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Abstract—Thromboembolic complications (TECs) of bileaf-
let mechanical heart valves (BMHVs) are believed to be due
to the nonphysiologic mechanical stresses imposed on blood
elements by the hinge flows. Relating hinge flow features to
design features is, therefore, essential to ultimately design
BMHVs with lower TEC rates. This study aims at simulating
the pulsatile three-dimensional hinge flows of three BMHVs
and estimating the TEC potential associated with each hinge
design. Hinge geometries are constructed from micro-
computed tomography scans of BMHVs. Simulations are
conducted using a Cartesian sharp-interface immersed-
boundary methodology combined with a second-order
accurate fractional-step method. Leaflet motion and flow
boundary conditions are extracted from fluid–structure-
interaction simulations of BMHV bulk flow. The numerical
results are analyzed using a particle-tracking approach
coupled with existing blood damage models. The gap width
and, more importantly, the shape of the recess and leaflet are
found to impact the flow distribution and TEC potential.
Smooth, streamlined surfaces appear to be more favorable
than sharp corners or sudden shape transitions. The devel-
oped framework will enable pragmatic and cost-efficient
preclinical evaluation of BMHV prototypes prior to valve
manufacturing. Application to a wide range of hinges with
varying design parameters will eventually help in determining
the optimal hinge design.

Keywords—Pulsatile numerical simulations, Fluid mechan-

ics, Pivot, Computational fluid dynamics (CFD), Physiologic

conditions, Design parameters, Optimization, Prosthetic

heart valve.

INTRODUCTION

Native heart valves with compromised function due
to congenital birth defects or disease are commonly
replaced by prostheses. Several prosthetic heart valves
are currently available, but the prosthesis of choice
remains the bileaflet mechanical heart valve (BMHV)
with more than 130,000 implants every year world-
wide. Nonetheless, implantation of BMHV is known
to cause major complications. Despite changes and
improvements in BMHV designs over the years and the
development of new drug therapies, the problems of
thromboembolism still persist. Clinical reports and
recent in vitro experiments suggest that these problems
are associated with the hemodynamic environment
experienced by the blood elements flowing in the
complex, nonphysiologic flow of the BMHV hinge
region.

The importance of the flow fields through the hinge
region of a BMHV was first brought forward by the
unsuccessful clinical trials of the Medtronic Parallel
(MP) BMHV. During the trials, the MP valve was
found to induce unacceptably high rates of thrombosis.
MP explants showed the presence of thrombi in the
hinge regions. Ensuing in vitro studies of the MP hinge
region indicated that the angulated sudden expansion
and contraction zones of the MP hinge give rise to
rotating flows, stagnation regions, and elevated shear
stresses.6 Indeed, elevated fluid shear stress levels are
likely to induce hemolysis and platelet activation, while
flow stasis and regions of recirculating flow are
believed to inhibit proper hinge wash out and favor
thrombus formation by promoting cell-to-cell contact.

In vitro and clinical investigations of the hinge
have provided the first and essential clues to establish
a relationship between hinge design, characteristic
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flow features, and thromboembolic potential. How-
ever, to date most hinge studies relied on experimental
measurement techniques. Because of the small dimen-
sions of the hinge region, the opacity and the motion of
the leaflets, these experimental studies could only
provide limited information on the flow field, such as
two-dimensional velocity fields at selected loca-
tions.6–8,16,18,20,24 In order to gain a thorough
understanding of the flow-induced thromboembolic
potential of the hinge, it is essential to capture the
three-dimensionality of the flow at all locations within
the hinge recess and to estimate the forces, in particular
the viscous shear stresses, experienced by the blood
elements crossing the hinge.10

Consequently, researchers have sought to develop
numerical solvers capable of capturing the complex 3D
pulsatile hinge flow fields. However, in order to reach
clinically relevant conclusions, it is of critical impor-
tance that the simulated hinge flows reproduce the
in vivo flow conditions as closely as possible, including:
(1) simulating the entire cardiac cycle9,16,21 and not
only considering steady conditions or parts of the
cycle2,17,26; (2) capturing the full-three-dimensional
hinge flow fields rather than using a 2D model14; and
(3) employing highly resolved numerical meshes to
accurately capture the unsteady hinge flow structures.
Moreover, the simulated hinge flow fields should be
related to the potential for hemolysis and platelet
activation14 to gain a better insight into flow-related
complications. To date and to the best knowledge of
the authors, no studies have successfully met most of
the above requirements and attempted to numerically
assess the effect of hinge design on both the hinge flow
fields and the thromboembolic potential.

