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Abstract—While collagen is recognized as the predominant
mechanical component of soft connective tissues, the role of
the non-fibrillar matrix (NFM) is less well understood. Even
model systems, such as the collagen-agarose co-gel, can
exhibit complex behavior, making it difficult to identify
relative contributions of specific tissue constituents. In the
present study, we developed a two-component microscale
model of collagen-agarose tissue analogs and used it to
elucidate the interaction between collagen and NFM in
uniaxial tension. Collagen fibers were represented with
Voronoi networks, and the NFM was modeled as a neo-
Hookean solid. Model predictions of total normal stress and
Poisson’s ratio matched experimental observations well
(including high Poisson’s values of ~3), and the addition of
NFM led to composition-dependent decreases in volume
change and increases in fiber stretch. Because the NFM was
more resistant to volume change than the fiber network,
extension of the composite led to pressurization of the NFM.
Within a specific range of parameter values (low shear
modulus and moderate Poisson’s ratio), the magnitude of the
reaction force decreased relative to this pressurization
component resulting in a negative (compressive) NFM stress
in the loading direction, even though the composite tissue
was in tension.

Keywords—Non-fibrillar matrix, Collagen network, Micro-

scale model, Fiber-matrix interactions, Soft tissue.

INTRODUCTION

In order to understand fully the functional
mechanics of soft tissues, it is necessary to characterize
the mechanical properties of each tissue constituent
and elucidate how they interact and function together.
While the mechanical role of collagen (the primary

structural component of connective tissues) is often
evaluated, less is known about the role of non-fibrillar
matrix (NFM, e.g., proteoglycans, glycosaminogly-
cans, cells, etc.), which varies compositionally across
tissue types. Our recent work36,37 evaluated collagen-
agarose tissue analogs (with agarose as a representative
NFM) in uniaxial tension and indentation to charac-
terize the contribution of the NFM under different
loading scenarios. In these studies, agarose was
selected to represent NFM because of several advan-
tageous characteristics, namely its biocompatibility,
uncharged nature, and ability to intersperse between
fibers of a collagen gel without disrupting the collagen
network.62 Results demonstrated that the NFM con-
tributes significantly to the elastic and viscoelastic
mechanical response and structural reorganization of
soft tissues in a concentration-dependent manner, even
in tensile testing in which collagen is normally assumed
to be the predominant contributor. While these studies
have provided useful information, the mechanism by
which NFM interacts with the collagen network on the
microscale to alter the macroscale composite tissue
properties remains unknown. Thus, the objective for
the current work was to use a two-component micro-
structural model of the collagen-agarose system under
quasi-static loading to elucidate the interaction
between the collagen and the agarose during uniaxial
extension of the co-gel.

Various approaches have been used to incorporate
structural information into mechanical models of soft
tissues. Three broad categories ofmodel can be identified:
isolated fiber,4,12,14,22,26–28,33,40,43,45–47,50,51,63,64 regular-
fiber-cell,3,10,31,34,49,54,60 and large-network.32,44,53,55–58

Isolated-fiber models, often expressed in terms of a con-
tinuum strain-energy function, are characterized by each
fiber in the tissue behaving independently of the others
and moving affinely with the macroscopic deformation.
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Regular-fiber-cell models involve a small unit cell (4–20
fibers) that is assumed to repeat within the tissue. These
models capture someof the complexmechanical behavior
of a tissue but can still be converted to a closed-form
stress–strain (or strain energy) expression. Fibers within
regular-fiber-cell models may be able to move non-affi-
nely, but the cells themselves deform with the macro-
scopic boundary. Finally, large-network models involve
a network of hundreds to thousands of fibers, often
arranged randomly, that interact fullywith each other. In
this case, the networkmust be large enough that different
networks with the same overall structural properties
(alignment, crosslink density, etc.) produce the same
stress–strain results even if the detailed structures are
quite different.Highly non-affine kinematics exhibitedby
interacting fibers are consistent with reports that collagen
fiber kinematics in native tissues do not follow the affine
assumption.8,20,21,23,39

