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Abstract—A novel constitutive model that describes stress
relaxation in transversely isotropic soft collagenous tissues
such as ligaments and tendons is presented. The model is
formulated within the nonlinear integral representation
framework proposed by Pipkin and Rogers (J. Mech. Phys.
Solids. 16:59–72, 1968). It represents a departure from existing
models in biomechanics since it describes not only the strain
dependent stress relaxation behavior of collagenous tissues
but also their finite strains and transverse isotropy. Axial
stress–stretch data and stress relaxation data at different
axial stretches are collected on rat tail tendon fascicles in
order to compute the model parameters. Toward this end,
the rat tail tendon fascicles are assumed to be incompressible
and undergo an isochoric axisymmetric deformation. A
comparison with the experimental data proves that, unlike
the quasi-linear viscoelastic model (Fung, Biomechanics:
Mechanics of Living Tissues. Springer, New York, 1993) the
constitutive law can capture the observed nonlinearities in
the stress relaxation response of rat tail tendon fascicles.
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INTRODUCTION

Ligaments and tendons are dense fibrous soft con-
nective tissues: ligaments connect bone to bone and
support internal organs while tendons connect muscle
and bone. They are primarily composed of collagen
and elastin fibers embedded in a ground substance of
water, proteoglycans, and glycoproteins, all of which
are produced and organized by the resident cells.

Collagen is the primary load bearing component and
the most abundant protein constituting 65–80% of the
tissues’ dry weight. It has a well-known hierarchical
organization: collagen molecules are packed together
to form collagen fibrils, collagen fibrils aggregate to
form collagen fibers, and collagen fibers are arranged
in distinct, parallel, wavy bundles known as fascicles.1

As many collagenous tissues, ligaments and tendons
exhibit long-term viscoelastic behavior: they relax
when held at a constant displacement and creep when
subjected to a constant load. The origin of their long-
term viscoelasticity is still unknown but has been
recently attributed to collagen.31 In order to study the
intrinsic viscoelastic properties of collagen, fascicles
found in rat tail tendons are often tested. This is due
their high content of collagen: 90–95% of the dry
weight of rat tail tendon fascicles is comprised of col-
lagen.13 In an early study by Rigby et al.,28 for exam-
ple, fascicles isolated from rat tail tendons were used to
determine the effect of temperature on stress relaxa-
tion. More recently, rat tail tendons have been
mechanically tested to understand the role of proteo-
glycans15 and collagen fiber sliding17,30 in stress relax-
ation. In these studies incremental stress relaxation
tests or stress relaxation tests at a single strain level
were performed. However, none of these investigations
focused on characterizing the strain dependent stress
relaxation response of these fascicles.

Investigating the strain dependent stress relaxation
of ligaments and tendons is essential for designing
replacement grafts with mechanical properties similar
to native tissues and establishing surgical reconstruc-
tion methods and post-operative rehabilitation proto-
cols. For example, during reconstructive surgeries,
ligaments, tendons, and their replacement grafts are
often strained in an ad-hoc manner by the surgeons
to achieve a desired tension. However, this tension
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decreases over time due to the viscoelasticity of the
tissues depending on the applied strain. An excessive
decrease in tension can have detrimental effects: it
causes laxity in the tissues that predisposes one to
the recurrence of injuries and leads to other musculo-
skeletal disorders such as osteoarthritis.4 Thus, the
dependence of stress relaxation on the applied strain in
ligaments, tendons, and their replacement grafts must
be accurately characterized to establish guidelines in
surgical procedures and enhance their outcome.

