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Abstract—This paper compares numerical predictions of
turbulence intensity with in vivo measurement. Magnetic
resonance imaging (MRI) was carried out on a 60-year-old
female with a restenosed aortic coarctation. Time-resolved
three-directional phase-contrast (PC) MRI data was acquired
to enable turbulence intensity estimation. A contrast-
enhanced MR angiography (MRA) and a time-resolved 2D
PCMRI measurement were also performed to acquire data
needed to perform subsequent image-based computational
fluid dynamics (CFD) modeling. A 3D model of the aortic
coarctation and surrounding vasculature was constructed
from the MRA data, and physiologic boundary conditions
were modeled to match 2D PCMRI and pressure pulse
measurements. Blood flow velocity data was subsequently
obtained by numerical simulation. Turbulent kinetic energy
(TKE) was computed from the resulting CFD data. Results
indicate relative agreement (error �10%) between the in vivo
measurements and the CFD predictions of TKE. The
discrepancies in modeled vs. measured TKE values were
within expectations due to modeling and measurement
errors.

Keywords—Computational fluid dynamics, Phase-contrast
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INTRODUCTION

It is widely accepted that adverse hemodynamics can
lead to the development and progression of common

cardiovascular diseases.25,29 Adverse hemodynamics
conditions are often characterized by disturbed or
transiently turbulent flow, leading to abnormal flow
patterns and bio-mechanical forces that can result in
thrombosis, vessel wall degradation, or inefficient local
or systemic transport. Due to the Reynolds numbers
typically encountered in the cardiovascular system, such
complex flow patterns mainly develop in larger vessels,
at bifurcations, sharp bends or locations altered from
acquired or congenital disease. Not surprisingly, since
disturbed flow strongly influences vascular pathogene-
sis, and vice versa, flow information can be highly useful
for diagnostic purposes. Indeed, the audible signatures
of turbulence have long been used to detect common
cardiovascular diseases, e.g., carotid artery disease and
murmurs resulting from a host of pathological condi-
tions in, or near to, the heart. Diagnostic decisions are
shifting to more direct and detailed data regarding flow
conditions as advances in imaging, computation and
data processing enable greater capabilities to obtain
patient-specific blood flow information. Additionally,
proper characterization of flow in large vessels has
strong potential to aide in treatment planning. Specifi-
cally, since most cardiovascular interventions intend to
restore normal, or improved, flow in cases of acquired
or congenital disease, detailed knowledge of pre-oper-
ative flow conditions, or the capability to predict post-
operative flow conditions resulting from a particular
intervention, can have dramatic clinical impact.34

The ability to obtain high-resolution, patient-spe-
cific blood flow data is becoming prevalent with recent
technological advances. Using an image-based flow
modeling paradigm, computational fluid dynamics
(CFD) has become a powerful tool in evaluating

Address correspondence to Shawn C. Shadden, Department of

Mechanical, Materials and Aerospace Engineering, Illinois Institute

of Technology, 10 W 32nd St, Chicago, IL 60616, USA. Electronic

mail: shawn.shadden@iit.edu, sshadden@gmail.com

Annals of Biomedical Engineering, Vol. 40, No. 4, April 2012 (� 2011) pp. 860–870

DOI: 10.1007/s10439-011-0447-6

0090-6964/12/0400-0860/0 � 2011 Biomedical Engineering Society

860



patient-specific hemodynamics; see e.g.,35,37 for recent
reviews. This framework utilizes in vivo image data,
derived from magnetic resonance imaging (MRI) or
computed tomography (CT), to construct 3D patient-
specific geometric models of vascular anatomy. These
models can subsequently be used as computational
domains for CFD solvers to model blood flow through
particular regions of the vasculature to nearly arbitrary
level of detail. These techniques continue to evolve,
becoming increasingly sophisticated in the handling
of boundary conditions and vessel wall dynamics to
incorporate increasing realism and patient-specific
information.

Alternatively, imaging techniques to non-invasively
measure flow conditions in vivo continue to gain trac-
tion in evaluating patient-specific hemodynamics. MRI
currently offers the most versatile tool for blood flow
quantification. Notably, multidimensional phase-con-
trast (PC) MRI7,39 is capable of providing three-
directional (3D), time-resolved flow information at any
location in the body with current spatial and temporal
resolutions of about 1–3 mm and 30–70 ms, respec-
tively.