This study makes use of a well-validated and
extensively tested, state-of-the-art immersed-boundary
approach in conjunction with a one-way coupling
between large- and small-scale flow solvers, to effi-
ciently resolve the 3D flow structures within the hinge
region over the cardiac cycle. Furthermore, analysis of
the flow using a Lagrangian particle-tracking algo-
rithm combined with existing blood damage mod-
els2,4,12,27,28 provides the means for estimating the
environment experienced by blood elements along
their trajectories and compute a surrogate measure of
the hinge thromboembolic potential. Assuming New-
tonian blood flow, the proposed methodology, applied
to hinges with varying design parameters, can be used
to perform parametric studies where the relative
hemodynamics of different hinge designs can be com-
puted and compared within the limitations of the
model. In this study, we investigate the effect of hinge
curvature and hinge gap width on the hinge flow fields
and the associated thromboembolic potential. Three
hinge models are explored and the 3D pulsatile flow in

the hinge region of each of these models is simulated
under physiologic aortic flow conditions. The hemo-
dynamic performance of the three hinges is compared
and their thromboembolic potential estimated. We first
present the numerical method to solve the governing
equations and the boundary conditions. We describe
thoroughly the three selected hinge models, then
present the Eulerian and Lagrangian results for each of
the three hinges, and finally compare their flow per-
formance and blood damage potential.

METHODS

Flow Solver

The present numerical solver is an extension of the
fully validated methodology developed by Sotiropoulos
and coworkers3,5,11,13 and is briefly presented herein.
Details on the selected schemes are available in the
literature.11,13 The Navier–Stokes equations that gov-
ern the flow are solved on a non-uniform Cartesian
grid using a hybrid staggered/non-staggered control-
volume method. In this method, the convective terms
are approximated using a second-order accurate
upwind QUICK scheme, while the divergence operator
in the continuity equation, the pressure gradient, and
the viscous terms are discretized using a three-point
central scheme. The governing equations are integrated
in time using an efficient, second-order accurate two-
step fractional method. In the first step, the momentum
equations, discretized using a second-order backward
Euler scheme for the temporal term, are solved using
the restarted Generalized Minimal Residual Method
(GMRES) solver with a block Jacobi preconditioner.
In the second step, the pressure Poisson equation is
solved using a GMRES solver enhanced with a mul-
tigrid approach as a preconditioner.

This flow solver is coupled with a hybrid Cartesian
sharp-interface immersed-boundary approach.13 The
walls of the numerical model (which comprises the
leaflet, valve housing, and valve chamber) are discret-
ized using an unstructured, triangular mesh. This mesh
is then immersed into the background Cartesian fluid
grid domain and treated as a sharp-interface. The
governing equations are solved at all Cartesian fluid
nodes with all nodes interior to the body excluded
from the computational domain. The flow variables at
the nodes in the immediate vicinity of the immersed
surface are reconstructed via second-order accurate
interpolation along the local normal direction to the
body surface, to guarantee that the effect of the mov-
ing leaflet on the surrounding fluid is appropriately
represented.13

It should be noted that the hinge Reynolds number,
based on a hinge gap width of 150 lm and a maximum
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hinge velocity of 3.5 m/s (from previously published
experimental hinge data) does not exceed 150. This low
Reynolds number indicates that the flow in the hinge
region is far from the transitional and turbulent
regimes, and consequently no turbulence modeling is
here included.

Hinge Geometries and Flow Domain

The numerical model corresponds to a section of a
BMHV inserted into a simplified aorta chamber com-
posed of a straight pipe with an axisymmetric expan-
sion representing the sinus region. Only one of the four
hinges is modeled (Fig. 1). This numerical model is
immersed into a Cartesian grid of approximately 5.9
million grid nodes. This number of grid nodes reaches
the limit of the computational resources currently
available and, therefore, a grid or time increment
refinement study could not be performed. Nonetheless,
the grid is selectively stretched to ensure a fine spatial
resolution within the hinge recess and to capture all
details of the hinge flow structures: the spatial resolu-
tion within the hinge recess is approximately 8 lm

yielding a minimum of 80,000 grid nodes within the
recess itself.

Three hinge configurations are investigated in order
to determine the effect of hinge design on the flow
fields and thromboembolic potential. The effect of wall
curvature is assessed by comparing the hinge perfor-
mance of the two currently most implanted BMHVs:
the CarboMedics (CM) and the St Jude Medical (SJM)
valves (Fig. 2). The hinge and leaflet designs are
obtained from micro-computed tomography (CT) scan
of actual SJM and CM clinical valves. RainDrop
Geomagic (Geomagic Studio 10 SR2) is used to extract
and smoothen the hinge recess and leaflet ear surfaces
from the micro-CT scan. These surfaces are then
extended to include the chamber using Pro|Engineer
(Pro|Engineer Wildfire 3.0 M020). In both models, the
leaflet ear is positioned within the hinge recess such

FIGURE 1. Hinge numerical model. In the large-scale
numerical model, a BMHV model is inserted into a simplified
aorta consisting of a straight tube with an axisymmetric
expansion representing the sinus region. As shown in this
figure, the hinge model corresponds to a section of this large-
scale model. The butterfly recess characteristic of the hinge
region is clearly visible in the zoom-in panel. The positions of
the boundary planes defining the Cartesian grid are also
included.

FIGURE 2. Top and side views of the investigated hinge
designs. The hinges of the two most commonly implanted
bileaflet mechanical heart valves are studied: the St Jude
Medical (SJM) valve and the CarboMedics (CM) valve. In order
to assess the effect of the hinge gap width on the flow, two
configurations of the SJM hinge are investigated: a SJM hinge
with a regular hinge gap width (SJM regular hinge) and a SJM
hinge with a larger than regular hinge gap width (SJM large
hinge, not shown). The terminology used to describe the
hinge recess is included. Note that the images are to scale and
that the leaflet is in its fully closed position.

