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Abstract—This article evaluates several indexes as support
tools to diagnose patients with Sleep Apnea-Hypopnea
Syndrome (SAHS). Some of these indexes, such as the
Apnea-Hypopnea Index, have been standardized and studied
in depth in the literature. Other indexes are used extensively
in the reports that commercial polysomnographs generate.
However, they have not been studied in detail and clinicians
have no standardized guidelines for interpreting them.
Examples are the mean and maximum duration of apneas
and hypopneas. Finally, several novel indexes proposed by
the authors are also evaluated. To evaluate the indexes, we
have used a database of 274 patients who have undergone a
polysomnographic test. Several feature selection techniques
were used to assess the capability of each index to discrim-
inate between healthy and SAHS patients. The capability of
the indexes for diagnosing the patients was analyzed by using
decision trees which were trained using each index individ-
ually, and all the indexes together. Our results suggest that
some indexes which are often present in the reports of
commercial polysomnographs provide little or no informa-
tion. On the other hand, other indexes that are usually not
considered have a great capability to discern between SAHS
and control patients.

Keywords—Sleep Apnea-Hypopnea, Apnea-Hypopnea

Index, Polysomnography.

INTRODUCTION

Sleep Apnea-Hypopnea Syndrome (SAHS) is a
sleep-breathing disorder characterized by recurrent
episodes of upper airway narrowing or collapsing

during sleep that produce a total or partial cessation of
the patient’s respiratory airflow (RA).12 When the
cessations are total they are called apneas; when they
are partial, they are called hypopneas. Apneas and
hypopneas are usually accompanied by hypoxemia,
with a drop in blood oxyhemoglobin saturation
(SpO2).31 This disorder is estimated to affect 4% of the
adult male population and 2% of the adult female
population.34

The overall result of SAHS is a disruption in the
patient’s sleep architecture and a decrease in its
refreshing effects. Consequently, patients often suffer
from daytime drowsiness and cognitive deficits which
increase the risks of accidents in the workplace and
when driving vehicles.10 They may also suffer from
depression, anxiety, excessive irritability and various
sexual dysfunctions. Treatment of SAHS depends on
the severity of the illness: in lighter cases, changes in
the patient’s behaviour (e.g. losing weight, avoiding
alcoholic beverages and avoiding sleeping positions
likely to trigger apneas, among others) may be suffi-
cient; in the most serious cases, it may be necessary to
resort to surgery and, more frequently, to therapy with
Continuous Positive Airway Pressure (CPAP). A
CPAP device applies pressure (constant in the case of
older models, variable following inhalations and
exhalations of the patient in newer models) on the
airway by means of a nasal mask while the patient is
asleep. This pressure prevents the collapse of the upper
airway, thus avoiding apneas. Once a patient has
started to use CPAP therapy, he/she may often have to
continue using it for the rest of his/her life.

The gold standard test for the diagnosis of SAHS is
the polysomnography, a test performed in a Hospital
Sleep Unit that consists of the recording of a wide
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range of physiological parameters while the patient is
asleep.15 Commercial polysomnographs usually gen-
erate a report summarizing the test. This report
together with a visual inspection of the polysomnogram
are the main tools that the clinician uses to diagnose
the patient.

The most relevant piece of information contained in
these reports is very likely the Apnea-Hypopnea Index
(AHI), i.e., the number of total or partial interruptions
of the RA that the patient experiences per hour of
sleep. This index has been the target of comprehensive
clinical studies, and there are detailed clinical guide-
lines that are used to interpret it.6 The AHI is con-
sidered by clinicians to determine whether the patient
suffers from SAHS, as well as to evaluate the severity
of his/her condition. In accordance with the criteria of
the American Academy of Sleep Medicine, a patient
may be diagnosed with SAHS if he/she has five or
more apneas during each hour of sleep throughout the
entire night.3 However, clinicians do not usually make
decisions about the patient’s condition on the basis of
the AHI alone, but they also take into account the
patients’ symptomatology and anthropometric infor-
mation, laboratory analysis, and descriptions of the
patient’s partner about his/her sleep (snoring, presence
of breathing pauses, etc.), among others.10

The main weakness of the AHI is that it is based on
a simple count of events, not on a characterization of
those events. A respiratory pause of 50 s and a respi-
ratory pause of 10 s contribute equally to the AHI.
Therefore, under certain circumstances this index can
underestimate the severity of the patient’s condition.28

Hence the interest in having available other indexes
that could complement the information provided by
the AHI.