The most popular viscoelastic model employed for
soft collagenous tissues is the quasi-linear viscoelastic
(QLV) model proposed by Fung.16 The QLV model for
stress relaxation is the following:

rðe; tÞ ¼
Z t

0

@Rðe; t� sÞ
@e
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ds
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where rðe; tÞ is the stress, e is the strain, t is the time,
Rðe; t� sÞ is the relaxation function, G(t 2 s) is the
normalized relaxation function and re ¼ reðeÞ is the
instantaneous elastic response. In the QLV model in
Eq. (1), the relaxation function, Rðe; tÞ; is assumed to
be a separable function of time and strain and thus
takes the form Rðe; tÞ ¼ GðtÞreðeÞ: This assumption
requires the time dependent relaxation behavior
defined by G(t) to be the same for any strain e: The
QLV model is attractive due to the ease of imple-
mentation: quasi-static tensile tests and stress relaxa-
tion tests at a single strain level are sufficient to
compute its parameters. Some issues associated with
the numerical determination of the parameters and
predictive capabilities of the QLV model have been
looked upon over the past few years.2,7 However,
recent experimental evidence demonstrated that stress
relaxation in ligaments and tendons is strain dependent
and, hence, cannot be modeled using a separable
relaxation function of time and strain.12,18,24,32

Nonlinear superposition and Schapery’s theory
have been proposed as alternatives to the QLV theory
in order to describe the strain dependent stress relax-
ation exhibited by these tissues.11,12,18,25 The proposed
viscoelastic models are, however, one-dimensional and
valid only when the tissues are subjected to small
strains. Finite strains experienced by ligaments and
tendons have been considered in a three-dimensional
viscoelastic model proposed by Johnson et al.20 This
model has been derived within Pipkin and Rogers’s
nonlinear integral representation23 but has then been
tested by assuming that the tensorial relaxation func-
tion is a separable function of time and strain. This
assumption leads to a finite strain form of the QLV
model thus contradicting current experimental

findings. Furthermore, in the model proposed by
Johnson et al.20 ligaments and tendons are erroneously
assumed to be isotropic. While the above cited models
capture the long-term viscoelasticity of ligaments and
tendons, a robust three-dimensional constitutive model
that accounts for the strain dependent stress relaxation
behavior, transverse isotropy, finite strains experienced
by these tissues needs to be developed.

In this manuscript, a nonlinear viscoelastic consti-
tutive model that describes the stress relaxation
behavior of parallel-fibered collagenous tissues is pre-
sented. The model is derived within the nonlinear
integral series representation developed by Pipkin
and Rogers23 and recently proposed for anisotropic
materials by Rajagopal and Wineman.27 In order to
account for the tissues’ nonlinearities and transverse
isotropy, a tensorial relaxation function is proposed
that is assumed to be a non-separable function of the
strain invariants and time. Tensile axial stress–stretch
data and stress relaxation data collected at multiple
axial stretches from rat tail tendon fascicles are used to
compute the model parameters. Moreover, a compar-
ison of the proposed model with the predictions of the
QLV model is also presented. To the authors’ knowl-
edge, the constitutive model represents the first fully
nonlinear, finite strain, transversely isotropic model for
stress relaxation applied to parallel-fibered collagenous
tissues.

THEORETICAL FORMULATION

An incompressible transversely isotropic nonlinear
viscoelastic constitutive model is proposed for the
description of stress relaxation in soft collagenous tis-
sues having collagen fibers aligned mainly along one
physiological loading direction such as ligaments and
tendons. The model is formulated within the nonlin-
ear viscoelastic framework set forth by Pipkin and
Rogers23 by considering recent theoretical develop-
ments by Rajagopal and Wineman27 for anisotropic
materials. Most importantly, the model can capture
the dependence of stress relaxation on strain, which
has been experimentally observed in ligaments and
tendons.11,12,18,24

Constitutive Model

In order to describe the nonlinear viscoelastic
behavior of soft collagenous tissues, the integral series
representation proposed by Pipkin and Rogers23 is
considered. As previously done by other investiga-
tors,20,27,29 only the first term of the integral series,
which is a single integral with a nonlinear integrand,
is used. It must be noted that this single integral
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representation is equivalent for small strain to the
nonlinear superposition model used for ligaments and
tendons.11,12,18,24

The first Piola-Kirchhoff stress tensor, PðtÞ; at any
time t has the form27:

PðtÞ ¼ �pF�TðtÞ

þ FðtÞ R½CðtÞ; 0� þ
Z t

0

@R½CðsÞ; t� s�
@ðt� sÞ ds

0
@

1
A

ð2Þ

where FðtÞ is the deformation gradient tensor,
CðtÞ ¼ FðtÞTFðtÞ is the right Cauchy-Green deforma-
tion tensor, R½CðsÞ; t� s� is the tensorial relaxation
function, and p is the Lagrange multiplier that
accounts for incompressibility. In Eq. (2) no defor-
mation is assumed to occur prior to time t = 0 and the
term FðtÞR½CðtÞ; 0� represents the instantaneous elastic
contribution to the total stress at time t.

