81,85 These proteins,
which have low intrinsic GTPase activity, ‘‘switch’’
between active GTP-bound and inactive GDP-bound
conformations. The processes mediated by GTPases
include cell division, differentiation, apoptosis, and
migration, cytoskeletal reorganization, and intracellu-
lar protein trafficking.75 Abnormalities in these path-
ways are seen in various pathologies, including obesity,
diabetes, inflammatory diseases, cardiovascular dis-
ease, neurological disease, and cancer.15,75,81 Therefore
the pharmacological targeting of GTPases and/or their
signaling pathways is an active field.81

The Ras/Raf/MEK/ERK mitogen-activated protein
kinase (MAPK) pathway has been investigated exten-
sively, both in the clinic and the laboratory, and by
mathematical modeling.7,22,23,32,34,40,41,57,61,68,69,76,77,86

Activation of a number of receptors, including EGFR,
leads to guanine nucleotide exchange (dissociation of
GDP, gain of GTP) by membrane-tethered Ras,
thereby activating it. The activated Ras in turn acti-
vates Raf (Ras-associated factor), the first kinase in the
cascade. Subsequently, Raf activates MEK (MAPK/
extracellular signal-regulated kinase), which then acti-
vates ERK (extracellular signal-regulated kinase). The
translocation of phosphorylated ERK to the nucleus
and activation of transcription factors mediates many
cellular activities.

Numerous mathematical models have been devel-
oped to study this pathway.7,23,32,34,40,41,57,61,68,69,76,77,86

Much of this work uses compartmental models and
ODEs to follow the temporal evolution of activated
ERK, and does not consider clustering in the plasma
membrane. However, Tian et al.76,77 have mathemati-
cally evaluated various spatial aspects of Ras signaling,
including clustering in the plasma membrane. This
group utilized a hybrid approach to simulate reactions
in the cell membrane and those in the cytosol, enabling
them to separate the contribution of the plasma mem-
brane structure to the signal. They combined the well-
mixed stochastic model of Gillespie26,27 to simulate
reactions in the membrane with an ODE model for the
cytosolic reactions. They assumed that the number of
RasGTP clusters was proportional to the EGF con-
centration, and these clusters served as platforms for
recruiting Raf to the plasma membrane for activation.
The lifetime of RasGTP clusters was assumed to be
normally distributed over a measured value. Plasma
membrane reactions, in addition to binding and acti-
vation of Raf byRasGTP clusters, included recruitment

by activated Raf of the KSR–MEK–ERK complex
from the cytosol and activation of MEK by activated
Raf and of ERK (MAPK) by activated MEK. KSR
(kinase suppressor of Ras) is a scaffold protein that
facilitates MAPK activation by providing binding sites
for assembly of the signaling complex. The recruitment
of both Raf and the KSR–MEK–ERK complex was
modeled as occurring through random collisions with
the plasma membrane. With dissolution of a nano-
cluster, all recruited proteins diffused back to the cyto-
sol, where the activatedMEK and ERK continued their
roles. Using this model in conjunction with biological
experiments, Tian et al.76 concluded that RasGTP
clustering is essential for signal transduction.Moreover,
theRasGTP clusters operate as sensitive switches in that
they produce approximately the same levels of nor-
malized activated ERK over a wide range of ligand
concentration. One possible explanation for this
behavior is the establishment of locally high concen-
trations of recruited proteins and thus the spatial
restriction of active ERK production to RasGTP
nanoclusters, whose generation and lifetime are them-
selves strictly regulated.76 Tian et al.76 also concluded
that the production of RasGTP nanoclusters in direct
proportion to ligand concentration can ensure high
fidelity of signal transduction.

Subsequently, Tian et al.77 incorporated models for
following the temporal evolution of RasGTP clusters
in the cell membrane. In particular, they studied K-Ras
clustering and how it is influenced by the protein
Galectin-3 (Gal3). Previous experimental work had
shown that Gal3 is a scaffolding protein recruited to
the plasma membrane, where it is necessary for the
formation of Ras nanoclusters.70 Their mathematical
model77 considered the two species, membrane-bound
RasGTP and Gal3, initially in the cytosol. Once Gal3
is recruited by RasGTP, the RasGTP-Gal3 complexes
are assumed to diffuse randomly in the plasma mem-
brane and react with one another to form complexes of
various sizes.