The reports generated by commercial polysomno-
graphs contain other indexes besides the AHI. These are
mainlymean andmaximumvalues of certain descriptors
of the pathological events that have occurred during the
night; e.g., the mean and maximum duration of apneas,
hypopneas and desaturations, themean of theminimum
SpO2 value reached in each desaturation, et cetera.
Many authors have studied how to provide support for
the diagnosis of SAHS by analyzing patients’ anthro-
pometric information, data extracted from question-
naires, and laboratory analysis.7,19,35,36 However, to the
best of our knowledge, comprehensive studies on how to
take advantage ofmanyof the indexes that are presented
to clinicians have not been carried out. Therefore, there
are no clear guidelines on how to interpret them. This
severely hampers their utility as support tools to the
diagnosis of SAHS.

This paper aims to evaluate the usefulness of some of
these indexes in the diagnosis of SAHS. The evaluation
will also include indexes not usually considered in the

diagnosis of SAHS, but which the authors believe may
be useful. Between the former are indexes based on a
similar concept as the AHI, but they incorporate
information about the duration of the pathological
events and their severity. Examples of these indexes are
the percentage of time that the patient has been in
apnea, in hypopnea or in desaturation.

We have generated the indexes targeted in this study
for 274 patients who underwent polysomnographic
testing. No distinction between obstructive and central
sleep apnea patients was made during the compilation
of the database. Each of those patients was diagnosed
by a pulmonologist. Several feature selection tech-
niques were used to evaluate the capability of each
index to discriminate between healthy and SAHS
patients. The capability of the indexes for predicting
the class was also analyzed by using decision trees.

‘‘Methods’’ section describes the patient database
used in our study and presents the materials and
methods of the analysis we have performed. ‘‘Results’’
section presents the results obtained, and ‘‘Discussion’’
section discusses them. Finally, a series of conclusions
on the paper are given.

METHODS

Data

The database used in this paper consists of a total of
274 polysomnographic recordings arising from 274
patients who were subjected to a sleep study in the
Sleep Unit of the University Hospital Complex of
Santiago de Compostela. Access to the data was
approved by the hospital’s Clinical Research Ethics
Committee after evaluating the research protocol. The
recordings of all patients who underwent polysomno-
graphic testing in the Sleep Unit during the second half
of 2009 and the first half of 2010 were considered for
inclusion in the database. To obtain a more homoge-
neous data base, patients with other sleep disorders
besides SAHS which may cause excessive daytime
sleepiness, such as insomnia, narcolepsy or restless legs
syndrome, were excluded from the database. Patients
with liver disease, kidney failure, psychiatric disorders,
vascular disease, diabetes mellitus or thyroid gland
abnormalities, drug addiction, alcoholism (>60 g
alcohol/day), or patients who used hypnotics or seda-
tive drugs regularly also were excluded. All the
remaining patients were included in the database. No
distinction between obstructive and central sleep apnea
patients was made.

Recordings were performed with the com-
mercial polysomnograph SOMNOscreenTM, built by
SOMNOmedics GmbH. Oronasal flow was registered
by nasal prongs. Patients also were wearing chest and

OTERO et al.1826



abdomen piezoelectric belts to register thoracic and
abdominal movements. Body position, oximetry, elec-
trocardiogram and snoring also were recorded. The
recording started a few minutes after turning off the
room lights when the patient had fallen asleep
(5–20 min). The study finished when the patient
awoke. 23 patients did the study during a brief nap in
the afternoon; their recordings have an average dura-
tion of approximately 3 h. The remaining patients
underwent the test during the night; their recordings
have an average duration of approximately 8 h.
224 patients were males and 50 were females. Their
average age was 53.2 ± 12.7 (mean ± std) years, with
a minimum age of 23 and maximum of 88. Their
average weight was 89.9 ± 16.4 kg, with a average
body mass index (BMI) of 32.4 ± 6.1 kg/m2.

A pulmonologist with over 20 years of experience
working in the Sleep Unit diagnosed the patients in our
database. The diagnostic criteria used were:

� If AHI< 5 the patient does not have SAHS.
� If 5 £ AHI £ 10 the patient has SAHS if (1) the

patient is obese and snored during the night; or
(2) if the patient is obese and presented signifi-
cant drops in SpO2 during the apneas/hypop-
neas; or (3) if the patient snored during the
night and presented significant drops in SpO2
during the apneas/hypopneas; or (4) if the
patient is obese and he/she reported excessive
daytime sleepiness, then the patient has SAHS.
Otherwise, the patient does not have SAHS.
� If AHI> 10 the patient has SAHS.

Obesity was defined as BMI> 30 kg/m2. Drops in
SpO2 were considered significant if the average fall in
SpO2 was >5%. Snoring was considered to be present
during the polysomnography if the patient snored
during at least 3 min/h sleep. Using these criteria,
207 patients were diagnosed with SAHS; the remaining

67 did not suffer from SAHS. More information about
the database used in this paper can be found in Appendix.