The use of the right Cauchy-Green deformation
tensor, CðtÞ; as a strain measure guarantees that the
principle of material frame indifference is satisfied.33 In
order to meet fading memory requirements, the ten-
sorial relaxation function must be a monotonically
decreasing function of time: the partial derivative of
R½CðsÞ; t� s� with respect to t 2 s must be always
negative. One must note that the reference configura-
tion is assumed to be a stress-free configuration so that
in the absence of deformation, the tensorial relaxation
function is identically zero. Finally, in absence of
explicit time dependence in the tensorial relaxation
function, Eq. (2) yields the general nonlinear elastic
constitutive equation with R½CðsÞ� ¼ 2 @W@C where W is
the so-called strain energy density function.

Ligaments and tendons are assumed to be trans-
versely isotropic and incompressible so that the ten-
sorial relaxation function can be defined in terms of
a scalar potential density function, ~W; as done by
Rajagopal and Wineman27:

R½CðsÞ; t� s� ¼ 2
@ ~WðI1ðsÞ; I2ðsÞ; I4ðsÞ; I5ðsÞ; t� sÞ

@C

ð3Þ

where I1(s), I2(s), I4(s), and I5(s) are the strain invari-
ants defined as follows33

I1ðsÞ ¼ trðCðsÞÞ; I2ðsÞ ¼
1

2
ðI21ðsÞ � trðC2ðsÞÞ;

I4ðsÞ ¼ m � CðsÞm; I5ðsÞ ¼ m � C2ðsÞm ð4Þ

and m is a unit vector that defines the axis of transverse
isotropy in the reference configuration. The scalar
potential density function does not depend on
I3ðsÞ ¼ detCðsÞ since the strain invariant is identically
equal to 1 due to the incompressibility assumption.

The tensorial relaxation function R½C; t� s� pre-
sented in Eq. (3) can be alternatively written as

R½C; t� s� ¼ a11þ a2Cþ a3m�m

þ a4 m� ðCmÞ þ ðCmÞ �m½ � ð5Þ

where a1, a2, a3 and a4 are functions of the strain
invariants I1 (s), I2 (s), I4 (s), I5 (s) and t 2 s defined as

a1 ¼ 2
@ ~W

@I1
þ I1

@ ~W

@I2

� �
; a2 ¼ �2

@ ~W

@I2
;

a3 ¼ 2
@ ~W

@I4
; a4 ¼ 2

@ ~W

@I5
: ð6Þ

Note that, for ease of notation, the dependence on
the strain invariants and time has been dropped in
Eqs. (5)–(6).

In this study, the tensorial relaxation function
R½C; t� s� is selected to depend only on the strain
invariant I4 and is defined only in the direction m of the
axis ofmaterial symmetry.Thus the functionsa1, a2 anda4
are assumedtobe identically zero thus limiting the typesof
finite deformations that can be described.26 Specifically,
the tensorial relaxation function is chosen to be

R½I4ðsÞ; t� s� ¼ a3ðI4ðsÞ; t� sÞm�m

¼ c1 ec2ðI4ðsÞ�1Þ � 1
h in o

h
1� aðI4ðsÞÞð Þe�ðt�sÞbðI4ðsÞÞ

þ aðI4ðsÞÞ
i
m�m ð7Þ

where c1 and c2 are non-negative constants and a(I4(s))
and b(I4(s)) are functions of the strain invariant I4(s).
In Eq. (7), the function of I4(s) in the first curly
brackets is used to describe the strain stiffening elastic
behavior of soft collagenous tissues.16,19,22 Specifically,
the parameter c1 represents the initial elastic modulus
while the parameter c2 defines the strain stiffening of
the tissues. The function in the second square brackets
is used to describe the normalized relaxation behav-
ior.29 The function a(I4(s)) describes the ratio of the
equilibrium stress to the initial stress and is referred to
the elastic fraction while the function b(I4(s)) defines
the strain dependent relaxation rate. It must be noted
that a finite strain form of the QLV model for stress
relaxation is recovered when a and b are constants (not
functions of I4(s)).