Numerical Comparison of the Hinge Performance 3297



that the hinge gap width (Fig. 1) is approximately that
seen in clinical valves (150 lm). The final unstructured
triangular mesh is generated using Gambit (Gambit
2.4.6, Fluent Inc.) software. The grid is selectively
stretched to preserve as best as possible the geometry
curvature without generating an excessively high
number of triangular elements. In the hinge recess, the
dimension of the triangular cells is on the order of
130 lm.

The effect of the hinge gap width is investigated by
comparing the performance of two SJM hinge designs
with distinct hinge gap widths. The aforementioned
SJM model constitutes the model of reference. The
same leaflet and hinge recess geometries are then used
to generate a hinge model with a larger hinge gap
width: the leaflet is shifted out of the hinge recess by
100 lm so as to have a larger hinge gap width of
approximately 250 lm.

Boundary Conditions

In this study, the following normal aortic physio-
logic flow conditions are imposed: peak valvular flow
rate of approximately 25 L/min, systolic duration of
one-third of the cardiac cycle, a cardiac cycle of
860 ms, and a heart rate of 70 beats/min. Inflow con-
ditions and leaflet motion are obtained from the vali-
dated large-scale FSI simulation of the bulk flow
through an aortic BMHV with no detailed hinge
geometry.3 During the forward flow phase, velocity
profiles are extracted from the large-scale simulation
and used as boundary flow conditions for the ventric-
ular plane of the hinge domain. However, during the
leakage flow phase, the leaflets are closed and the flow
features and magnitude are mainly dictated by the
dimensions of the gaps offered to the flow. In the large-
scale model, the periphery gap (the gap between the
closed leaflets and the valve housing) is larger than in
actual clinical valves, thereby limiting the relevance of
the computed large-scale diastolic flow fields. A plug
flow profile is therefore applied at the aortic plane of
the hinge domain and the magnitude of this plug flow
is set so as to reach a physiologic cross-valvular pres-
sure drop of approximately 80 mmHg at mid-diastole.
Transition between the systolic and diastolic boundary
conditions is performed when the cross-valvular flow
rate is zero, just before valve closure. The magnitude of
the imposed diastolic plug flow is then linearly
increased from 0 to its diastolic value during the leaflet
closing phase.

The flow velocity at the outlet plane (i.e., the
downstream/upstream plane during systole/diastole,
respectively) is scaled in order to ensure mass conser-
vation throughout the domain. Zero-transverse flux is
enforced across the top and b-datum planes.

Finally, a no-slip condition is enforced along all
body surfaces, including the non-moving housing and
the rotating leaflet. During the forward flow phase, the
leaflet motion is prescribed based on the large-scale
FSI model.3 The leaflet is assumed to have only one
degree of freedom: any translation motion is neglected
and only a rotation motion around a fixed hinge axis is
modeled. The leaflet position spans from 0� in the fully
closed position to 54.2� in the fully open position in
85 ms. During systole, the leaflet remains in its fully
open position for about 255 ms before starting to
close. The leaflet closing phase lasts about 43 ms. After
valve closure, the leaflet rebound is neglected and the
leaflet is kept in a static closed position. It should be
noted that the fully open leaflet makes an angle of 4.8�
with the main stream flow direction. More details on
the leaflet motion can be found in the literature.3,23

Lagrangian Flow Analysis

A particle-tracking algorithm is used to estimate,
from the precomputed flow fields, the representative
trajectories of blood elements crossing the hinge. The
blood elements are modeled by weightless point par-
ticles and are assumed to be passively advected by
the velocity field. Approximately, 300 particles are
released within the hinge recess every 15 ms and their
trajectory is computed. The principal shear stress is
computed along each trajectory and used to assess the
shear stress history for each particle. The most sim-
plistic approach in assessing blood damage is defined
by a linear stress-exposure time model. However,
blood studies have shown that the dependency on
time and stress is far more complex. Using experi-
mental data from Wurzinger et al.,27,28 Giersiepen
et al.12 established a power law model to specifically
quantify the amount of cytoplasm enzyme (LDH)
released by platelets (proportional to the level of
platelet activation), and the amount of hemoglobin
(Hb) released by red blood cells (representative of the
amount of hemolysis). Assuming that blood damage
is linearly accumulated,2,4 the models proposed by
Giersiepen et al. may be rewritten to compute sur-
rogate measures of platelet activation and hemolysis
levels as follows:

BDIPLP ¼
X

i

3:31� 10�6Dt0:77i s3:075i ð1Þ

BDIHP ¼
X

i

3:62� 10�5Dt0:785i s2:416i ð2Þ

where s is the principal shear stress (N/m2) and Dt is
the exposure time (s). BDIPL is the blood damage index
corresponding to platelet activation, while BDIH refers
to hemolysis and i denotes successive time points along
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the trajectory of particle P. The cardiac cycle is divided
into 10,000 time steps, and the position of the particle
tracking is updated every 40 time steps, leading to
an exposure time of approximately 3 ms. Moreover,
because of computational resource limitations, the
Lagrangian analysis of the flow is focused on the first
part of the cardiac cycle, more precisely from early
systole to after valve closure (from 0 to 520 ms).