Indexes Generation

To generate the indexes targeted in this study for the
274 patients, their polysomnographic recordings were
analyzed using algorithms previously developed by the
authors for this purpose (see Fig. 1). In the literature
there are similar proposals that generate the same
information.2,4,5,22,23,32,33 Our algorithms are capable
of identifying apneas, hypopneas, desaturations, tho-
racic and abdominal movement limitations and snor-
ing in the polysomnogram.25 For the study presented
in this paper, they were only used to identify apneas,
hypopneas and desaturations. In addition to identify-
ing each individual event, a highly robust association
between the hypoventilations—apneas or hypopneas—
and the desaturations they cause was performed with
the algorithms presented in Otero and Félix.24

In the identification of apneas, hypopneas and
desaturations our algorithms present a false positive
rate of 2.6, 6.0, and 1.2% respectively.25 The false
negative rate is 0.9, 3.4, and 1.1% respectively.25 When
performing the association between apneas/hypopneas
and the desaturations they cause, the rate of false pos-
itives in the identification of compound events falls to
0.86%. This low percentage of false positives is achieved
thanks to the integration of information arising from
two signals: respiratory airflow and SpO2.24

Using these algorithms, 46,505 associations between
a respiratory airflow limitation—either an apnea or a
hypopnea—and a desaturation were generated. For
each of them, the following descriptors were generated
(see Fig. 2):

� DurFlux: duration of the respiratory airflow
limitation measured in seconds.

FIGURE 1. Tool which implements the algorithms used to identify apneas, hypopneas and desaturations.
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� DurDesat: duration of the desaturation mea-
sured in seconds.
� MinValSpO2: minimum value of the SpO2

during the desaturation.
� MeanValSpO2: mean value of the SpO2 during

the desaturation.
� FallDurDesat: time elapsed from the beginning

of the desaturation until the minimum value of
the SpO2 is reached—fall section of the desat-
uration.
� FallValDesat: drop in SpO2 during the fall

section of the desaturation.
� FallSlopDesat: slope of the fall section of the

desaturation; (2FallValDesat)/FallDurDesat.
� RiseDurDesat: time elapsed from the point

where the minimum value of the desaturation is
reached until the desaturation ends (rise section
of the desaturation).
� RiseValDesat: increase in SpO2 during the rise

section of the desaturation.
� RiseSlopDesat: slope of the rise section of the

desaturation; RiseValDesat/RiseDurDesat.
� DesatArea: area between the straight line join-

ing the starting and ending points of a desatu-
ration and the SpO2 signal (gray area in Fig. 2).
This area increases with the duration of the
desaturation, and with the magnitude of the
drop in SpO2 from the basal value of this

parameter. Therefore, this index attempts to
quantify the severity of the desaturations
merging information from its duration and its
fall in SpO2 in a single parameter. Its units are
(% saturation) 9 second.
� TBegBeg: time elapsed between the beginning

of the respiratory airflow limitation and
the beginning of the desaturation measured in
seconds.
� TEndMin: time elapsed between the end of the

respiratory airflow limitation and the instant at
which the minimum value of the desaturation is
reached measured in seconds.
� TEndEnd: time elapsed between the end of the

respiratory airflow limitation and the end of the
desaturation measured in seconds.

All these descriptors were generated for each of the
46,505 associations between pathological events. Then,
from the events belonging to each patient, we calcu-
lated the average value of each descriptor for that
patient. The average values were calculated indepen-
dently for associations between apneas and desatura-
tions, and for associations between hypopneas and
desaturations. Previous work by the authors suggests
that it is useful to distinguish between events caused by
apneas and by hypopneas, as they seem to have dif-
ferent capabilities for discriminating between control
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FIGURE 2. Set of descriptors generated for each association between an apnea and a desaturation.
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and SAHS patients.26 In this paper we will use the
nomenclature of the previous list to refer to measures
taken over an event that was triggered by an apnea,
while for events triggered by hypopneas we add an
‘‘H’’ at the end of the names of the list. For example,
DurDesat is the duration of a desaturation that has
been caused by an apnea, while DurDesatH is the
duration of a desaturation that has been caused by a
hypopnea.

We also calculated for each patient the maximum
duration of the apneas (DurFluxM) and hypopneas
(DurFluxHM) he/she experienced; and the maximum
duration of the desaturations caused by apneas
(DurDesatM), and by hypopneas (DurDesatHM).
These maximum values were included in the analysis
because they often appear in the reports of commercial
polysomnographs. Finally, we also generated the fol-
lowing pieces of information for each patient:

� Standard AHI.
� MeanValSpO2: mean value of the SpO2

throughout the recording.
� BasalSpO2: basal value of the SpO2.
� DeltaSpO2: difference between the SpO2 basal

value and themean value of the SpO2 throughout
the recording (BasalSpO2 2 MeanValSpO2).
� ApPercnt: percentage of sleep time that the

patient has been in apnea.
� HypopPercnt: percentage of sleep time that the

patient has been in hypopnea.
� ApHypopPercnt: ApPercnt + HypopPercnt.
� DesatPercnt: percentage of sleep time that the

patient has been in hypoxia.
� AHDI (Apnea-Hypopnea-Desaturation Index):

ApPercnt + HypopPercnt + DesatPercnt.
� AreaSpO2: area between a horizontal line with

a value equal to BasalSpO2 and the oxygen
saturation curve, normalized by the number of
hours of sleep.