MODEL IMPLEMENTATION

Uniaxial Deformation

The proposed model is tested with experimental
data collected by loading rat tail tendon fascicles along
their long axis. The fascicle is assumed to undergo
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an isochoric homogeneous axisymmetric deformation
schematically presented in Fig. 1 and defined by

r ¼ kðtÞ�1=2R; h ¼ H; z ¼ kðtÞZ ð8Þ

where (R;H;Z) and (r, h, z) represent the coordinates
of a generic point in the reference and deformed
configurations, respectively, and k = k(t) is the axial
stretch. The orthonormal bases fER;EH;EZg and
fer; eh; ezg in the reference and current configurations,
respectively, are defined such that EZ and ez are unit
vectors parallel to the direction of loading. Moreover,
the collagen fibers are assumed to be aligned along EZ

in the reference configuration so that m ¼ EZ (Fig. 1).
It follows that the deformation gradient tensor,

FðtÞ; and the right Cauchy-Green deformation tensor,
CðtÞ; are given by

FðtÞ ¼ 1ffiffiffiffiffiffiffiffi
kðtÞ

p er � ER þ
1ffiffiffiffiffiffiffiffi
kðtÞ

p eh � EH þ kðtÞez � EZ;

CðtÞ ¼ 1

kðtÞER � ER þ
1

kðtÞEH � EH þ k2ðtÞEZ � EZ:

ð9Þ

The first Piola-Kirchhoff stress tensor that defines
the instantaneous elastic stress can be computed by
substituting Eq. (7) at time t = s and Eq. (9) into
Eq. (2). Assuming a traction-free boundary condition
on the lateral surface of the tested fascicles leads to
p = 0 in Eq. (2). Then the only non-zero component of
the first Piola-Kirchhoff stress tensor has the form

PzZðtÞ ¼ kðtÞc1 ec2ðk
2ðtÞ�1Þ � 1

h i
: ð10Þ

Stress relaxation can be modeled using Eqs. (2), (7) and
(9) by assuming that k(t) = k is constant. Then, the only
non-zero component of the first Piola-Kirchhoff stress
tensor that defines stress relaxation is

PzZðtÞ ¼ kc1 ec2ðk
2�1Þ � 1

h i
1� aðk2Þ
� �

e�tbðk
2Þ þ aðk2Þ

h i
:

ð11Þ

In summary, for a parallel-fibered collagenous tis-
sue subjected to a uni-axial isochoric axisymmetric
deformation, two parameters, c1 and c2, need to be

determined to characterize the instantaneous elastic
behavior while the same parameters, c1 and c2, and
two functions, a(k2) and b(k2), need to be found to
characterize the stress relaxation behavior.

EXPERIMENTAL METHODS

Twenty-six rat tail tendon fascicles were subjected to
tensile tests followed by stress relaxation tests. Two
male Sprague Dawley rats were used in this study: one
rat (rat A) weighed 235 g and the other rat (rat B)
weighed 236 g. The animals were acquired from a
different study, which did not affect the musculoskel-
etal system or collagen development, in accordance
with an approved Virginia Tech IACUC protocol.
Immediately after sacrifice, the tails were isolated from
the rats and their skin was removed using a wire
stripper. Group of fascicles were then teased out from
the proximal end of the tails with fine tipped tweezers
under a stereomicroscope (Stereoscope Stemi 2000C,
Zeiss). The least amount of force necessary to free the
fascicles was used to minimize their stretching. The
fascicles were then separated, wrapped in paper towels
soaked in phosphate buffered saline solution, and
stored frozen (220 �C). Twelve to twenty-four hours
before testing, the fascicles were placed in a refrigera-
tor at 2 �C and before testing they were allowed to
come to room temperature for 1 h.