As image-based blood flow modeling, or MRI-
based velocity imaging, enters clinical decision making,
it is critical to know how well the derived flow data
matches reality, since both approaches contain
respective modeling, measurement, and numerical
errors. Determining the true error of these techniques
is often not possible, thus comparison of experimental
and computational results is regarded as the bench-
mark for validation. Relatively few results have been
published comparing patient-specific hemodynamics
computations with in vivo measurements. Validation
studies have primarily used in vitro models. MRI and
particle image velocimetry (PIV) in vitro validations of
numerical blood flow studies were performed by Ford
et al.,9 Hoi et al.,12 Marshall et al.,23 and Papathana-
sopoulou et al.26; these studies used relatively idealized
models and mostly laminar flow. Ku et al.16 considered
moderately higher Reynolds numbers in comparing
numerical simulation and PCMRI measurements of a
stenotic vessel with an in vitro bypass model. In an
effort to incorporate more physiologic morphology
and boundary conditions, Kung et al.18 compared
CFD simulations with in vitro PCMRI measurements
from a patient-specific abdominal aortic aneurysm
(AAA) phantom that incorporated a physical Wind-
kessel module to model physiologic downstream con-
ditions at the outlets. Kung et al.17 also used similar
boundary conditions to compare vessel wall motion
and pulse propagation in a deformable tube with
computational results. Regarding in vivo validation,
Ford et al.,8 compared virtual angiography using

image-based CFD with angiograms, Ku et al.15 com-
pared flow rates in arterial bypass grafts in porcine
models and Rayz et al.28 compared CFD simulations
to in vivo measurements in cerebral aneurysms,
including investigation of the influence of different
inflow rates on the model. These studies primarily
reported on integrated flow behavior. More detailed
spatial field information was considered by Boussel
et al.,1 who compared CFD data and in vivo MRI
measurements in patient-specific intracranial aneu-
rysms. They reported favorable agreement for flow
patterns and velocities, but poor agreement for wall
shear stress due to the incapability of MRI to capture
near-wall velocity gradients.

None of the above studies dealt with direct quanti-
fication of turbulence, or more generally highly dis-
turbed flow conditions. The objective of the present
study is to provide a comparison between in vivo and
numerical estimates of turbulence intensity in a pa-
tient-specific model. In ‘‘Methods’’ section we discuss
how turbulence intensity was estimated in vivo and
from CFD. Comparison of the results is presented in
third section and discussed in fourth section. Our
findings suggest generally good agreement between the
in vivo MRI measurements and the CFD predictions of
turbulence intensity. Due to the complex spatiotem-
poral variability of turbulent flow, point-wise com-
parison of in vivo and CFD data is not expected to
provide a reasonable comparison, and this was con-
firmed in our findings. Arguably, characteristics that
are eventually most useful in a clinical setting, e.g.,
maximum levels of fluctuation intensity and regions of
elevated intensity, were relatively consistent between in
vivo MRI measurement and CFD predictions.

METHODS

This study used an aortic coarctation model. Aortic
coarctation is a congenital disease where the aorta
contains a local narrowing that hinders the passage of
blood. This condition can lead to significant pressure
loss across the coarctation, turbulent flow down-
stream, and hypertension in the proximal circulation.
LaDisa et al.20 reviewed recent developments in the
treatment of this disease, and investigated the hemo-
dynamic variations between untreated and treated
patients using image-based flow modeling. The coarc-
tation model was chosen because: it is clinically
important, it enables validation of flow conditions that
are close to the limit of complexity encountered in vivo,
and the aorta is large enough to enable sufficient spa-
tial resolution using clinical MRI scanners for com-
parison with CFD results.
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PCMRI

In Vivo MRI Measurements

MR imaging was carried out on a 60-year-old
female 46 years post-aortic coarctation repair with
end-to-end anastomosis with a restenosis in the anas-
tomitic area distal to the left subclavian artery (Fig. 1).
In addition to the coarctation, the patient presented
with an abnormal, minimally obstructive membrane in
the left ventricular outflow tract. The study was
approved by the regional ethics committee for human
research at Linkoping University and informed con-
sent was obtained prior to the MRI study. All MRI
measurements were carried out on a clinical 1.5 Tesla
scanner (Philips Achieva, Philips Medical Systems,
Best, The Netherlands). The study consisted of a 3D
contrast-enhanced MR angiography (MRA) to obtain
high resolution data of the aortic geometry, a time-
resolved 2D PCMRI velocity measurement acquired in
the ascending aorta to provide inlet boundary condi-
tions for the subsequent CFD modeling, and two time-
resolved 3D PCMRI measurements to obtain velocity
and turbulence intensity information, respectively, in
the whole aorta.