To calculate ApPercnt, HypopPercnt, ApHypop-
Percnt, DesatPercnt, and AHDI all the apneas, hyp-
opneas and/or desaturations identified in the patient’s
polysomnogram were considered, and not only those
apneas and/or hypopneas that were successfully asso-
ciated with their corresponding desaturation (i.e., no
events were excluded in the calculation of these indexes).
These indexes attempt to characterize the quantity and
the duration of the pathological events that the patient
has experienced throughout the night. Therefore, they
must consider all events. The indexes that describe the
associations between respiratory airflow limitations
and desaturations try to characterize the average fea-
tures of these associations for each patient. It is not
necessary to consider all events when calculating the
average features. That is the reason why the algorithms

we have used for event association have a very high
specificity (0.83% of false positives), though they dis-
card a larger number of events on average: only 88%
of the airflow obstructions are successfully associated
with the desaturation they have caused.24

The SpO2 basal value was calculated as follows. All
SpO2 samples recorded during the patient’s sleep are
sorted. The 90% of the lowest values are disregarded
on the grounds that they may contain desaturations.
The 5% of the highest values are disregarded on the
ground that they may contain hyperventilation peri-
ods. The patient’s basal value is calculated as the
average of the remaining 5% of the samples.

Each of the 274 patients was represented by a fea-
ture vector containing the 42 indexes described in this
section. For each of the 42 indexes we have 67 mea-
sures taken from non-SAHS patients and 207 measures
taken from SAHS patients. Therefore, the task of
evaluating how relevant each of these features is in the
diagnosis of SAHS can be seen as a feature evaluation
problem: we want to evaluate the capability of each
feature—index—to discriminate between the two
classes.

Index Evaluation

To evaluate the capability of each index to dis-
criminate between healthy and SAHS patients we shall
use several feature selection techniques. We shall also
train a classifier to recognize SAHS and control
patients using each of the indexes individually, and
all the indexes together. Each classifier’s perfor-
mance when applied to our patient database will be
measured.

Feature Selection

We shall evaluate each index using several feature
evaluation techniques that are capable of ranking the
features according to the information they provide:
Information Gain, Gain Ratio, Chi-square feature
evaluation, Relief feature evaluation, and a support
vector machine-based (SVM) technique.

Information Gain and Gain Ratio try to measure
the information obtained when making a decision
based on a given feature.30 Gain Ratio is based on
Information Gain, but it applies a correction to
penalize decisions with a high branching factor. Chi-
square feature evaluation ranks features by computing
the value of the Chi-squared statistic with respect to
the class.20 These techniques can only be applied to
discrete features. All the indexes that we are evaluat-
ing are continuous. Therefore, to apply them the
indexes were discretized with the algorithm presented
in Fayyad and Irani.9
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Relief evaluates the features by repeatedly sampling
an instance and considering the value of the given
feature for the nearest instance of the same class and of
a different class.16 Finally, a SVM-based technique was
used.14 An SVM classifier was trained with the data,
and the features were ranked by the square of the
weight assigned to each feature by the SVM.

To obtain some type of aggregate score of the
results of all these feature evaluation techniques we
shall proceed as follows: the index that ranks highest
according to a certain technique is assigned 10 points;
the second highest ranked index is assigned 9 points …
and the 10th highest ranked index is assigned 1 point.
The indexes that are not among the top 10 are assigned
0 points. For each index, the points obtained with the
five techniques are added. This sum will be an ad hoc
aggregate score of each index.

Finally we shall also use several feature selec-
tion techniques: Correlation-based Feature Selection
(CFS), Consistency-based Subset Evaluation and a
wrapper method. CFS evaluates a subset of features by
considering the individual predictive ability of each
feature along with the degree of redundancy among the
features.13 Consistency-based Subset Evaluation eval-
uates a subset of features by the level of consistency in
the class values when the instances are projected onto
the subset of features.1 The wrapper method uses a
classifier to evaluate feature sets.17 We used a C 4.5
pruned tree as the classifier for the wrapper method. In
all cases the search for subsets of features was per-
formed using greedy forward hill climbing search
through the space of feature subsets.

Classification Performance

We shall evaluate the capability of the indexes that
have been selected in the feature selection process to
classify patients as SAHS or control. We shall consider
that an index has been selected if (1) the index is one of
the 10 which have ranked higher according to our ad
hoc aggregate score for the feature evaluation tech-
niques; or if (2) the index was selected by any of the

feature selection techniques. To evaluate the prediction
capability of each index as an isolated piece of infor-
mation, we shall measure the performance of a C 4.5
pruned decision tree30 built using only that index in a
10 fold validation over our patient database. Accuracy,
sensitivity, specificity, likelihood ratio positive (LR+)
and likelihood ratio negative (LR2) will be calculated
for the decision tree.