RESULTS

The terminology used to describe the hinge recess
geometry is provided in Figs. 1 and 2. The plane of
reference is chosen as the flat level, which is the level
flushed with the valve housing. The results for the SJM
hinge with a regular hinge gap width (called SJM
regular hinge) are presented in detail, whereas the
presentation of the SJM hinge with a large hinge gap
width (called SJM large hinge) and CM hinge focuses
on their differences with respect to the SJM regular
hinge.

Visualization of the full 3D and time-varying flow
structures constitutes a challenge in itself. For each
hinge, two sets of images are thus provided that depict
the hinge flow structures at selected key instances of the
cardiac cycle: first qualitatively, using 3D instantaneous
streamtraces (Fig. 3); and then more quantitatively,
using 2D velocity vectors superimposed on the
out-of-plane velocity component contours (Figs. 4–6).
The main systolic and diastolic flow features in each of
the three hinge designs are shown in Fig. 9. Table 1
provides the maximum velocity magnitude and the
range of each individual velocity component at peak
systole and mid-diastole. These two instances are rep-
resentative of the overall maximum observed through-
out the forward and leakage flow phases, respectively.
To help assess the shear stress distribution, Figs. 7
and 8 display the iso-surfaces of the principal shear
stress at peak systole and mid-diastole. Table 1 also
includes the maximum principal shear stress values
during the forward and leakage flow phases.

SJM Hinge with a Regular Hinge Gap Width

During systole, the instantaneous flow paths
strongly depend upon the point of entry of the fluid
into the hinge. This is best visualized in Fig. 3 where
the streamtraces entering the hinge through the ven-
tricular side are color-coded in blue while those
entering through the aortic corner are color-coded in
red. The flow entering through the ventricular side
(blue streamtraces) impinges against the upstream edge
of the leaflet, then dives inside the hinge recess before
flowing toward the adjacent corner. The flow then

collides with the wall of the adjacent corner and exits
the recess through the downstream-most tip of the
adjacent corner with a strong out-of-plane motion.
The impingement of the flow on the recess wall induces
a clockwise rotating flow pattern, which appears at the
end of the opening phase and persists throughout the
fully open leaflet phase (Fig. 4). A drastically different
path is followed by the flow entering from the aortic
side (red streamtraces). Despite the forward flow out-
side of the hinge recess, a local flow reversal with a
parabolic-like profile is observed at the bottom of the
hinge recess throughout the forward flow phase. These
red streamtraces are observed to mix with the blue
streams coming from the ventricular corner, further
increasing the portion of the blood flow exiting

FIGURE 3. Three-dimensional instantaneous streamtraces
at peak systole and mid-diastole for all three hinge configu-
rations. At peak systole, the streamtraces entering the hinge
first through the ventricular side of the hinge are shown in
blue, those entering the hinge through the aortic side of the
hinge in red. At mid-diastole, the streamtraces are colored to
help the identification of the three main leakage jets.
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through the adjacent hinge corner. All of the above
observations, including the presence of flow recircula-
tion in the adjacent corner and flow reversal at the
bottom of the hinge, correlate well with the experi-
mental observations of Simon et al.22 The observed

flow patterns are persistent throughout systole but
vary in intensity with the magnitude of the incoming
flow rate, the velocity magnitude being the largest at
peak systole when the bulk valvular flow rate is at its
peak (Table 1).

FIGURE 4. Two-dimensional in-plane velocity vectors superimposed on the out-of-plane velocity (Vo-p) contours at four instances
of the cardiac cycle for the SJM regular hinge. The flow fields are shown at the flat level (level flush with the valve housing) and at
the 195 lm level (level located 195 lm within the hinge recess, away from the flat level).

FIGURE 5. Two-dimensional in-plane velocity vectors superimposed on the out-of-plane velocity (Vo-p) contours at four instances
of the cardiac cycle for the SJM large hinge. The flow fields are shown at the flat level (level flush with the valve housing) and at the
195 lm level (level located 195 lm within the hinge recess, away from the flat level).
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Accordingly, the shear stress structures at peak
systole (Fig. 7) are similar to those at mid-acceleration
and mid-deceleration (not shown), but with higher
magnitudes due to the overall larger bulk valvular flow
rate at this instant. Throughout systole, the elevated
shear stress levels are observed in two main locations:
(1) near the downstream edge of the adjacent corner,
immediately downstream of the region of flow
impingement identified in Figs. 3 and 4; and (2)
immediately upstream of the hinge ventricular pocket,
where the flow is squeezed between the surface of the
flat level and the leaflet surface.