The 3D MRA data was acquired with a resolution
of 0.98 9 1.71 9 4.00 mm3 during a breathhold after
gadolinium injection using a gradient-echo sequence
with randomly segmented central k-space ordering
(CENTRA). The three-dimensional MRA data were
reconstructed to a resolution of 0.5 9 0.5 9 1.0 mm3.
The two-dimensional through-plane PCMRI mea-
surement was performed in the ascending aorta using
a segmented gradient-echo pulse sequence. Imag-
ing parameters included aliasing/velocity encoding

(VENC) = 2 m/s, temporal resolution = 34 ms , pixel
size = 2.78 9 2.84 mm2, reconstructed pixel size =

1.6 9 1.6 mm2, and slab thickness = 7 mm. Time-
resolved three-directional PCMRI data were acquired
during free breathing using a respiratory navigator-
gated gradient-echo pulse sequence.4 To enable tur-
bulence intensity estimation, the motion encoding
scheme included a reference flow encoding segment
with nulled motion sensitivity. Two scans with differ-
ent motion encoding strengths were prescribed to ac-
quire velocity (VENC = 3.5 m/s) and turbulence
intensity (VENC = 1.4 m/s) data. Turbulence intensity
data were acquired with isotropic spatial resolution of
3 9 3 9 3 mm3 and a temporal resolution of 81 ms,
and velocity data with a spatial resolution of
3.4 9 3.4 9 3mm3 and a temporal resolution of 65 ms.
On the scanner, all velocity data were reconstructed
into 40 time frames per cardiac cycle with the same
spatial resolution as acquired.

MRI estimation of turbulence intensity is achieved
by exploiting the fact that the presence of multiple
velocities within a voxel decreases the MRI signal
amplitude under the influence of a bipolar magnetic
field gradient.4–6,10 The MRI approach used in the
present study is described in detail in Dyverfeldt and
co-workers.3–5 While conventional experimental fluid
dynamics methods measure turbulence intensity by
sampling velocities at a small spatial area over time,
the MRI signal is built up by ~1 M water protons
(spins) present within an image volume element (vox-
el). The voxel has a specific spatial extent and is sam-
pled at several hundred points in time during the MRI
acquisition. The spatial sampling of the turbulence
scales is determined by the spatial extent of the voxel,

(a) (b)

FIGURE 1. MRA data and derived geometric model used for CFD analysis: (a) maximum intensity projection and (b) 3D computer
model.
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which captures space scales smaller than the voxel size.
The effect of the temporal sampling is more complex as
the samples (k-space line) represent different spatial
frequencies of the image. However, the key feature is
that subsequent samples are separated by between
20 ms and one cardiac cycle, during which the larger
turbulence scales have time to evolve. In this way, each
sample corresponds to a new representation of the flow
field. Thus the sampling of MRI data over time is ex-
pected to be beneficial in terms of resolving scales
larger than the spatial extent of the voxel. The actual
motion encoding is performed by bipolar magnetic
field gradients that take about 0.0005 s to apply per
lobe; eddies are considered stationary during this short
period of time.

By assuming that intravoxel velocity distributions
are normally distributed in transitional and turbulent
flows, the data needed to estimate turbulence intensity
can be obtained from a standard PCMRI experiment
acquired with asymmetric flow encoding, in a way
similar to how mean velocity is estimated. The com-
plex-valued MRI signal of a voxel can be written as

SðkvÞ ¼ C

Z

V

sðuÞe�ikv�udu; ð1Þ

where C is a complex-valued constant affected by
water proton density, relaxation effects, etc., sðuÞ is the
velocity distribution within the voxel, i ¼

ffiffiffiffiffiffiffi
�1
p

and kv
describes the amount of applied motion sensitivity.
The mean velocity component in each direction is
estimated based on the phase difference between two
MRI signals acquired with different motion sensitivity
in the considered direction

U ¼ argðSðkv2ÞÞ � argðSðkv1ÞÞ
Dkv

; jDkvj<
p
U
: ð2Þ

Similarly, the standard deviation of the velocity dis-
tribution within a voxel (assumed here to be the
turbulence intensity, r) can be obtained using the
relationship