In the case of the AHI, besides training a C 4.5
pruned decision tree, we also shall evaluate the per-
formance of using the criteria ‘‘SAHS if AHI> 5’’ and
‘‘SAHS if AHI> 10’’ over our patient database.

Finally, we shall also evaluate the performance of
decision trees built with (1) all the indexes, (2) all the
indexes except AHI and AHDI, and (3) only those
indexes that are average and maximum values of the
descriptors of apneas, hypopneas and desaturations;
i.e. the latter decision tree does not use AHI, AHDI,
ApHypopPercnt, DesatPercnt, HypopPercnt, ApPer-
cnt, MeanValSpO2, BasalSpO2, DeltaSpO2, and
AreaSpO2. Therefore, this decision tree has informa-
tion about the characteristics of the pathological events
experienced by the patient, but not about the number
of events that have occurred.

RESULTS

Table 1 shows the 10 indexes ranked highest by each
feature evaluation technique. The indexes are listed
from higher ranking to lower ranking. The last column
shows the aggregate score of the 10 features that have
achieved the highest aggregate scores.

Table 2 shows the indexes selected by the three
feature selection techniques: CFS, Consistency-based
Subset Evaluation and a wrapper method. The last two
techniques only selected one index: AHDI.

Table 3 shows the accuracy, sensitivity, specificity,
likelihood ratio positive (LR+) and likelihood ratio
negative (LR2) of the decision trees. The first column
of the table indicates with which index/indexes the
decision tree was built. The ‘‘All indexes’’ decision tree

TABLE 1. Rankings obtained by several feature evaluation techniques (top 10 ranked features).

SVM feature evaluator Relief Chi-square Info gain Gain ratio Overall (aggregate score)

AHDI AHDI AHDI AHDI AHDI AHDI (50)

ApHypopPercnt DesatPercnt AHI AHI AHI ApHypopPercnt (41)

DesatPercnt ApHypopPercnt ApHypopPercnt ApHypopPercnt ApHypopPercnt AHI (40)

HypopPercnt AHI DesatPercnt DesatPercnt HypopPercnt DesatPercnt (37)

AHI HypopPercnt HypopPercnt HypopPercnt DesatPercnt HypopPercnt (32)

DurFluxHM AreaSpO2 RiseValDesatH ApPercnt FallValDesatH DeltaSpO2 (14)

DeltaSpO2 DeltaSpO2 ApPercnt RiseValDesatH RiseValDesatH ApPercnt (13)

DurDesat ApPercnt DeltaSpO2 DeltaSpO2 RiseDurDesatH RiseValDesatH (13)

AreaSpO2 MeanValSpO2 AreaSpO2 AreaSpO2 AreaSpO2 AreaSpO2 (11)

DurDesatHM DurFluxHM FallValDesatH FallValDesatH ApPercnt FallValDesatH (7)
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was built using all the indexes. However, the resulting
decision tree selected only one index: AHDI. The
‘‘All-{AHI, AHDI}’’ decision tree was built using all
the indexes but AHI and AHDI. The resulting decision
tree has seven nodes and four leaves. It uses only
ApHypopPercnt and DesatPercnt, which combined
provide the same information as AHDI. The
‘‘Descriptors’’ decision tree was built using only those
indexes that are average and maximum values of the
descriptors of apneas, hypopneas and desaturations.
The resulting decision tree has eleven nodes and six
leaves and it uses RiseValDesatH, FallValDesatH,
FallDurDesatHM and TEndMin.

Table 3 also shows the performance of decision trees
built only with the indexes DurFluxM, DurDesatM,
DurFlux, DurFluxH, DurDesat, DurDesatHM,
DurDesatH, MinValDesat, MinValDesatH, Mean-
ValSpO2 and BasalSpO2. These indexes, which are
marked with an asterisk in Table 3, were not selected
during the feature selection process. But they are often
found in the reports generated by commercial poly-
somnographs. Therefore we considered it interesting to
include them in the table. We also have analyzed the
performance of decision trees built with all the other
indexes studied in this paper, but we have not included
these results in the paper due to their very low pre-
diction capability, which renders them useless for the
clinical routine.