The fascicles were trimmed to a uniform length
chosen to be 77 mm based on experimental results by
Legerlotz et al.21 Images of each fascicle were collected
using the stereomicroscope. The width of each fascicle
was measured at six locations from the images using
ImageJ (ImageJ v. 1.44, National Institutes of Health).
The value of the width ranged from 0.153 to 0.496 mm.
The cross-sectional area was calculated using the
average of the six measured values of the width and
assuming a circular cross-section. The computed val-
ues of the area varied from 0.019 to 0.194 mm2. Black
ink was then sprayed on the surface of the fascicles
using an airbrush (Professional 150, Badger Airbrush
Co.) in order to produce marks with suitable contrast
for strain calculation (Fig. 2a). The two ends of each

E
Z

E
R

EΘ

e
z

e
r

eθ
reference configuration deformed configuration

FIGURE 1. Schematic of the rat tail tendon fascicle’s deformation. Note that the axis of transverse isotropy in the reference
configuration, m; is equal to EZ .
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fascicle were fixed to a piece of gridded plastic template
using cyanoacrylate glue (Fig. 2b) to ensure their
straight alignment during mounting on a custom built
micro-tensile testing device. The main components of
the micro-tensile testing device used to perform the
mechanical experiments are shown in Fig. 2c. A 8.9 N
(2 lb) load cell (LSB 200, Futek) with a resolution
of ±0.002 N was used to measure the load and a
micro-scale linear actuator (T-NA Series, Zaber
Technologies) with a ± 8 lm accuracy was employed
to stretch the specimens. Screw down grips and a bath
for the testing device were custom made primarily of
polycarbonate.

For each test, the two ends of the fascicle attached
to the gridded plastic template, were secured to the
grips. The plastic template, cured glue, and screw down
clamps contributed to gripping the fascicle and pre-
vented its slippage. The portion of the plastic template
not secured to the grips was cut with a pair of scissors
and removed. The fascicle was then immersed in the
bath that was filled with phosphate buffered saline
solution. It was pre-loaded to 0.01 N and then pre-
conditioned at 6 mm/min to 0.4 mm for 5 cycles fol-
lowed by a 5 min recovery period. Preconditioning was
performed to establish a consistent strain history for all
samples.28 The configuration assumed by the fascicle
following recovery was taken as the reference config-
uration. The 26 fascicles were stretched at 6 mm/min
to different displacement values corresponding to
0.75 mm (n = 7), 1.25 mm (n = 7), 1.75 mm (n = 7)
or 2.25 mm (n = 5) and subsequently held for 10 min
for stress relaxation testing.

The load and displacement data were simultaneously
recorded at 20 Hz using LabVIEW software (Lab-
VIEW 2009, National Instruments). The axial nominal
stress, PzZ, was computed by dividing the current load
by the initial cross-sectional area. A charge coupled
device (CCD) camera (Stingray F-080B, Allied Vision)

was used along with a stereomicroscope (Wild M3Z,
Heerbrugg) to record images of the fascicle for the
duration of the tests. A center region of the fascicle was
selected for strain analysis and the displacement of the
ink marks was measured using a digital image corre-
lation method implemented in MATLAB (MATLAB
v. 7.10, MathWorks).14 The right Cauchy-Green
deformation tensor, C; and, hence, the axial stretch k
were calculated from the measured displacements by
assuming that the fascicle undergoes the deformation
presented in Eq. (8). For comparison purpose, the
Green-St. Venant strain tensor E related to C by
E ¼ 1

2 ðC� 1Þ was also computed. Specifically, the
component EZZ of the Green-St. Venant strain E re-
lated to the axial stretch k by EZZ ¼ 1

2 ðk
2 � 1Þ was

reported.