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln

jSðkv2Þj
jSðkv1Þj

� �

k2v1 � k2v2

vuut
; jkv1j 6¼ jkv2j; ð3Þ

for each direction. A three-directional PCMRI exper-
iment can be used to estimate ri in three mutually
perpendicular directions i = 1, 2, 3; and thus the MRI
measured turbulent kinetic energy (TKE) is obtained
by

rMRIðx; tÞ ¼
1

2
q
X3
i¼1

r2
i ðx; tÞ: ð4Þ

Image-Based CFD Modeling

A 3D patient-specific computer model of an aortic
coarctation was constructed from the MRA data
shown in Fig. 1. The model started near the aortic root
and continued through the thoracic aorta, including
the left subclavian, left common carotid, brachioce-
phalic, right subclavian, and right common carotid
arteries, see Fig. 1. The model surface represents the
lumenal surface of the arteries, which was obtained
from the image data using a 2D levelset segmentation
method.40 The segmentations were lofted to create a
unified geometric model and the vessel bifurcations
were blended for smooth transitions that matched the
image data. The geometric model was subsequently
used to create a volumetric computational mesh of
tetrahedral elements.

The blood flow was modeled by the Navier–Stokes
equations, which approximates blood as a homoge-
neous, Newtonian fluid with constant density
q = 1.06 g/cm3 and viscosity l = 0.04 P. The Newto-
nian fluid approximation is considered reasonable in
large vessels.25 The vessels were assumed to be rigid with
a no slip condition at the walls. While vessels are nom-
inally compliant, the compliance was incorporated into
the patient-specific boundary conditions since tissue
properties and external tissue support were unknown.
Boundary conditions are further discussed below.

Direct numerical simulation (DNS) was performed
to solve the Navier–Stokes equations using a second-
order accurate, stabilized finite element method13,36;
this solver has been used extensively for image-based
blood flow modeling. DNS was chosen because turbu-
lence models are difficult to apply in cardiovascular
flows since most models assume developed turbulence,
however cardiovascular flows (at most) fluctuate
between laminar and transitional states, and, moreover,
the flow remains laminar in large portions of the do-
main. The mesh was anisotropic. The maximum edge
size in the descending aorta, where disturbed conditions
prevailed, was 250 lm. At this resolution the results
appeared converged. The Kolmogorov microscale in
this region based on peak Reynolds number was �100
and �200 lm based on average Reynolds number. The
simulation time step size was 0.00083 s.

Boundary Conditions

In vivo volumetric flow rate data from the 2D
PCMRI acquisition was used to prescribe inflow
boundary conditions at the ascending aorta using
a plug profile. The plug profile matches reasonably to
in vivo experiments30 and is typical of simulations
originating at the aortic root.24 To reproduce the
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physiologic influence of the arterial beds distal to the
outlets, three-element Windkessel models were used
and coupled to the computational domain using the
method described in Vignon-Clementel et al.38 While
outlet volumetric flow rates were determined by the
Windkessel models, the augmented Lagrangian
method14 was used to constrain outlet profiles to be
near parabolic for purposes of numerical stability. It
has been shown that this method only affects the
velocity field in close proximity to the constrained
outlet.14

The three-element Windkessel model requires spec-
ification of a proximal resistance (Rp), a terminal
resistance (Rt), and an arterial capacitance (C). The
first step in the determination of these parameters
involves knowledge of the mean flow rates at each
outlet, which was estimated by the method of Zamir
et al.,41 who proposed a power law relation between
diameter and flow, and in particular that the relation
for the first few branches of the arterial tree is governed
by the square law

di ¼ D
qi
Q

� �1
2

; ð5Þ

where D and Q are the diameter and volumetric flow
rate at the aortic root, and di and qi are the diameter
and the flow rate at the location of interest, i.e., outlet
i. To solve Eq. (5) for qi, diameters di and D were
obtained from the MRA and Q was obtained from the
2D PCMRI measurement. The terminal resistance Rt

at each outlet was obtained by dividing the mean blood
pressure by the outlet’s flow rate.