Systole ends with the leaflet closing phase during
which the leaflet moves from its fully open to its fully
closed position. During this closing phase, the flow

field is strongly dominated by the clockwise rotating
leaflet inducing a clockwise flow pattern throughout
the hinge recess (not shown). The flow patterns present
throughout the leakage flow phase start to form.
Diastole is characterized by highly 3D leakage flows
throughout the hinge. Three independent flow struc-
tures are identified: adjacent, ventricular, and lateral
jets, named after the corner through which they exit
the hinge. These jets are color-coded in Fig. 3 in green,
blue, and red, respectively. The ventricular jet enters
the hinge through the aortic corner, flows underneath
the leaflet ear, and exits the hinge recess through the
ventricular corner. The adjacent and lateral jets flow
on either side of the leaflet ear. Both the ventricular
and lateral jets show a streamlined pattern (Fig. 3) as

FIGURE 6. Two-dimensional in-plane velocity vectors superimposed on the out-of-plane velocity (Vo-p) contours at four instances
of the cardiac cycle for the CM hinge. The flow fields are shown at the flat level (level flush with the valve housing) and at the
195 lm level (level located 195 lm within the hinge recess, away from the flat level).

TABLE 1. Velocity and shear stress at peak systole (PS) and mid-diastole (MD) for all three hinge configurations.

SJM regular hinge SJM large hinge CM regular hinge

PS MD PS MD PS MD

Velocity range

u [20.71; 0.71] [22.40; 2.40] [20.81; 0.80] [22.90; 2.97] [20.42; 0.67] [23.01; 3.34]

v [20.51; 0.72] [22.20; 2.96] [20.58; 0.30] [22.87; 2.96] [20.80; 0.63] [21.82; 3.49]

w [20.29; 1.53] [24.57; 0.70] [20.14; 1.65] [24.91; 1.55] [20.36; 1.45] [24.60; 0.13]

Max. vmag 1.54 4.75 1.66 5.26 1.46 4.61

SSmax (hinge) 1310 6515 1460 5445 1060 5910

SSmax (vicinity) 2080 8535 1730 6320 1800 8985

The table lists the range of velocity components and maximum velocity magnitude (vmag in m/s) across the hinge recess and also includes

the maximum principal shear stress (SSmax in dyn/cm2) in the hinge and in the hinge vicinity (defined as the hinge region and up to 500 lm

above the flat level).
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they exit the hinge recess. The orientation of these
leakage jets is consistent with previously published
data.22 All three leakage jets exit the hinge recess with
a strong out-of-plane motion, as indicated by the
u-velocity contours in Fig. 4. Detachment of these fast-
moving jets from the leaflet surface and the valve
housing creates a complex combination of fast flowing
fluid jets and regions of near stagnant flow. After
flowing under the leaflet ear, the ventricular jet
detaches from the leaflet surface and induces a large
region of low flow along the ventricular surface of the
leaflet. The adjacent jet (in green in Fig. 3), on the
other hand, appears to detach from the valve housing
at the edge of the recess, leading to the formation of a
region of low flow at deep levels in the tip of the
adjacent corner (feature i in Fig. 9).

Considering the hinge flow structures throughout
the cardiac cycle, it is during the leakage flow phase
that the velocity magnitudes within the hinge recess are

the highest and that the flow three-dimensionality is
the most pronounced (Table 1). Furthermore, the
presence of localized jets and regions of flow separa-
tion yields elevated shear stresses. This is well illus-
trated by the large shear stress iso-surfaces shown in
Fig. 8. As expected, the maximum shear stresses are
seen in the wake of the leakage jets: two regions on
either side of the leaflet ear corresponding to the
adjacent and lateral leakage jets, as well as the flow
through the peripheral gap (leaflet-housing gap); and a
large iso-surface at the center of the hinge corre-
sponding to the ventricular jet. Contrary to systole,
elevated shear stresses (above 1,000 dyn/cm2) are
computed not only outside of the recess, but also
within the hinge. Furthermore, it is during diastole
that the overall highest shear stresses are computed
(Table 1). This suggests that, within the hinge
recess, the leakage phase might be more detrimental
to blood elements than the forward flow phase and

FIGURE 7. Iso-surfaces of shear stress levels at peak systole for all three hinge designs. Iso-surfaces of three shear stress levels
(100, 500, and 1,000 dyn/cm2) are displayed in the near-hinge region. Top- and side-view schematics of the hinge are provided on
the right side to illustrate the location of the shear stress iso-surfaces with respect to the hinge geometry.
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consequently that the propensity for hemolysis and
platelet activation might be higher during diastole.

SJM Hinge with a Large Hinge Gap Width

The overall flow features of the SJM large hinge
are similar to those seen in the SJM regular hinge
during the forward flow phase, with highly 3D and
unsteady flow features (Fig. 5). The most notable
differences occur at peak systole. While flow reversal
is present at the bottom of the SJM regular hinge
throughout systole, such a flow reversal is seen in the
SJM large hinge only at mid-acceleration and mid-
deceleration. At peak systole, the reverse flow is
replaced by a forward flow pattern (blue streamtraces
in Fig. 3). This change in flow direction impacts the
flow in the other corners of the hinge, in particular in
the adjacent corner where a large counter-clockwise
recirculating flow pattern, not seen in the SJM regular
hinge, forms (Figs. 3–5).