RESULTS

Elastic Response

Axial stress–stretch data were obtained from 26 rat
tail tendon fascicles by performing tensile tests as
previously described. These data were collected by
stretching the fascicles along their long axis up to the
displacements that were then held constant during the
stress relaxation experiments. These displacements
were found to correspond to axial stretch values lower
than 1.0566 (EZZ = 5.82%) and the experimental data
obtained fell within the toe-region or linear region of
the stress–strain curves.21,28 A representative axial
stress–stretch curve for a fascicle, which was subse-
quently tested for stress relaxation at an axial stretch of
1.0199 (EZZ = 2.00%), is shown in Fig. 3. It can be
clearly seen that the fascicle exhibits the typical non-
linear elastic strain-stiffening behavior of soft collage-
nous tissues.

bath

actuator load cell

microscope
1/8 in

video camera

rat tail tendon fascicle on gridded plastic template

(a)    section of fascicle with ink marks (c)                         tensile testing device

(b) 

FIGURE 2. Preparation of rat tail tendon fascicle and custom designed micro-tensile testing device.
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The axial stress–stretch data were used to compute
the model parameters c1 and c2 that define the
instantaneous elastic response of the fascicle. Toward
this end, Eq. (10) was fit to these data by employing a
nonlinear least squares algorithm implemented in
MATLAB and imposing that the model parameters
were non-negative. The least squares function and its
gradient were supplied to a built-in minimization
function called fmincon and the trust-region reflective
algorithm was utilized.5

The proposed model for the instantaneous elastic
response of the fascicle could fit the axial stress–stretch
data well with 0.86 <R2 < 0.99. In Fig. 3, the model
fit to the representative axial stress–stretch data is
presented. For this data set, the parameters were found
to be c1 = 20.27 and c2 = 14.15 (R2 = 0.99). The
values of the parameters c1 and c2 obtained by fitting
the axial stress–stretch data collected from each rat tail
tendon fascicle are plotted vs. the maximum axial
stretches in Fig. 4. They are represented with the same

symbol and color when they are computed by fitting
data from fascicles stretched up to an equal displace-
ment. Note that the maximum axial stretch is the axial
stretch held constant during the subsequent stress
relaxation experiment. The values of the parameter c1,
the initial elastic modulus, ranged from 1.424 to
331 MPa and the values of the parameter c2, the strain
stiffening parameter, varied between 0.77 and 69.27.

Stress Relaxation Response

Stress relaxation data were collected by subjecting
rat tail tendon fascicles to constant displacements
ranging from 0.75 to 2.25 mm. Due to inter-specimen
variability, an equal displacement applied to different
fascicles was found to induce different axial stretches.
The displacements used during stress relaxation
experiments produced axial stretches in the fascicles
that varied from 1.0098 (EZZ = 0.98%) to 1.0566
(EZZ = 5.82%). The stress relaxation data normalized
by the initial stress value are presented in Fig. 5 for five
representative fascicles. From Fig. 5, one can see that
the shape of the stress relaxation curve changes with
axial stretch (or strain). These results suggest that the
QLV theory cannot be employed to describe the stress
relaxation behavior of rat tail tendon fascicles.
According to the QLV model, the normalized stress
relaxation function, G(t) in Eq. (1), is independent of
strain and thus should be identical regardless of the
strain level considered.

The stress relaxation data collected at different axial
stretches were used to determine the values of a(I4) and
b(I4) in Eq. (11) with I4 = k2. As described above, a
nonlinear least squares algorithm was implemented in
MATLAB with a(I4) constrained to be between 0 and 1
and b(I4) constrained to be non-negative. Note that
when curve fitting Eq. (11) to each set of stress relax-
ation data, the values of the parameters c1 and c2 were
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FIGURE 3. Typical tensile axial stress–stretch curve col-
lected from one rat tail tendon fascicle and model fit to data
with c1 5 20.27 MPa and c2 5 14.15 (R2 5 0.99).
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FIGURE 4. Initial elastic modulus, c1, (a), and strain stiffening parameter, c2, (b), as a function of the axial stretch, k, determined
by the displacement, d, kept constant during stress relaxation experiments.
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fixed to those previously computed by fitting the cor-
responding set of axial stress–stretch data.