Specification of the capacitances involved the
knowledge of the total arterial compliance. The pulse
pressure method32 was used to estimate total arterial
compliance, as this method neither require zero flow in
diastole nor information about the complete pressure
waveform. This method was extended to the three-
element Windkessel model, as in LaDisa et al.19 An
optimization algorithm that takes the pulse pressure
and mean aortic flow rate as inputs was developed to
find the total arterial compliance that best matched the
desired pressure pulse. In this algorithm the value of
the proximal resistance Rp was set by assuming a
characteristic total resistance ratio of 6%,21 i.e.,

Rp

Rt
¼ 0:06: ð6Þ

The characteristic total resistance ratio was varied to
verify that 6% was optimal. This total arterial com-
pliance was then distributed among the outlets in
proportion to their mean flow rates in accordance to
Stergiopulos et al.33 With the compliance known for
each outlet, the proximal resistance Rp was determined

by repeating the same algorithm but this time varying
the characteristic total resistance ratio to replicate the
pressure pulse.

Turbulent Kinetic Energy

Recall that by Reynolds decomposition, the velocity
field uðx; tÞ is decomposed into a mean hui and a
fluctuating ~u component

u ¼ hui þ ~u; ð7Þ

where ~u is assumed to arise due to turbulence. The
TKE is defined as the kinetic energy of the fluctuating
component, which on a per volume basis is given by

rðx; tÞ ¼ 1

2
q ~uðx; tÞ � ~uðx; tÞ; ð8Þ

and provides a direction-independent measurement of
turbulence intensity. Traditionally, ~u is defined by
~u ¼ u� hui after appropriately defining the mean
velocity hui: The traditional approach to defining hui is
to perform averaging over many realizations of an
experiment. This is currently impractical for CFD
simulations of the scale/complexity considered herein,
and essentially impossible for in vivo MRI measure-
ment. Alternatively since turbulence manifests in
velocity fluctuations in space and time, it is common to
the employ a spatial or, more commonly, temporal
averaging to estimate hui:

Due to the idiosyncrasies of MR measurement,
derivation of TKE is not obtained from a direct
velocity field decomposition per se, but rather from the
MRI signal, which is influenced by both spatial and
temporal variations in the velocity field. It is difficult to
reproduce this methodology for CFD, however, to
enable validation we considered a hui derived from a
spatiotemporal average that is heuristically similar to
the averaging performed by the MRI method. We also
performed temporal and spatial fluctuation intensity
computations separately for comparison.

Spatiotemporal Fluctuation Intensity Definitions

A spatiotemporal mean velocity field was derived
from the CFD data by performing spatial and tem-
poral (cycle-based) averaging. Let T denote the period
of the cardiac cycle and n denote the number of cardiac
cycles of computed velocity data. For notational ease,
assume this data starts from t = 0 so that t 2 ½0; nTÞ:1
Voxels of the same size (33 mm3) and (approximately
same) location as the PCMRI voxels were superim-
posed on the computational domain and nodes of the

1Data was considered only after the solution had sufficiently

converged.
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computational grid located inside each voxel were used
for computing spatial averages and fluctuations. That
is, a spatiotemporal mean h�ist velocity field was com-
puted as

huistðxv; sÞ ¼
1

Nvn

Xn�1
k¼0

X
j2Nv

uðxj; sþ kTÞ; ð9Þ

where xv is the center of voxel v; s 2 ½0;TÞ; Nv is the set
of indices of the CFD grid nodes located in voxel
v, and Nv is number of CFD grid nodes in voxel v.
The inner sum considers spatial velocity variations,
whereas the outer sum considers cycle-to-cycle velocity
variations. It follows that the spatiotemporal mean
squared velocity fluctuation components were defined
as

h~u2i istðxv; sÞ ¼
1

Nvn

Xn�1
k¼0

X
j2Nv

uiðxj; sþ kTÞ � huiistðxv; sÞ
� �2

;

ð10Þ

where i = 1, 2, 3 denotes vector components. Finally,
the spatiotemporal velocity fluctuation kinetic energy
per unit volume was defined as

rstðxv; sÞ ¼
1

2
q
X3
i¼1
h~u2i istðxv; sÞ; ð11Þ

which is also referred to herein as the spatiotemporal
fluctuation intensity.