During the leakage flow phase, the flow distribution
in the SJM large hinge is similar to that of the SJM
regular hinge with the presence of three main leakage
jets, and regions of low flow along the ventricular
leaflet surface. The overall direction of the leakage jets
is similar to that seen in the SJM regular hinge, but the
velocity magnitudes are larger (Table 1).

Comparison of the shear stress iso-surfaces shows
similar global distribution between the SJM large and
regular hinges (Figs. 7 and 8). The only major differ-
ence is seen at mid-diastole when the iso-surfaces in the
SJM large hinge are seen to extend further toward the
ventricular side of the hinge compared to the SJM
regular hinge.

CM Hinge with a Regular Hinge Gap Width

The flow features are similar between the SJM reg-
ular and CM hinges during systole (Figs. 3, 4, and 6),
except in the adjacent corner where the most striking

FIGURE 8. Iso-surfaces of shear stress levels at mid-diastole for all three hinge designs. Iso-surfaces of three shear stress levels
(100, 500, and 1,000 dyn/cm2) are displayed in the near-hinge region. Top- and side-view schematics of the hinge are provided on
the right side to illustrate the location of the shear stress iso-surfaces with respect to the hinge geometry.
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difference is seen. Because of the confined geometry of
the CM hinge, the adjacent corner is characterized by a
well-defined clockwise rotating flow that spans the
entire corner while in the SJM regular hinge a small
localized rotating flow pattern is observed. Differences
are also seen in the aortic corner. In the CM hinge,
part of the fluid is seen to dive into the lateral corner
and follow the curved downstream hinge wall before
exiting the recess from the left-most tip of the aortic
corner. This pattern corresponds to the region of
elevated velocity magnitude and large out-of-plane
u-velocity component seen in the aortic corner tip
(Fig. 6). This localized flow pattern is not seen in the
SJM regular hinge (Fig. 4).

The diastolic flow patterns of the CM hinge are
similar to those of the SJM regular hinge, with three
main leakage jets. However, the overall position and
direction of these jets differ, as the fluid in the CM
hinge is able to flow through the un-swept corner tips
(Figs. 3 and 6). Moreover, it is clear that, in the CM

hinge, both the ventricular and adjacent fast-paced
flow jets are associated with flow separation, while in
the SJM regular hinge, only the ventricular leakage jet
is seen to detach from the leaflet surface. This leads to
a different distribution of the regions of low flow in the
ventricular side of the hinge.

The overall shear stress distribution is similar to that
seen with the SJM regular hinge (Figs. 7 and 8).
Nonetheless, it is worth noting that the region of ele-
vated shear stress located in the center of the hinge
recess (identified by the 1,000 dyn/cm2 iso-surface)
occupies nearly the entire recess of the CM hinge.

DISCUSSION

In this study, 3D time-accurate simulations are
carried out to model the flow through the hinge recess
of three BMHV hinge models under physiologic aortic
flow conditions. The flow features computed for the
SJM regular hinge were compared to the flow struc-
tures qualitatively assessed using hydrogen bubble flow
visualization techniques (courtesy Medtronic Inc), and
to the Laser Doppler Velocimetry measurements
reported by Simon et al.24 Comparison of the numer-
ical and experimental results, provided in the accom-
panying article of this publication,23 demonstrated that
the current numerical solver could accurately capture
the intricacies of the hinge flow fields. Furthermore,
the observed flow structures highlight the need for
performing full 3D hinge simulations rather than 2D
simulations.

The objective of this study is to assess the impact
of different design parameters on BMHV thrombo-
embolic potential associated with the hinge flow
fields. The result section depicts the details of each
hinge flow field, whereas in the following discussion
section we focus on their comparison. To that end,
Figs. 10 and 11 illustrate the performance of the three
investigated hinge designs from a blood cell stand-
point. Figure 10 shows the cumulative distribution of
the maximum shear stress experienced by all the
particles seeded within these three hinges along their
trajectories. This figure provides the percentage of
particles experiencing a maximum shear stress level
larger than a set value. For example, 14% of the
particles crossing the SJM large hinge are subjected to
a maximum shear stress level greater than 1,000 dyn/
cm2. In the SJM regular hinge, the corresponding
percentage is only 8%. Figure 11 uses the same dis-
play to show the cumulative distribution of blood
damage index (BDI) for both hemolysis and platelet
activation. Relating the differences in thromboembo-
lic performance of the three investigated hinges to the
differences in flow structures and local design

FIGURE 9. Characteristic flow features observed at peak
systole and mid-diastole in all three hinge designs. Labels are
used to identify each flow structure and are explained in the
text in the discussion section.
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parameters provides some general implications on the
optimal hinge design.

Effect of Hinge Gap Width

The effect of the hinge gap width is evaluated using
two SJM hinge models whose only difference in design
stems from the prescribed dimension of the hinge gap
width.