Each of these three modeling approaches exhibit
specific advantages, and models constructed at each
domain size (isolated fiber, regular-fiber-cell, large-
network) have provided insight into the mechanical
behavior of a variety of materials, including native soft
tissues,5,12,14–16,18,28–30,33,42,43,45,58 biological tissue
analogs,17,44,46,49,53,56,57,60 and biomimetic synthetic
materials.2,31 In addition to representing the collagen
component, several previous models have also con-
sidered the contribution of the NFM. Within models
based on non-interacting fibers, NFM has been rep-
resented, often via a neo-Hookean or Mooney-Rivlin
formulation, as a summed contribution to the collagen
stress.12,14,22,26,43,45–47,50,61,63 Since each fiber in these
models functions independently (of other fibers and the
NFM) at the local level, interactions between tissue
constituents cannot be evaluated. To capture such
interactions, some models have included an additional
term to incorporate the stress contribution due to
interactions between the collagen network and
NFM.22,47,48,63 When the fiber architecture is precise
and well known, the form of the interaction contri-
bution can be suggested by the structure of the tissue
(as in Ref. 22). Unfortunately, for an unstructured
fiber network the appropriate definition for the inter-
action term is unknown. For regular-fiber-cell models,
the general tendency is to evaluate the collagen net-
work alone, but a few studies have incorporated a
‘‘bulk’’ term to describe the contribution from non-
collagenous material.10,34 To date, however, these
models have focused on the fiber component and have
not been used to specifically evaluate the role of NFM
or how it interacts with fibrillar material to alter the
composite tissue response. Similarly, large-network
models have not generally included a representation of
NFM. One exception is a previous study performed by
our group,58 in which a neo-Hookean NFM term was

incorporated in parallel with collagen networks in a
multiscale model to simulate the mechanical behavior
of decellularized arteries. The current study employs a
modified version of our previous approach, but con-
structed more closely with experimental data and with
a more specific focus on microstructural properties and
relationships. Therefore, the purpose of this study was
to apply a large-network-based modeling approach to
experimental co-gel data to evaluate the role of NFM
and the nature of microstructural collagen-matrix
interactions in soft connective tissues.

METHODS

Material of Interest

A microscale model was developed for collagen-
agarose co-gels, of which experimental data was pre-
sented previously.36 Although the fabrication and
testing of the gels are described elsewhere, a brief
description is provided here as part of the development
of the model. Collagen-agarose co-gels composed of
1.0 mg/mL collagen and 0% (NoAg), 0.125% (LoAg)
or 0.25% (HiAg) w/v agarose were cast in dog-bone
shaped Teflon molds (Fig. 1a) and allowed to gel.
Agarose, which constituted the NFM of this tissue
analog system, formed an interspersed, web-like matrix
within the collagen network.36,62 Co-gels were sub-
jected to a four-step incremental stress-relaxation ten-
sile test, wherein the load, tissue strain, and cross-
sectional area were recorded throughout testing, and
quantitative polarized light imaging (QPLI) was used
to quantify collagen fiber alignment and kinematics.
The present study focused on the equilibrium (relaxed)
data from the final step of these tests, corresponding to
~10% tensile strain.

Model Formulation

While several different types of computational net-
works have been used to represent collagen (e.g., ran-
dom growth,55,58 confocal microscopy
reconstruction56, scanning electron microscopy recon-
struction13), Voronoi networks were used in this study.
Such networks were recently shown to provide a close
approximation to collagen gel behavior,44 and the
sparse arrangement and low nodal degree of Voronoi
networks allowed for generation of networks that
exhibited very large Poisson’s ratio values (~3) similar
to those measured experimentally for our collagen-
agarose co-gels.36 Previous studies using other network
types54,59,60 have been unable to achieve Poisson’s ratio
values as large as those measured experimentally for
tissue analogs, which are likely caused by significant
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network reorientation, compaction and densification
of the network, and exudation of interstitial fluid. In
the present study, networks were created by randomly
placing seed points within a representative volume
element (RVE), generating a 3D Voronoi tessellation
about these points, and placing nodes at the intersec-
tions of Voronoi edges (Fig. 1b). Networks were cre-
ated in Matlab (Natick, MA) using the VORONOIN
function, an implementation of the widely-used Qhull
code.6 In order to ensure that results were not depen-
dent on a specific placement of seed points, five dif-
ferent networks were created and evaluated in this
study (i.e., n = 5 for each simulation group) with ~700
fibers per network. Using an assumed fiber diameter of
70 nm, collagen density of 1.34 g/mL, and the experi-
mental collagen concentration (1 mg/mL), the average

edge length in undeformed RVEs was computed58 to
be ~20 lm; consequently, average RVE volume was
~8000 lm3. Generated Voronoi networks were isotro-
pic, so a pre-stretch was applied along the x-axis, and
the RVEs were clipped to the original size, such that
initial network alignment approximated the aniso-
tropic alignment of co-gels measured via QPLI. The
number of seed points (and hence, number of fibers)
was adjusted until the Poisson’s ratio of stretched
RVEs equaled values for NoAg gels. Nodes at fiber
intersection points were modeled as freely rotating pin
joints, and fibers were modeled as one-dimensional
nonlinear springs, with the force on each fiber defined
as9,19,26,55,58:

F ¼ EfA

B
eBe � 1
� �

ð1Þ

FIGURE 1. A microscale network model was used to simulate the response of collagen-agarose soft tissue analogs. (a) Repre-
sentative dog-bone shaped collagen gel tested experimentally36 and scanning electron micrograph showing the reconstituted
collagen network. (b) Computational networks were generated by randomly placing seed points within a representative volume
element (RVE), generating a Voronoi tessellation about those seed points, and placing pin joint nodes at each fiber–fiber con-
nection (schematic shows 2D network for clarity; actual Voronoi networks were 3D). (c) Collagen-agarose co-gels were modeled by
adding the contributions from the collagen network and the non-fibrillar matrix in parallel.
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where Ef is the elastic modulus of the fibers at infini-
tesimal strain, A is the fiber cross-sectional area, B is a
nonlinearity constant, and e is the fiber Green strain
given by e = 0.5(kf

2 2 1). Parameter values for the
fiber constitutive equation were used as previously55

(fiber radius = 35 nm; B = 3.8), where the fiber mod-
ulus value Ef was set at 6.5 MPa in order to produce
total stress values (calculated as defined below)
approximately equal to experimentally-measured val-
ues for the NoAg group. With the fiber forces thus
defined, the volume-averaged Cauchy stresses from the
collagen network at each RVE surface were computed
by11,59:

rcol
ij ¼

1

V

X

bnd nodes

xiFj ð2Þ

with V as the RVE volume and xi corresponding to the
position of each fiber (with force Fj) on a given RVE
boundary.

As done in our previous study,58 the NFM was
represented using a compressible neo-Hookean solid
formulation. Assuming no shear, Cauchy stress due to
the NFM was defined as25:

rnfm ¼ G
k2

J
� J�2b�1

� �
ð3Þ

where G is the NFM shear modulus, k is the RVE
stretch, J is the Jacobian, b = mm/(1 2 2mm), and mm is
the Poisson’s ratio of the matrix. Since the model
represents the mechanical response at equilibrium
(after relaxation and drainage of any pressurized
interstitial water), mm was taken to be 0.1.45 Values for
G were specified by extrapolating experimental data for
the shear modulus of pure agarose gels7 to concen-
tration values used in our study such that G = 0, 110,
and 720 Pa for NoAg, LoAg, and HiAg, respectively.
In this way, the only difference between models rep-

resenting the three experimental groups was in the
specific value used for shear modulus. All other vari-
ables (e.g., organization of the Voronoi collagen net-
work, parameter values for the fibers) were consistent
across the three different co-gel models. The total
stresses in the composite model were calculated by
summing the contributions from the collagen network
and the NFM (Fig. 1c) in a parallel manner:

rtot ¼ rcol
� �

þ rnfm ð4Þ

Model Solution

A 10% strain was applied to each RVE in the
1-direction (k1 = 1.1), while the 2- and 3-directions
had stress-free surfaces (Fig. 2). After the step dis-
placement, the position of the internal nodes and the
position of the unloaded boundaries (2- and 3-faces)
were solved for using Newton’s method to ensure force
balance at each internal node and minimal normal
stresses on the free surfaces (i.e., r22 and r33; Fig. 2).
For all three groups (NoAg, LoAg, HiAg), simulations
were evaluated for each of the five networks. For each
run of the microscale model, the total normal stress in
the loaded direction (r11) and the Poisson’s ratio of the
composite RVE were computed and compared to
experimental co-gel data. In addition, the stresses due
to each component (Ær11colæ, r11

nfm) and the amount of
stretch on each fiber (kf) were evaluated along with 3D
maps showing network orientation and fiber stretch.
All model simulations were performed in Matlab, with
a run time of a few minutes.

A second set of simulations was performed to
explore the parameter space of the NFM neo-Hookean
term. To characterize the parameter space, the shear
modulus and Poisson’s ratio were varied across a range
of values (G = 1, 10, 110, 330, 720, 1310 Pa; m = 0,
0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.49), and

FIGURE 2. After applying a stretch of 1.1 in the 1-direction, an iterative minimization scheme adjusted the position of the internal
nodes and of the 2- and 3-direction surfaces until a tolerance was reached for the nodal force balance and stress-free boundaries.
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RVEs were evaluated for each combination of
parameter values.