Temporal Fluctuation Intensity Definitions

Since the inflow is periodic, a cycle-to-cycle tempo-
ral mean h�it of the velocity field was computed at each
node of the computational grid xj as

huitðxj; sÞ ¼
1

n

Xn�1
k¼0

uðxj; sþ kTÞ; ð12Þ

where s 2 ½0;TÞ; this is essentially Eq. (9) without
spatial averaging. Therefore, the temporal mean
squared of the velocity fluctuation components were
defined as

h~u2i itðxj; sÞ ¼
1

n

Xn�1
k¼0

uiðxj; sþ kTÞ � huiitðxj; sÞ
� �2

: ð13Þ

The cycle-to-cycle temporal velocity fluctuation kinetic
energy per unit volume was defined by

rtðxj; sÞ ¼
1

2
q
X3
i¼1
h~u2i itðxj; sÞ; ð14Þ

which is also referred to herein as the temporal fluc-
tuation intensity.

Spatial Fluctuation Intensity Definitions

An arbitrary cycle could be chosen to quantify
spatial fluctuations in the flow field. However, to
eliminate any bias resulting from this choice, we in-
stead considered the temporal averaged flow field
huiitðxj; sÞ defined by Eq. (12) to factor out cycle-to-
cycle variations. To define the spatial mean, huiitðxj; sÞ
was spatially averaged over each PCMRI voxel. This
led to an identical mean velocity field as defined by
Eq. (9), however, only spatial fluctuations were con-
sidered for defining the spatial fluctuation intensity.
That is, defining

h~u2i isðxv; sÞ ¼
1

Nv

X
j2Nv

huiitðxj; sÞ � huiistðxv; sÞ
� �2

; ð15Þ

the spatial velocity fluctuation kinetic energy per unit
volume was defined as

rsðxv; sÞ ¼
1

2
q
X3
i¼1
h~u2i isðxv; sÞ; ð16Þ

which is also referred to herein as the spatial fluctua-
tion intensity.

RESULTS

The fluctuation intensity fields were computed using
the methods described above for the PCMRI and CFD
data, and the fields were plotted as volume renders
using Paraview (Kitware, Clifton Park, NY). All fields
varied smoothly over time, with maximum turbulence
appearing shortly after peak systole for each case, and
decreasing to near zero during the diastolic phase.
Figure 2 shows the fluctuation intensity volume ren-
ders shortly after peak systole, at a time instant most
representative of when all fields where approximately
maximized, which was 0.17 s from the start of the
systole (the cardiac cycle length was 1.162 s). A con-
sistent color map was used in Fig. 2 to facilitate
comparison. It should be noted that the mesh type and
resolution for the volume render of the temporal
fluctuation intensity field were different than for the
rest of the renders, which may have resulted in varia-
tions in the rendering. Notably, the temporal fluctua-
tion intensity field was unstructured (vs. Cartesian for
the others), and had a 12-fold greater spatial resolution
in each direction (or 12 3 = 1728-fold overall).

Table 1 summarizes the maximum level of fluctua-
tion intensity over space and time observed for each
method and the time this value occurred. Up to the
temporal resolution of the PCMRI data, the time of
maximumfluctuation intensity between thePCMRIand
temporal fields was the same. However, quantitatively
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defining the time instant of maximum fluctuation
intensity is subject to howmaximum intensity is defined.
For example, if defined as the maximum of the field over
both space and time, the time of maximum intensity in
each case is given by the parenthetical times shown in
Table 1. Alternatively, if the maximum is defined as the
maximum over time of the spatial integral of the fluc-
tuation intensity field, then the time of maximum
intensity for each case is given by the time each curve in
Fig. 4 peaks. Visually, all fields appeared maximum
around the time instant shown in Fig. 2.

For quantitative comparison, Fig. 3 compares the
percentage of the descending aorta that was exposed to
fluctuation intensity over a certain threshold, as the
threshold varied, between the PCMRI and CFD data.
This comparison was done at the time instant shown in
Fig. 2, which aligned most closely to the time of peak

fluctuation intensity for the PCMRI and temporal
fluctuation data. As an alternative, to compare the
fluctuation intensity results over time, the fluctuation
intensity fields were integrated over the descending
aorta at several times in the cardiac cycle and are
plotted in Fig. 4.