The proposed model was able to capture the strain
dependent stress relaxation behavior well (0.80 <

R2 < 0.99). In Fig. 6 the value a(I4) and b(I4) are
plotted vs. I4 = k2. These values are represented with
the same symbol and color when they are computed by
fitting stress relaxation data obtained from fascicles
stretched up to the same displacement. As I4 increased,
a(I4) tended to decrease (Fig. 6a) while b(I4) was found
to increase (Fig. 6b). However, as seen in Fig. 6, there
was significant variability in the values of a(I4)
and b(I4). A function of the form aðI4Þ ¼ c3e

c4ðI4�1Þ

was then fit to the a(I4) vs. I4 data with c3 = 0.7318
and c4 = 214.69 (R2 = 0.68) and a function of the
form b(I4) = c5(I4 2 1) was fit to the b(I4) vs. I4 data
with c5 = 0.2084 (R2 = 0.30). These curve fits were
performed in an attempt to suggest the form of

the functions that characterize the stress relaxation
response of the fascicles.

Stress relaxation data sets at three additional axial
stretches are shown on a log–log plot in Fig. 7 along
with model fits obtained with the proposed model and
model predictions from the QLV. The QLV model
used is given by Eq. (11) with a(I4) = a and b(I4) = b
constant and independent of strain. Because the
parameters a and b are independent of strain, they
were computed by fitting stress relaxation data col-
lected at one axial stretch level, chosen to be 1.0098
(EZZ = 0.98%). The values of these parameters were
found to be a = 0.7537 and b = 5.649 9 1023. For
each stress relaxation curve, the parameters c1 and c2 in
the QLV model were set equal to the values computed
by fitting the corresponding axial stress–stretch data.
As expected the QLV and proposed models coincide at
the axial stretch used for the fitting. However, it can be
observed that the QLV model can capture the stress
relaxation response at the other two axial stretches
only for the first 5–10 s of the tests.

DISCUSSION

In this study, a novel constitutive law was formu-
lated for the description of stress relaxation in trans-
versely isotropic soft collagenous tissues such as
ligaments and tendons. The model was derived within
the nonlinear integral representation proposed by
Pipkin and Rogers23 and recently extended to aniso-
tropic materials by Rajagopal and Wineman.27 The
tensorial relaxation function, which appears in this
representation, was assumed to be a non-separable
function of the strain invariants and time. In order to
compute the model parameters, tensile tests and stress
relaxation tests at four different displacement values
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on rat tail tendon fascicles were conducted. The
experimental results confirmed previous findings on
the nonlinear viscoelasticity of ligaments and ten-
dons.11,12,18,25 They showed that the widely used QLV
theory is inadequate to describe the strain dependent
stress relaxation behavior of soft collagenous tissues.
The proposed model was then successfully fit to the
experimental data by assuming that the fascicle
undergoes an isochoric axisymmetric deformation.
Unlike previous constitutive models, the proposed
model accounts for finite strain, tissue anisotropy, and
strain dependent stress relaxation that are typical of
soft collagenous tissues such as ligaments and tendons.

The elastic behavior of rat tail tendon fascicles was
found to be nonlinear as expected21,28 (Fig. 3). How-
ever, the initial nonlinear region of the axial stress–
strain curve, the so-called toe region, was observed
within axial stretch values that correspond to strain
values smaller than the 3–5% strain values reported by
other authors.21,28 This difference may be due to dif-
ference in the experimental methods and protocols
(e.g., preconditioning) and the longer length (77 mm)
of the specimens used in this study. Indeed, in rat tail
tendon fascicles the strain to failure decreases while
the modulus increases as their length increases.21 As
a consequence, the extent of the toe region is also
expected to decrease.

The axial stress–stretch data were used to find the
parameters c1 and c2 that determine the instantaneous
elastic response of fascicles (Fig. 4). Some of the scatter
in the data can be attributed due to the variability of
the cross-sectional area of the tested fascicles.3,21 The
length of the specimens used in this study was con-
trolled and varied less than 1% but their cross-section
area ranged from 0.02 to 0.1 mm2. One could note that
the value of the strain stiffening parameter, c2, tended

to decrease with the maximum axial stretch (Fig. 4b)
but no clear trend was found for the initial elastic
modulus, c1 (Fig. 4a).