To simplify the calculation procedure, Tian et al.77

allowed for a maximum cluster size of ten. The various
combinations of possible complexes resulted in a total
of 27 species and 136 reactions in the plasma mem-
brane. In agreement with our earlier observation, they
concluded that spatial stochastic modeling of such a
large system poses a considerable computational bur-
den. Therefore they developed an ODE system to fol-
low the temporal evolution of complexes of size 1–10,
using a spatial stochastic model to only deduce colli-
sion rates among the complexes.35,36 This deterministic
system was solved with a Runge–Kutta method
suitable for stiff ODEs.60 The collision rates were
obtained by initially placing RasGTP randomly in a
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square-shaped representation of the plasma mem-
brane. Recruitment of Gal3 produces the Ras–Gal
complex. These molecules were allowed to diffuse
randomly, and a collision was said to occur when the
distance between two molecules was less than the sum
of their radii. The collisions produced various combi-
nations of Ras–Gal complexes. When a nanocluster,
defined as a cluster consisting of five or more RasGTP
molecules, formed it was assumed to become immobile
in the plasma membrane. During the calculation pro-
cedure the total numbers of collisions giving rise to all
cluster types were tracked. At the end of the compu-
tational time period, the collision rate constants were
computed from the total numbers of collisions. Kinetic
rate constants for the ODE model were then derived
from the collision rate constants, by using a genetic
algorithm in conjunction with experimental data. The
validity of this deterministic ODE model was checked
with results generated with a stochastic simulation
algorithm.26 Presumably due to the large numbers of
proteins, the stochastic simulations predicted only
small fluctuations. This observation supports use of
deterministic models when the protein copy number is
high, in agreement with our observations.

Using this modeling approach, Tian et al.77 studied
clustering of K-Ras-GTP in the plasma membrane
arising from interactions with Gal3 for various KRas
and Gal3 copy numbers. The simulation time period
was sufficiently long for the system to equilibrate. The
time to equilibrate was approximately two minutes, an
important result because it is in good agreement with
the time period required for RasGTP loading in
response to stimulation.76 Their results also success-
fully reproduced the experimental results of Plowman
et al.59 that approximately 42% of the RasGTP were in
clusters and the average cluster size was approximately
7. Tian et al.77 also generated the equilibrium nano-
cluster number vs. size histogram. Their results showed
that nanoclusters with two to four molecules
accounted for only 2.1% of the RasGTP, whereas a
cluster size of 5 was the most prevalent. Nanoclusters
larger than 5 in size were progressively smaller in
number, approximately inversely proportional to the
size. The authors speculate that one possible reason for
the lowered incorporation of RasGTPGal3 complexes
into clusters of size 5 or larger is the remodeling of the
lipid environment of the cluster by the stable pentamer.
Their results also suggest that cluster formation is only
weakly dependent on RasGTP concentration, and is
determined by the Gal3 cytosolic concentration. Tian
et al.77 concluded that on the basis of their simulations
neglecting the formation of clusters with more than 10
RasGTP molecules is reasonable. Notably, this work
illustrates the difficulty of spatial modeling of systems
with large reaction networks.

Work by Others: G-Protein Coupled Receptors

The GPCRs constitute the largest family of trans-
membrane receptors, consisting of five subfamilies.2,65

These proteins, whose structure and function were
reviewed recently by Rosenbaum et al.,65 are charac-
terized by seven transmembrane spanning a-helical
segments.2,24 GPCRs regulate many physiological
functions such as vision, gustation, and olfaction.65,82

Neurotransmitters, hormones, and environmental
stimuli activate these pathways. GPCRs are also
implicated in many human diseases, such as inflam-
mation, retinitis pigmentosa, nephrogenic diabetes
insipidus and Kaposi’s sarcoma.24,38,82,83 At present,
most pharmaceutical drugs used by humans target
GPCRs by serving as agonists or antagonists.21,82

Many aspects of GPCR signaling are well estab-
lished. In the classical view, binding of ligand to a
GPCR induces a conformational change in the recep-
tor. The activated receptor initiates guanine nucleotide
exchange (GDP fi GTP) in its principal signaling
partner, a heterotrimeric (abc) G-protein complex.
Like ras, heterotrimeric G proteins are tethered to the
cytosolic leaflet of the plasma membrane through
covalently attached lipids, and assume an active state
once bound to GTP. An additional step is required for
heterotrimeric G proteins: the separation of the GTP-
bound Ga subunit from the Gbc subunit, which dif-
fuses into the cytosol. The subsequent activation of
downstream effector proteins results in various distinct
biological reactions.