Convergence of the results was tested in several re-
gards: the computational mesh size, the simulation
time step size, the number of cardiac cycles used for
temporal averaging, and the voxel size used for spatial
averaging. Convergence of the velocity data was
established using a nominal element size of 250 lm and
time step of 0.00083 s. Results derived from the spa-
tiotemporal and temporal fluctuation intensity fields
showed little change once the number of cardiac cycles
used for temporal averaging reached approximately 8.
This was consistent with a previous aortic turbulence
study involving abdominal aortic aneurysms.22 The

(a) (b) (c) (d)

FIGURE 2. Fluctuation intensity fields for each method (0.17 s after the start of systole). Note that the mesh type and resolution
for the volume render of the temporal fluctuation intensity field were different than for the rest of the renders: (a) PCMRI, (b)
spatiotemporal, (c) temporal, and (d) spatial.

TABLE 1. Maximum TKE comparison (time maximum TKE occurred).

Spatiotemporal Spatial Temporal PCMRI

1053 J/m3 (0.13 s) 1125 J/m3 (0.13 s) 1096 J/m3 (0.17 s) 1089 J/m3 (0.17 s)

FIGURE 3. Percentage of the descending aorta (boxed re-
gion) with fluctuation intensity above various thresholds val-
ues at time 0.17 s after the start of systole.

FIGURE 4. Integral of the fluctuation intensity field over the
descending aorta vs. time.
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size of the voxel used for spatial averaging was estab-
lished by the PCMRI resolution for validation reasons.
However, it was noticed that the spatiotemporal field
did vary (<10% difference) when the voxel volume
was decreased by a factor of 2 in each direction, or
8-fold overall.

Since velocity data was also obtained during the
MRI sequencing, estimates for the total kinetic energy
in the model were possible. Peak levels of estimated
TKE for this flow were close to 23% of the peak
estimated total KE. Specifically, for the CFD data the
maximum KE occurring at peak systole was computed
to be 5100 J/m3, from the peak observed velocity of 3.1
m/s in the model. For the PCMRI data, the maximum
observed total KE was 4460 J/m3, corresponding to a
peak observed velocity of around 2.9 m/s.

DISCUSSION

Our general finding was that TKE predictions based
on CFD modeling were relatively consistent with those
obtained by PCMRI, with errors between the two
estimates of around 10% in the quantitative compari-
sons made. The fields themselves also compared
qualitatively well in both time and space, as shown
Fig. 2. While the averaging methods used to obtain
TKE estimates from the CFD data did not exactly
replicate the PCMRI TKE derivation, the PCMRI and
CFD velocity data compared similarly, suggesting that
modeling and measurement errors inherent in both
methods were as significant a factor in observed dif-
ferences.

A traditional measure of turbulence intensity based
on several realizations of the experiment was not
possible, nor could modeling and measurement errors
have been completely avoided. Hence it was not pos-
sible to quantify in a precise manner how close any
estimate was to the true TKE for this flow. For fully
developed turbulence, that is, isotropic and homoge-
neous, the ergodic assumption2 implies that velocity
fluctuations are statistically stationary in space/time/
ensemble. This assumption is questionable for the flow
considered herein, nonetheless, it is reasonable to as-
sume statistical properties do not change from cycle to
cycle since the inflow to the model was periodic. That
is, cycle-to-cycle fluctuations were assumed to be due
to turbulence once the solution converged numerically.
In this sense, the CFD temporal fluctuation intensity
measure may be considered the baseline estimate for
the true TKE (in the absence of modeling, measure-
ment, and numerical errors). Using PCMRI, the TKE
is not obtained from a direct velocity field decompo-
sition per se, but rather from the MRI signal, which is
influenced by both spatial and temporal variations in

the velocity field. To enable validation, we computed a
spatiotemporal fluctuation intensity, and temporal and
spatial fluctuation intensity separately for comparison.
It is interesting to note that in nearly all comparisons,
the differences between the PCMRI and CFD tempo-
ral fluctuation intensity fields were smaller than the
differences between the CFD spatiotemporal and
temporal fluctuation intensity fields. Furthermore, in
most cases the PCMRI results fell between the spa-
tiotemporal and temporal CFD results. This may
indicate that the spatiotemporal averaging did not
perfectly model the PCMRI measurement and that the
PCMRI estimate of TKE seems to be more dominated
by temporal fluctuations than the spatiotemporal
average used.