The rat tail tendon fascicles displayed the strain
dependent stress relaxation behavior also observed in
other soft collagenous tissues.11,12,18,24,32 Overall as the
axial stretch increased the amount of relaxed stress
increased. However, due to the inherent variability of
the specimens, this trend was not always observed. For
example, in Fig. 5 the specimen pulled to an axial
stretch of 1.0180 (EZZ = 1.82%) relaxed 65% of its
initial stress while the specimen pulled to an axial
stretch of 1.0204 (EZZ = 2.06%) relaxed 59% of its
initial stress. Similar results were reported by Screen
et al.30 when conducting incremental stress relaxation
tests on rat tail tendon fascicles at strains less than 4%.

There are two major differences between the
experimental protocol employed here and those em-
ployed in previous studies.17,18,24,30 First, direct stress
relaxation tests, each conducted at a single axial
stretch, were preferred over incremental stress relaxa-
tion tests. Direct stress relaxation tests likely provide
more accurate information about the effect of strain
on stress relaxation. The stress relaxation behavior
studied by incremental stress relaxation tests may be
affected by the history of incremental strains used
during testing. Differences in the amount of stress
relaxation measured from incremental and direct
relaxation tests of rat tail tendon fascicles have been
detected and quantified by Screen et al.30 Secondly,
unlike previous experimental studies,17,18,24,30 this
study included preconditioning to the experimental
protocol. Great care was taken in isolating the fascicles
from the rat tail tendons and in handling and prepar-
ing the specimens for mechanical testing. However, the
fascicles may have been stretched before mechanical
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testing. Thus, in an attempt to provide amore consistent
strain history and reference state, the fascicles were
preconditioned. Preconditioning has been reported to
shorten or eliminate the toe region of the elastic
response8 and alter the elastic modulus of spinal cord
tissue6 while its effect on the stress relaxation still needs
to be investigated.

The QLV model is unable to capture the nonlinear
viscoelastic behavior of rat tail tendons. In Fig. 5, one
can note that the normalized stress relaxation response
depends on the axial stretch employed during testing.
This behavior suggests that a separable relaxation
function is not adequate to model stress relaxation in
rat tail tendon fascicles. Several investigators have
shown that the stress relaxation behavior of other soft
collagenous tissues cannot be modeled using a sepa-
rable relaxation function.11,12,18,24,32 In Fig. 7, the
QLV model is compared with the proposed model
using the same methodology employed by Provenzano
et al.24 However, we must note that in both cases, here
and in the cited paper, the predictions of the QLV
model are compared with model fits. Fitting the QLV
model to stress relaxation data, each collected at dif-
ferent axial stretches, would provide a very good fit
too. The purpose of the comparison in Fig. 7 is to
show that QLV model is unable to capture the stress
relaxation behavior at multiple axial stretches using
one set of material parameters assumed to be inde-
pendent of strain.

One limitation of this study was the inability to
determine the functions a(I4) and b(I4) that could fit
well the data generated by the computed a(I4) values
vs. I4 and b(I4) values vs. I4 due to scatter in the
experimental data (Fig. 6). The elastic fraction, a(I4),
which represents the ratio of the equilibrium stress to
the initial stress, was found to decrease with increasing
axial stretch and was curve fit by an exponential
function (Fig. 6a). Other investigators have either not
measured the elastic fraction12,18,24 or have reported
similar scatter in the data.17,30 The function b(I4),
which represents the relaxation rate, was chosen to be
a linear function of I4 to best fit the computed b(I4)
values vs. I4 (Fig. 6b). This choice is consistent with the
formulation by Roberts and Green29 and the results of
several experimental studies.12,24,30

Future studies will be conducted to validate the
proposed modeling framework using three-dimen-
sional experimental data collected on collagenous tis-
sues that undergo large strains such as the utero-sacral
ligaments.34 For these complex tissues, the definition of
the tensorial relaxation function given in Eq. (7) will
need to be modified so as to consider the contribution
of other tissue components (e.g., elastin). This function
will likely need to depend not only on I4 but also on
other strain invariants26 to describe physiological

modes of deformations. Finally, the tensorial relaxa-
tion function will be re-formulated to account for the
structural changes that occur during stress relaxation
at the fiber32 and fibril17 levels including damage. In-
deed, the strain applied during stress relaxation can
cause damage which needs to be addressed by future
constitutive models. This can be accomplished using an
approach similar to the ones outlined by one of the
authors elsewhere.9,10
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