During systole, the effect of the hinge gap width on
the flow features is best noted at peak systole at the
bottom of the hinge recess (Fig. 9). In the SJM regular
hinge, the observed flow reversal (feature d in Fig. 9)
may be attributed to a region of low pressure located in
the aortic (left) surface of the leaflet due to the

detachment of the main stream in this region. This
region of low pressure results in a negative pressure
gradient between the lateral and adjacent corners of
the hinge, thereby inducing the flow reversal observed
at the bottom of the recess, with fluid going from the
lateral to the adjacent corner. In the SJM large hinge,
on the other hand, this flow reversal is replaced at peak
systole by a forward flow pattern (feature D in Fig. 9).
The larger hinge gap width offers lower resistance to
the flow than the regular hinge gap width. This lower
resistance, combined with the large valvular flow rate
at peak systole, explains the change of flow direction
and the formation of a forward flow pattern. The hinge
gap width thus alters the flow at the bottom of
the hinge recess, and in turn, in the adjacent corner.
Indeed, the reverse flow pattern in the SJM regular
hinge leads to the formation of a clockwise rotating
flow in the adjacent corner (feature a in Fig. 9);
whereas, in the SJM large hinge, the forward flow
pattern present at the hinge bottom yields a counter-
clockwise rotating flow structure (feature A in Fig. 9).
Finally, the lateral corner of the SJM regular hinge is
characterized by a smooth streamlined flow; whereas,
in the SJM large hinge, a more complex flow pattern is
noted. Shear stress levels computed within either hinge
model during systole were of similar magnitude, sug-
gesting a similar propensity of blood cell damage.
However, the observed differences in flow structures
throughout the hinge recess are expected to yield vari-
ations in the residence time of blood elements within the
hinge recess and, thus, on the potential for thrombus
formation between the two SJM hinge designs.

During diastole, the hinge gap width has a minor
effect of the hinge flow structures, but the reported
velocity values are higher in the SJM large hinge
compared to the SJM regular hinge. This observation

FIGURE 10. Cumulative distribution of the maximum shear
stress experienced along the particle trajectories for the SJM
regular, the SJM large, and the CM hinges.

FIGURE 11. Cumulative distribution of the blood damage indices for hemolysis (left) and platelet activation (right) as a function of
the particle percentage for all three hinge designs.
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corroborates the earlier experimental findings19 which
reported larger peak velocities in the SJM large hinge
than in the SJM regular hinge under mitral flow con-
ditions. The two SJM valves experience a similar trans-
valvular diastolic pressure gradient and the SJM large
hinge model offers a lower resistance to flow than the
SJM regular hinge due to its larger gap dimensions. As
a result, the diastolic flow rate is larger in the SJM
large hinge than in the SJM regular hinge. This ulti-
mately translates into faster and more three-dimen-
sional diastolic flow in the SJM large hinge compared
to the SJM regular hinge. The larger shear stress iso-
surfaces observed at mid-diastole in the SJM large
hinge compared to the SJM regular hinge suggest a
higher thromboembolic potential in the SJM large
hinge during diastole. This is in agreement with pre-
viously published blood studies by Travis et al.,25 who
concluded that the hinge gap width had a significant
effect on platelet damage initiated by leakage flow, the
large hinge gap width being more detrimental than the
regular hinge gap width.

From Fig. 10, it is evident that, up to 1,500 dyn/
cm2, the curve corresponding to the SJM large hinge is
slightly above that of the SJM regular hinge. At larger
shear stress levels, the percentage of particles is low
(<1%) and the distribution is similar for both SJM
hinges. Overall, Fig. 10 shows that a larger portion of
the particles seeded in the SJM large hinge experience
more detrimental conditions compared to the SJM
regular hinge. As a result, this suggests a larger pro-
pensity for shear-induced platelet activation in the
SJM large hinge. Comparison of the cumulative BDI
distribution indicates that the majority of the particles
seeded in the SJM large hinge experienced higher BDI
than those in the SJM regular hinge. Exception should
be noted for the high BDI values, for which the trend is
inverted. However, these probabilities represent only
very few of the seeded particles and conclusions drawn
from few individual particles are to be taken cau-
tiously.

Overall, the thromboembolic performances of the
two SJM hinges appear to be similar, suggesting that
the hinge gap width plays a minor role on the hinge
performance. However, it should be pointed out that
only one cardiac cycle is here considered. The differ-
ences in washout, flow stagnation, and shear stresses,
though small, may accumulate over repeated number
of passes, thereby exacerbating the influence of the
hinge gap width on the flow and blood damage per-
formance of the hinge.

Effect of the Recess and Leaflet Wall Curvature

In order to assess how wall curvature impacts the
flow structures and associated thromboembolic

potential, the fluid dynamic performance of the SJM
regular and CM hinges are here compared.