Comparison of the CFD results, e.g., Figs. 2c and
2d confirms that the spatial fluctuations are influenced
by turbulence, but also are influenced by strong lami-
nar gradients in the flow. High spatial fluctuation
intensity was observed at the throat of the coarctation,
even though no cycle-to-cycle variation in the velocity
field was observed there. Therefore, the spatial fluctu-
ation field is likely not a reliable estimate of TKE,
which is why it was excluded from Figs. 3 and 4. The
effect of the spatial fluctuations on the spatiotemporal
fluctuation intensity measure seemed to be moderate,
however, and the PCMRI method appeared more
robust to this possible skewing.

Figure 3 demonstrates that near the time instant of
peak TKE, the relative levels of fluctuation intensity in
each case are consistent. Figure 4 shows that the
integrated TKE for all methods coincide in the later
part of systole, but showed greater difference in early
and peak systole, with the integrated spatiotemporal
and PCMRI fluctuation intensities being higher than
the integrated temporal fluctuation intensity. This may
suggest that in late systole, turbulence dominates the
fluctuation intensity measures, whereas in early and
peak systole (when turbulence has not yet fully devel-
oped) large laminar gradients may tend to elevate the
spatiotemporal and PCMRI fluctuation intensity fields
due to the spatial averaging inherent in both methods.
Based on the above observations, it appears that the
PCMRI estimate is closer to the true TKE for this flow
than the spatiotemporal TKE estimate. Nonetheless,
the maximum TKE estimates (cf. Table 1), which
perhaps is of clinical significance, obtained from the
PCMRI, temporal, and spatiotemporal methods were
all within 5%.

Possible Error Sources

The PCMRI data demonstrated turbulence shed
from the aortic valve, most likely caused by the sub-
valvular membrane. In the CFD modeling, a (laminar)

In Vivo Validation of Numerical Prediction 867



plug profile was imposed at the aortic root. Nonethe-
less, PCMRI data indicated no appreciable elevated
fluctuation intensities immediately proximal to the
coarctation, suggesting that the flow relaminarizes
upon reaching the coarctation. Furthermore, the
throat of the coarctation itself should also filter dis-
turbances introduced by the aortic valve that were not
modeled by the inlet boundary condition.

There was a slight ambiguity on exactly where to
superimpose the voxels on the computational model
for spatial averaging. We were unable to obtain a
common point of reference a posteriori between the
PCMRI TKE data and the MRA data used to build
the CFD model. Therefore, the voxels used for spatial
averaging of the CFD data were likely offset from
PCMRI voxels. While this makes point-wise compar-
ison of the data difficult, on a more fundamental level
it is typically unrealistic to perform point-wise com-
parison of turbulent flows due to the inherent chaot-
icness of the fields.

Discrepancies may be attributed to several other
reasons. On the MRI side, helical flow patterns that
are present in our model may lead to characteristic
distortions of PCMRI measurements.31 In MRI,
accelerating and fluctuating flows can cause spatial
misregistration errors due to phase-shifts from higher
order motion, flow related signal loss due to intravoxel
phase-dispersion, and ghosting due to view-to-view
variations.11,31 The effects of these artifacts on PCMRI
velocity and TKE mapping were recently studied by
Petersson et al.27 for a jet flow similar to that present in
the coarctation studied here. Their results indicate that
artifacts caused by disturbed flows can increase the
uncertainty of the measurements but that the accuracy
is generally maintained. On the CFD side, several
modeling assumptions went into the analysis, including
rigid walls, Newtonian rheology, and boundary con-
ditions as well as uncertainties in model parameters.
Errors introduced by these assumptions have been
previously explored (usually not by in vivo validation,
but rather strictly computationally), see e.g.,37 and
references therein, and errors due uncertainties in
model construction, inflow waveform, and boundary
conditions have been reported to result in (peak) flow
field differences of 10–50%. In this light, the differ-
ences between measured and modeled peak and inte-
grated TKE values observed in this study were
favorable.

CONCLUSION

Proper identification and quantification of large and
varying disturbances in flow resulting from turbulence,
whether through PCMRI or image-based flowmodeling,

have important clinical significance, including implica-
tions to atherosclerosis, intimal hyperplasia, and platelet
activation. To the best of our knowledge, this is one of the
first studies to validate realistic patient-specific numerical
computations of turbulence against in vivo experimental
measurements. We observed overall good agreement
between image-based CFD predictions of fluctuation
intensities to those measured in vivo with PCMRI using
an aortic coarctationmodel, including agreement in both
range and distribution. Differences in results were well
within those expected due to modeling and measurement
errors, indicating a relative robustness of the TKE esti-
mation.
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