DISCUSSION

According to the results of our study, AHDI is a
better tool for discriminating between SAHS and
control patients than the AHI. This index outper-
formed AHI in all the analysis techniques (the different
feature evaluation and feature selection techniques,
and the classifiers) used in this paper. It also presented
the best LR- among the indexes selected in the feature
selection process (excluding the decision tree‘‘SAHS if
AHI> 5’’). The criterion ‘‘SAHS if AHI> 5’’ (the one
recommended by the American Academy of Sleep
Medicine3) used over our patient database results in
perfect sensitivity but low specificity and LR+. Using
the criterion ‘‘SAHS if AHI> 10’’ we obtain perfect
specificity with low sensitivity and high LR2. For any
of the three decision trees built with AHI, ADHI
provides a better compromise between sensitivity and
specificity than AHI; this is reflected in the higher
accuracy of the AHDI decision tree when compared
with the decision trees built with AHI.

ApHypopPercnt is the index that has the highest
LR+ among the indexes selected in the feature selec-
tion process, and the highest specificity (excluding the
decision tree ‘‘SAHS if AHI> 10’’). However it has a
slightly lower sensitivity and accuracy when compared
to AHI and AHDI (see Table 3). HypopPercnt pre-
sents the best sensitivity after AHDI, but it has a rather
poor specificity. DesatPercnt also has good sensitivity,
but it has poor specificity.

When building a decision tree using all the indexes,
only AHDI was selected. This suggests that once
AHDI is known, the other indexes do not add infor-
mation relevant to the classification problem (as we
shall discuss later, this does not mean that they may
not be useful to characterize other aspects of the
patient’s condition). The decision tree built with all the
indexes but AHDI and AHI selected two indexes that
convey the same information as AHDI: ApHypopPercnt

TABLE 2. Descriptors selected by each of the feature
selection techniques.

CFS Consistency subset Wrapper (C 4.5)

RiseValDesatH AHDI AHDI

DurFluxHM

ApHypopPercnt

AHI

AHDI

TABLE 3. Performance of the decision trees.

Index Accuracy Sensitivity Specificity LR+ LR2

All indexes 0.985 0.995 0.955 22.2 0.00506

All-{AHI, AHDI} 0.971 0.981 0.940 16.4 0.0206

Descriptors 0.836 0.918 0.582 2.20 0.141

AHDI 0.985 0.995 0.955 22.2 0.00506

AHI 0.960 0.976 0.910 10.9 0.0265

AHI ‡ 5 0.942 1 0.761 4.19 0

AHI ‡ 10 0.912 0.884 1 ¥ 0.116

ApHypopPercnt 0.942 0.928 0.985 62.1 0.0736

DesatPercnt 0.909 0.957 0.761 4.00 0.0571

HypopPercnt 0.916 0.990 0.687 3.16 0.0141

ApPercnt 0.865 0.923 0.687 2.94 0.113

DeltaSpO2 0.821 0.903 0.567 2.09 0.170

AreaSpO2 0.821 0.932 0.478 1.78 0.142

DurFluxHM 0.901 0.952 0.746 3.75 0.0647

RiseValueDesatH 0.839 0.947 0.507 1.92 0.105

FallValueDesatH 0.810 0.865 0.642 2.41 0.211

DurFluxM* 0.755 1 0 1 –

DurDesatM* 0.755 1 0 1 –

DurFlux* 0.755 1 0 1 –

DurFluxH* 0.755 1 0 1 –

DurDesat* 0.755 1 0 1 –

DurDesatHM* 0.785 1 0.119 1.13 0

DurDesatH* 0.770 0.951 0.209 1.20 0.231

MinValDesat* 0.770 0.918 0.313 1.34 0.262

MinValDesatH* 0.810 0.966 0.329 1.44 0.103

MeanValSpO2* 0.755 1 0 1 –

BasalSpO2* 0.755 1 0 1 –

*These indexes were not selected in the feature selection process

but are included here for being often present in the reports of

commercial polysomnographs.
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and DesatPercnt. The classification results of this tree
are superior to those of the tree built with AHI. The
tree that does not have information about the number
of pathological events that have occurred, but only
about the characteristics of the events (the ‘‘Descrip-
tors’’ tree) performed poorly (see Table 3).

The AHI only takes into account the number of
events that have occurred. Therefore, a patient that
experiences 20 apnea events per hour with an average
apnea duration of 20 s has exactly the same AHI as a
patient that experiences 20 apnea events per hour but
whose average event duration is 40 s. However, the
latter patient suffers a greater disruption in his/her
sleep architecture. Indexes such as AHDI or
ApHypopPercnt not only take into account the number
of events, but also the events’ duration. Therefore, in
our previous example both AHDI and ApHypopPercnt
would take a higher value for the second patient,
characterizing more precisely the severity of his/her
condition. Considering this temporal information is
probably the reason why AHDI outperforms AHI in all
metrics, why ApHypopPercnt has a better specificity
and LR+ than the AHI, and why HypopPercnt has a
better sensitivity and LR2 than the AHI.