Statistical Analysis

A one-way ANOVA was utilized to compare mean
fiber stretches across groups and post hoc t-tests were
used to identify statistically significant specific com-
parisons. Bonferroni corrections were applied when
making multiple comparisons.

RESULTS

The model-predicted values of Poisson’s ratio and
total stress (in the 1-direction) compared well with
experimental values (Figs. 3a and 3b, respectively).
Data trends showed qualitative agreement, indicating
that the microscale model made good, if not exact,
predictions of the experimental data. An examination
of the relative proportion of the total stress contrib-
uted by each component (Fig. 3c) yielded a very small
NFM contribution in the LoAg samples (aver-
age = 3.8% of total stress), and a larger NFM con-
tribution for the HiAg samples (average = 18.6% of
total stress).

Representative network maps at 10% strain showed
that fiber orientation and fiber stretch varied signifi-
cantly across different groups (Fig. 4). In these plots,
gray fibers are unstretched relative to the undeformed
case (kf = 1), red fibers are in tension (kf > 1), and blue
fibers are in compression (kf < 1). As the amount of
NFM increased (from NoAg to LoAg to HiAg), the
number of blue and gray fibers decreased (i.e., loss of
compressed and unstretched fibers) and the intensity of
red fibers increased (i.e., larger magnitudes of tensile
stretch), demonstrating an overall increase in fiber
stretch due to the NFM. Fiber stretch was also eval-
uated quantitatively by comparing frequency distri-
butions (Fig. 5a) and mean fiber stretch values
(Fig. 5b), where significant differences were observed

between the groups (p< 0.001). Another observation
from the network maps was the difference in volume
change due to the presence/quantity of NFM; NoAg
RVEs compacted significantly in the lateral directions,
while the HiAg RVEs strongly resisted volume change
(Fig. 4). Importantly, the NFM’s resistance to volume
change (also demonstrated by decreasing Poisson’s
ratio) likely resulted in the increased fiber stretches by
not allowing the fibers to reorient in the direction of
loading and compact the lateral boundaries.

Parameter space plots (Figs. 6 and 7) demonstrate
how output values changed as a function of the two
parameters in the neo-Hookean NFM term (Poisson’s
ratio mm and shear modulus G). Interestingly, at low G
values and moderate mm values, the NFM stress (rnfm)
was negative (Fig. 6a), indicating a compressive stress
contribution from the NFM. With this transition from
compressive to tensile stress, the parameter space for
rnfm included a boundary along which the stress con-
tribution from the NFM was zero (dashed line,
Fig. 6a). The collagen network stress (rcol) and the
total stress (rtot) increased with increasing G (Figs. 6b
and 6c, respectively). For all stress measures, increas-
ing the value of mm had minimal impact at high G, but
made a more significant impact at low values of G
(Fig. 6, right column). In a similar manner, parameter
maps for RVE Poisson’s ratio and fiber stretch (Figs.
7a and 7b, respectively) demonstrated relatively con-
sistent values when G> 300 Pa, but much greater
variation in values at low G. As Poisson’s ratio of the
NFM (mm) increased, the composite Poisson’s ratio
decreased and kf increased. Furthermore, there was an
inverse relationship between RVE Poisson’s ratio and
mean fiber stretch (Fig. 7c).

DISCUSSION

In this study, a network-based microscale model
was developed and fit to experimental data from col-
lagen-based tissue analogs. After adding (in parallel) a

FIGURE 3. Model-predicted values of (a) Poisson’s ratio and (b) Cauchy stress in the 1-direction showed qualitative comparison
with experimental values; (c) while stress in the NoAg samples was due (trivially) to collagen (COL) alone, the non-fibrillar matrix
(NFM) contributed a small and moderate proportion of the total stress to the LoAg and HiAg groups, respectively (plots show
mean 6 95% CI; n 5 5–7/group).
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term to describe the mechanical contribution from the
NFM, the model was able to predict qualitatively the
composition-dependent mechanical response of colla-
gen-agarose co-gels in tension (Figs. 3a and 3b). The
microscale model utilized here allowed for the char-
acterization of how the collagen fiber network (repre-
sented via Voronoi networks) was reoriented and
stretched differentially as a function of increasing
NFM.