Recent work has focused on new aspects of GPCR
signaling, such as the evidence that at least some
GPCRs can form homo- or hetero-dimers.8,24,83 These
dimers can interact further to form oligomers.21

Although believed essential for signaling to occur, the
dimerization mechanism is well characterized for only
a few GPCRs.44 Due to the importance of GPCR
signaling in healthy and diseased states, GPCR inter-
actions, along with membrane organization, and their
impact on signaling must be well characterized.
Mathematical modeling is therefore being used
increasingly to help unravel the intricacies of this
pathway. A useful review of mathematical models that
have been developed to study GPCR signaling is given
by Linderman.48

Brinkerhoff et al.8 used triangular lattice-based MC
models to simulate receptor dimerization and activa-
tion in a two-dimensional plane, examining how
dimerization creates clusters of receptors. Their model
demonstrates the applicability of MC methods to sys-
tems with discrete reactions that are diffusion limited.8

Randomly selected particles undergo either one of two
possibilities at each time step: displacement in a ran-
dom direction by a distance governed by the diffusion
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coefficient or a chemical reaction. Reaction possibili-
ties considered were receptor dimerization, binding of
ligand by receptor, receptor activation of G protein
and receptor phosphorylation. This group’s simula-
tions suggest that clustering arises through both
dimerization and cross talk between receptors as they
approach one another closely and are able to share an
effector. They also concluded that the resulting clus-
tering enhances signaling.

Fallahi-Sichani and Linderman21 investigated lipid
raft impact on GPCR signaling with a combination of
MC (stochastic) and deterministic models. A lattice-
based, kinetic MC model was used to establish the
effects of low-diffusivity rafts on receptor dimerization
and cluster dynamics. The stochasticity of the model
allowed for receptor distributions to be examined,
leading to parameter estimations for exploring the
effects on downstream signaling using an ODE model.
The fraction of plasma membrane covered by micro-
domains (rafts), which was varied from 2 to 30%, had
a significant impact on output. At 2% coverage,
microdomains amplified the overall response, but at
higher coverage the signal was attenuated. They con-
cluded that dimerization and lipid raft trapping
cooperatively control the extent and dynamics of
GPCR signaling.

Tolle and Le Novere78 developed an off-lattice,
Brownian diffusion-based stochastic model, which
they used to determine how alpha-amino-3-hydroxyl-
5-methyl-4-isoxazolepropionic acid receptor (AMPAR)
diffusion in the dendritic spine affects synaptic sig-
naling, specifically long-term potentiation (LTP).79

LTP, an increase in synaptic strength, is a well-studied
form of synaptic plasticity, the ability to change the
strength of a signal.67,79 Tolle and Le Novere’s79 model
accounts for the dendritic spine membrane, membrane
receptors, and scaffolding proteins known to bind to
membrane receptors. The spatial domain representing
the plasma membrane of the synaptic spine was mod-
eled as a square of surface area corresponding to the
measured volume of the spine. This square was sepa-
rated into two different compartments or domains, in
order to account for the two physiologically different
portions of the plasma membrane: the post-synaptic
density (PSD) and the extra-synaptic membrane
(ESM). The PSD is a protein-rich region where
AMPARs are concentrated,67,79 while the rest of the
membrane is classified as the ESM.79 The transmem-
brane receptor movement within the ESM was mod-
eled with Brownian-type diffusion, while confined
motion was used to model the restricted diffusion
within the PSD. Simulation results indicate that ran-
domly placed receptors quickly localize to the PSD,
which Tolle and Le Novere79 suggest explains the
quick onset of LTP.

CONCLUDING REMARKS

This review specifically considers the mathematical
modeling of protein clustering on the plasma mem-
brane and the evidence that signal transduction can be
enhanced by locally high concentrations of proteins
that increase the probability of protein–protein inter-
actions. This feature is especially important when the
numbers of particles are small. When proteins are
overexpressed, as in EGFR amplification in certain
cancers, the impact of clustering may not be as sig-
nificant.35 The role of membrane microdomains in
signaling may be quite complex, since both inhibitory
and stimulatory effects have been observed experi-
mentally and theoretically.3,17,55,58

Mathematical modeling, in conjunction with bio-
logical experiments, is providing new insights into the
mechanisms that govern protein clustering in mem-
branes and the resulting impact on signaling. Increasing
experimental detail is being matched by increasingly
complex models that account for previously ignored
biological subtleties.12,19,30,45,62,64,80 An important goal
is to predict the functional responses of whole cells and
cell-tissue systems, based upon integration of spatial
and temporally encoded signals from surface receptors.
Achieving this goal will necessitate the development of
efficient and accurate multi-scale simulation capabili-
ties. A daunting challenge to mathematical modeling of
cell signaling continues to be the scaling up of compu-
tationally intense methods developed for studying
molecular behavior, to enable predictive modeling at
progressively more complex levels, from the cellular to
the systemic.
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