DesatPercnt and HypopPercnt when compared with
AHI have the advantage of considering the temporal
duration of the pathological events, but have the dis-
advantage of not considering all types of events that
reflect the severity of the patient (the first index only
considers desaturations, while second only considers
hypopneas). In both cases, the end result is a very good
sensitivity at the expense of poor specificity. ApPercnt
has a worse performance, suggesting that considering
only the apneas provides less information than con-
sidering only the desaturations or only the hypopneas.

In the medical literature there are a few authors that
use indexes similar to ApHypopPercnt, ApPercnt and
DesatPercnt.8,18 However, to the best of our knowl-
edge, a comprehensive evaluation of these indexes has
never been carried out. We are not aware of an index
similar to AHDI having been used before. All these
indexes do not usually appear in the reports of com-
mercial polysomnographs, nor are they among the
indexes recommended by the American Academy of
Sleep Medicine in their manual.3

Patients with SAHS experience repetitive episodes
of hypoxia and reoxygenation during transient cessa-
tion of breathing that may have systemic effects. These
patients also present increased levels of biomarkers
linked to endocrine-metabolic and cardiovascular
alterations. Moreover, the systemic implication of
SAHS may involve sleep fragmentation, tonic eleva-
tion of sympathetic neural activity, oxidative stress,
inflammation, hypercoagulability and endothelial
dysfunction. All of this indicates that SAHS should be

considered a systemic disease rather than a local
abnormality. Furthermore, Flemons observed that si-
nus pauses and bradyarrhythmias were clearly more
frequent than normal in patients with SAHS.11 Some
of the indexes studied in this paper may be more
suitable for characterizing the long-term risks to the
patient’s health, while others may be more suitable for
characterizing better the short-term symptoms of the
disorder. There is an emerging consensus that SAHS is
an oxidative stress disorder. With each apnea, oxygen
levels decline and are followed by reoxygenation when
breathing resumes. This process augments formation
of reactive oxygen species. In turn, increased oxidative
stress has been associated with the development of
cardiovascular diseases and can be promoted by the
chronic intermittent hypoxia characteristic of SAHS.29

Given the importance of hypoxia in the genesis of
cardiovascular problems, it is very important to see if
any of the indexes that we have studied can serve as a
marker of developing cardiovascular complications.
Indexes such as AHDI, ApHypopPercnt, HypopPercnt
or ApPercnt may characterize short-term symptoms
better than AHI, since they take into account not only
the number of respiratory pauses, but also their
duration. On the contrary, it is known that nocturnal
hypoxaemia can be a major determinant of excessive
daytime sleepiness in SAHS patients.21 Nocturnal
hypoxaemia could be quantified by indexes such
as DesatPercnt, DeltaSpO2 or AreaSpO2. Further
research along these lines is required to test these
hypotheses.

Besides the AHI, some of the indexes that are more
often present in the reports of commercial polysom-
nographs are the average and maximum duration of
apneas, hypopneas and desaturations. None of these
indexes made it to the global score of Table 1. Only the
maximum durations hypopneas were chosen by one of
three feature selection methods (see Table 2). This
result was surprising both for the authors and for the
team of clinicians which cooperates with us. Our
intuition told us that it was not a good idea to char-
acterize the state of the patient using the maximum
duration of an event, since that metric would be very
sensitive to the occurrence of an abnormally long
event. This index has a reasonable sensitivity, but its
specificity is very low (see Table 3). All the decision
trees built with the average and maximum durations of
apneas, hypopneas and desaturations, except the one
built with the maximum duration hypopneas, have a
very poor classification performance (see Table 3).

The minimum value of SpO2 during the desatura-
tions is often present in the reports of commercial
polysomnographs. However, these reports do not
usually distinguish between the desaturations caused
by apneas or by hypopneas. The magnitude of the rise
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and fall sections of the desaturations caused by hyp-
opneas, which provide information similar to that of
the minimum and mean value of SpO2, made it to the
global score of Table 1. The magnitude of the rise
sections of the desaturations caused by hypopneas was
chosen by one of the three feature selection methods
(see Table 2). The decision trees built with these in-
dexes have an acceptable sensitivity, but very poor
specificity (see Table 3). In all the cases, the decision
trees built over indexes related to hypopneas per-
formed better than the equivalent decision tree built
over the index related to apneas.

DeltaSpO2 was selected in the feature selection
process. Its decision tree has an acceptable sensitivity
but low specificity (see Table 3). We have never seen
this index in the reports of commercial polysomno-
graphs. However, the two indexes from which it is
derived, MeanValSpO2 and BasalSpO2, usually are
present. These two indexes were not selected by any
feature selection technique and the classifiers built with
them are unable to distinguish between the two classes
(see Table 3).

CONCLUSIONS

According to the results of our study, the index
AHDI is more useful to discern between healthy and
SAHS patients than the AHI. ApHypopPercnt,
DesatPercnt, HypopPercnt and DeltaSpO2 may also
provide useful information in diagnosing SAHS. Cur-
rently, these indexes are either underutilized or not
used at all when assessing SAHS patients’ condition.
Comprehensive studies on how to take advantage of
them, beyond the analysis presented in this paper, have
not been carried out. These indexes need to be studied
thoroughly since they may provide new tools to assist
clinicians in diagnosing SAHS.