Our experimental studies of collagen-agarose
co-gels36,37 suggested that agarose served a volume-
preserving role in co-gel deformation. Similarly, the
neo-Hookean term representing the NFM contribu-
tion in our microscale model increased resistance to
volume change. Specifically, lateral compaction in the

2- and 3-directions that occurred during a stretch in the
1-direction decreased as a function of NFM concen-
tration, as measured by average Poisson’s ratios from
model simulations (Fig. 3a) and by comparing de-
formed dimensions of representative network maps
(Fig. 4). As lateral compaction decreased, the reori-
entation of the fibers towards the direction of loading
was limited, leading to increased stretching of the fibers
(Figs. 4 and 5). In fact, further simulations yielded
data that showed a distinct correlation between Pois-
son’s ratio of the RVE and mean fiber stretch (Fig. 7c).
Parameter space plots show how these measures
changed as parameter values for the NFM term (shear
modulus G and NFM Poisson’s ratio mm) were varied
across a full range of values (Figs. 7a and 7b). At high

FIGURE 4. 3D maps (and 2D projections) show how network organization and fiber stretch for a representative network changed
as a function of NFM quantity: the amount of network compaction decreased and relative fiber stretch increased as NFM increased
from NoAg to LoAg to HiAg (gray 5 unstretched relative to undeformed case, red 5 tensile stretch, blue 5 compressive stretch).

FIGURE 5. Fiber stretch increased with increasing NFM composition, as demonstrated by (a) frequency distribution curves and
(b) mean fiber stretch values (mean 6 95% CI; n 5 5/group; *significant differences).
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G (~400 Pa and above), RVE Poisson’s ratio and fiber
stretch remained relatively consistent, even when mm
was varied significantly; however, at low G these values
were highly dependent on changes in G and mm.

The stress contribution due to the NFM was com-
puted as predicted for the three sample groups: while
trivially zero for the NoAg samples, the NFM stress
was very small for the LoAg samples and moderate for
the HiAg samples (Fig. 3c). Further exploration of the
neo-Hookean NFM parameter space demonstrated a
transition to negative (compressive) stress for the
matrix at low shear modulus and moderate Poisson’s
ratio (Fig. 6a). Although a compressive state in the
unloaded (2- and 3-) directions was intuitive (in
opposition to the collapsing collagen network due to
the Poisson effect), a compressive NFM stress in the
1-direction was somewhat unexpected. Such a result
indicates that, instead of providing a reaction-force-

type response to the deformation (as the collagen
network does), the NFM force acts in the direction of
the grip and decreases the magnitude of the composite
tensile stress. While this notion is initially counterin-
tuitive, previous computational studies27,28 have dem-
onstrated a similar result for the hydrostatic pressure
term in a fiber-based incompressible model, and our
experimental co-gel data36 suggested this possibility
since peak stress values decreased with increasing
amounts of NFM (i.e., agarose). In addition, our
previous fiber-matrix multiscale model of artery
mechanics58 predicted that the non-collagenous matrix
would be in compression in order to prevent the col-
lapse (i.e., lateral compaction) of the collagen network.
Thus, a compressive NFM stress in the loading direc-
tion due to pressurization of the composite material is
plausible at certain parameter values of the NFM
component.

FIGURE 6. Parameter space plots demonstrate how the (a) NFM stress, (b) collagen stress and (c) total stress changed as a
function of varying the two NFM input parameters of shear modulus and Poisson’s ratio (left 5 full parameter space; right 5
zoomed in low shear modulus region); of particular interest was the span of the NFM stress from negative to positive values,
including the boundary (dashed line) where the contribution from the NFM was zero (mean values plotted; n 5 5/group).
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A possible mechanism for compression of the NFM,
and for how the NFM transitions to a tensile stress at
different parameter values, is represented using a sim-
ple schematic (Fig. 8). For simplicity, a 2D represen-
tation of the 3D physical system is used. When
collagen-only (NoAg) samples are stretched (Fig. 8a),
the collagen provides a reaction force (F1

col) in resis-
tance to the deformation in the 1-direction, while the
stress-free 2-boundary exhibits no net force (i.e.,
F2
col = 0). When added to the collagen network, NFM

contributes to the composite mechanical response in
two ways (Fig. 8b): through a reaction force (Fnfm)
that resists deformation and through an isotropic
pressure (Pnfm) that resists volume change. The pres-
ence of Pnfm balances the transverse tension in the
collagen network F2

col to help maintain volume and
satisfy the zero total stress condition on the 2-bound-

ary. In samples with small shear modulus (G) and
moderate to high Poisson’s ratio (mm) values (Fig. 8b),
F1
nfm is relatively small because of low G, so Pnfm

dominates, resulting in a negative (i.e., compressive)
total stress from the NFM (r1

nfm). On the other hand,
at large G and/or small mm (Fig. 8c), the high shear
modulus increases the magnitude of Fnfm over that of
the Pnfm, resulting in a positive (i.e., tensile) total r1

nfm.
Collagen-based tissue analogs and some collagenous

native tissues (e.g., tendon and ligament) can exhibit
very high Poisson’s ratio in uniaxial tension experi-
ments.24,35,36,41 Poisson’s values as high as 2–3 are due
to a high degree of network reorientation towards the
loading direction,36,38 significant compaction and
densification of the network due to fibers buckling
under transverse strain,31 and significant exudation
of interstitial fluid.1,65 Although one recent study

FIGURE 7. Parameter space plots demonstrate how the (a) RVE Poisson’s ratio and (b) fiber stretch changed as a function of
varying the two NFM input parameters of shear modulus and Poisson’s ratio (left 5 full parameter space; right 5 zoomed in low
shear modulus region; mean values plotted; n 5 5/group); (c) there was a strong correlation between Poisson’s ratio and fiber
stretch values.
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presented a micromechanical finite element model that
was able to predict high Poisson’s ratios using crimped
fibers in a super-helical organization,52 previous regu-
lar-fiber-cell and large-network models have only been
able to achieve maximum Poisson’s ratio values of
~1,5,59,60 thereby failing to replicate the high values
measured experimentally.56,60 Voronoi networks,
which were previously reported to show quantitative
agreement to collagen networks,44 contain fewer fiber–
fiber crosslinks than other network types used in pre-
vious models, thereby allowing for greater fiber reor-
ganization and subsequent network compaction under
load. In the present study, Voronoi networks repre-
senting the collagen-only gels exhibited Poisson’s
ratios of ~3 in agreement with experimental data.

One difficultly in extending this modeling approach
towards characterizing native tissues is identification of
an appropriate mathematical formulation and corre-
spondingmaterial properties for theNFM.As in several
previous studies,14,26,43,45,46,50,58,61 the current work
represented theNFMusing a simple neo-Hookean solid
with two input parameters: shear modulus and Pois-
son’s ratio. The model was compared to experimental
data at the equilibrium phase of a stress-relaxation test,
so a low Poisson’s value of 0.1 was used.45 In addition,
since the model was constructed to represent collagen-
agarose co-gels, values for the shear modulus were
based on properties of agarose-only gels tested experi-
mentally,7 which are comparable to those used in other
tissue modeling studies.14,26,30,33 For native tissues,
defining these parameters is more difficult because the
NFM term, as presently defined, lumps all non-collag-
enous material together (i.e., there is no single definition
of NFM), making tissue-specific definition of these
parameters challenging, and the experimental mea-
surement of NFM properties very difficult. Certainly
this topic merits further investigation.

This study is not without limitations. Due to the
parallel construction of the microscale model, our
approach did not allow for examination of fiber-matrix
interactions internal to each RVE, which likely result
in heterogeneous strain and stress fields throughout the
sample. Ongoing work by our group is developing a
coupled fiber-matrix microscale model that will allow
for characterization of these internal interactions.
Another difficulty lies in appropriately matching the
initial fiber orientation of the Voronoi networks to
experimental data. We used a method described pre-
viously55 to match 3D network organization to the 2D
experimental measures of sample alignment (using
polarized light imaging), but the appropriate definition
for the proportionality constant used in this analysis
remains unclear. In spite of these concerns, the model
developed and used in this study matched experimental
observations well and demonstrated a mechanism by
which pressurization of the NFM reduces lateral con-
traction of the collagen network and leads to a nega-
tive (compressive) stress in the NFM (r11

nfm) even
though the composite tissue is in tension.
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FIGURE 8. Two-dimensional schematic demonstrating the proposed mechanism for the observed results. In the collagen-only
(NoAg) case (a), collagen provided a reaction force (F1

col) while the forces on the non-loaded boundary were zero. At low shear
modulus and high Poisson’s ratio (b), the pressure due to the NFM resisting volume change (Pnfm) was greater than the NFM
reaction force (F1

nfm), resulting in a negative (compressive) stress from the NFM. At high shear modulus and/or low Poisson’s ratio
(c), the NFM reaction force (F1

nfm) dominated over the pressure term (Pnfm), resulting in a positive (tensile) stress from the NFM.
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