Among the indexes that are present more often in
the reports of commercial polysomnographs, only the
maximum duration of hypopneas and the minimum
value of SpO2 during the saturations (especially those
caused by hypopneas) seem to provide a moderate
amount of information on the patient’s condition.
However, the reports contain a large number of
indexes that, according to our study, provide little or
no information about the severity of the patient’s
condition. They probably have been included in the
reports guided more by marketing reasons (‘‘to have a
product with more features’’), than because they are of
real value to clinicians. To provide useless or low value
information increases the cognitive overload of the
clinicians, decreasing their efficiency in processing the
information that is really useful. Clinicians would
benefit from shorter polysomnographic reports, with a

smaller number of indexes, and from having clear
guidelines on how to interpret the meaning of the
indexes contained in these reports.

APPENDIX: DATA USED IN THIS PAPER

For the sake of reproducibility of the results, and to
allow other researchers to take advantage of the data,
we have made publicly available the database used in
this paper. Comma separated files containing the
46,505 pathological events, and the 274 feature vectors
generated from the previous file, can be found in Otero
et al.27 Each of the 274 feature vectors representing
patients contains the 42 indexes analyzed in this paper.
In addition, each of these feature vectors also contains
the patient’s age, weight, BMI, and sex. Finally, these
feature vectors also have a unique patient identifier,
and a diagnosis—class—that can take the values
‘‘SAHS’’ or ‘‘Control’’. The website27 also contains
scripts for the R software environment for statistical
computing used in the analysis presented in this paper.
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26Otero, A., P. Félix, M. R. Álvarez, and C. Zamarrón. The
mean value of the descriptors of the pathological events
recorded on the polysomnogram as a support tool in the
diagnosis of SAHS. In: 32th Annual International IEEE,
EMBS Conference, 2010, pp. 5101–5104.

27Otero, A., P. Félix, and J. M. Rodrı́guez. Database and r
scripts of the paper an evaluation of indexes as support
tools in the diagnosis of sleep apnea. http://biolab.uspceu.
com/SAHSIndexEvaluation/, 2011. Accessed January
2012.

28Otero, A., P. Félix, J. M. Rodrı́guez, and C. Zamarrón.
Evaluation of an alternative definition for the apnea-
hypopnea index. In: 32th Annual International IEEE,
EMBS Conference, 2010, pp. 4654–4657.

29Park, A. M., H. Nagase, S. V. Kumar, and Y. J. Suzuki.
Effects of intermittent hypoxia on the heart. Antioxid.
Redox Signal. 9(6):723–729, 2007.

30Quinlan, J. R. C4. 5: Programs for Machine Learning. San
Mateo: Morgan Kaufmann, 1993.

31Topor, Z. L., M. Pawlicki, and J. E. Remmers. A compu-
tational model of the human respiratory control system:
responses to hypoxia and hypercapnia. Ann. Biomed. Eng.
32(11):1530–1545, 2004.

32van Houdt, P. J., P. P. W. Ossenblok, M. G. van Erp, K. E.
Schreuder, R. J. J. Krijn, P. A. J. M. Boon, and P. J. M.
Cluitmans. Automatic breath-to-breath analysis of noc-
turnal polysomnographic recordings. Med. Biol. Eng.
Comput. 49(9):1–12, 2011.

33Varaday, P., T. Micsik, S. Benedeck, and Z. Benyo. A
novel method for the detection of apnea and hypopnea
events in respiration signals. IEEE Trans. Biomed. Eng.
33:936–942, 2002.

34Young, T., M. Palta, J. Dempsey, J. Skatrud, S. Weber,
and S. Badr. The occurrence of sleep-disordered breathing
among middle-aged adults. N. Engl. J. Med. 328(17):1230–
1235, 1993.

35Young, T., P. E. Peppard, and D. J. Gottlieb. Epidemiol-
ogy of obstructive sleep apnea: a population health per-
spective. Am. J. Respir. Crit. Care Med. 165(9):1217, 2002.

36Young, T., J. Skatrud, and P. E. Peppard. Risk factors for
obstructive sleep apnea in adults. JAMA 291(16):2013,
2004.

OTERO et al.1834

http://biolab.uspceu.com/SAHSIndexEvaluation/
http://biolab.uspceu.com/SAHSIndexEvaluation/

	An Evaluation of Indexes as Support Tools in the Diagnosis of Sleep Apnea
	Abstract
	Introduction
	Methods
	Data
	Indexes Generation
	Index Evaluation
	Feature Selection
	Classification Performance

	Results
	Discussion
	Conclusions
	Acknowledgements
	References