During systole, the curvature of the wall is seen to
strongly affect the flow features in the adjacent corner
of the hinge, where a large rotating flow structure is
seen to encompass the entire CM corner while a more
localized rotating flow is seen in the SJM regular
hinge (see features a and A in Fig. 9). Rotating flows
are known to promote platelet aggregation and
thrombus formation by trapping cells and favoring
cell-to-cell contact. This, in turn, suggests a longer
blood cell residence time and consequently a greater
thrombogenic risk profile for the CM hinge compared
to the SJM regular hinge. The variation in the cur-
vature of the hinge corner tip is also seen to alter the
systolic flow features. For instance, the CM hinge
corners are not entirely swept by the leaflet ear. When
the leaflet is in its fully open position, an ‘‘unswept’’
area exits at the tip of the aortic corner through
which fluid can flow and accelerate leading to the
formation of an isolated jet. Such a jet is clearly seen
in the aortic corner of the CM hinge (feature B in
Fig. 9) but is not present in the SJM regular hinge.
The difference in wall design also alters the propen-
sity for regions of low flow to form during systole.
Abrupt changes in the geometry, such as those in the
CM hinge design, disrupt the flow, leading to flow
separation and the formation of low flow regions. For
instance, an isolated region of low flow persists at the
tip of the ventricular corner throughout the fully open
leaflet phase in the CM hinge (feature c in Fig. 9).
This is not seen in the SJM hinge (feature C in
Fig. 9). This region of low flow is thought to play an
important role in the overall thromboembolic
potential of the CM hinge design by favoring cell-
to-cell contact, platelet aggregation, and thrombosis.
This is further emphasized by the velocity magnitude
distribution during systole, where the slower velocities
in the CM hinge suggest longer residence times while
the larger velocities in the SJM regular hinge indicate
a better washout and consequently reduced potential
for thrombosis.

During diastole, similarly to what was observed
during the forward flow phase, the design differences,
in particular in the hinge corners, lead to differences in
flow structures. The design of the CM hinge corner tips
leads to the formation of bounded localized leakage
jets, associated with elevated velocities and large shear
stress levels. In addition, the sharp angulated surface of
the CM leaflet ear promotes flow separation and the
formation of a region of low flow. This is illustrated in
Figs. 4 and 6, where the two hinge recesses exhibit
distinct regions of low flow (feature h for the SJM
regular and features I and H for the CM hinge in
Fig. 9). The larger regions of low flow seen during
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diastole in the CM hinge suggest a greater propensity
for cell-to-cell contact and thrombus formation.

Overall, the smooth streamlined SJM hinge profile,
with a gradual change in geometry reduces the pro-
pensity for flow separation. In contrast, the angulated
CM hinge features sharp corners that disrupt the flow
and lead to large regions of elevated shear stress levels
(Fig. 8). This clearly suggests that blood elements
passing through the CM hinge may experience more
severe flow conditions than those passing through the
SJM hinge, and consequently that the CM hinge may
have a higher potential for platelet activation during
diastole than the SJM regular hinge. This finding
correlates well with previously published experimental
studies, which concluded based on a purely fluid
dynamics assessment that, under mitral18 and aortic24

conditions, the thromboembolic potential might be
larger in the CM hinge compared to the SJM regular
hinge.

This is further confirmed by the Lagrangian analysis
of the flow. Figure 10 clearly shows that a larger por-
tion of the particles seeded in the CM hinge experience
elevated shear stresses, and thus detrimental condi-
tions, compared to the SJM regular hinge. It is note-
worthy mentioning that the maximum shear stresses
experienced by the particles along their trajectory are
lower than those reported in the Eulerian analysis of
the flow. This is not surprising since the particles are
not required to travel to regions of high shear stresses.
A particle seeding density closer to the actual blood
cell concentration levels, yet unachievable with current
computer resources, would provide a better sampling
of the hinge flow features and deeper insight into the
influence of the hinge design. Nonetheless, comparison
of the BDI also shows that a larger percentage of
particles crossing through the CM hinge experience
higher BDI than those traversing through the SJM
hinge (Fig. 11). Hence, this suggests a larger propen-
sity for shear-induced red blood cell damage and
platelet activation in the CM hinge. This correlates
well with previous in vitro and clinical studies, which
suggest that the CM hinge induces more detrimental
flow conditions18,24 and higher clinical complication
rates1 than the SJM hinge.

General Observations

During systole, independent of the hinge gap width
and design, the largest shear stresses are not seen
within the recess but immediately upstream of the
recess, at the edge of the gap formed by the leaflet and
the flat level surfaces. This suggests that efforts to
reduce systolic shear stresses should focus on the
design of the immediate hinge vicinity. On the other
hand, the design of the hinge was seen to impact the

flow structures within the hinge and the extent of the
flow stagnation regions.

During diastole, the shear stress distribution in both
SJM hinges reveals four main regions of elevated shear
stresses, namely: (1) along the wall of the ventricular
corner; (2) in the tip of the lateral corner; (3) along the
wall of the adjacent corner; and finally (4) at the bottom
of the hinge recess. The locations of these high shear
stresses suggest that the curvature of the recess wall
along with that of the leaflet ear play a key role in the
shear stress distribution. Differences observed between
the SJM and CM hinges confirm this inference and
strongly suggest that angulated design and sharp cor-
ners should be avoided in favor of smooth streamlined
transitions. Nonetheless, evaluating different smooth
hinge designs with varying wall curvature would be of
interest to determine a possible optimum curvature to
minimize shear stress levels. Finally, in all three designs,
close inspection of the flow fields underscores the
presence of regions of low flow induced by fast flowing
jets detaching from the leaflet surface and valve hous-
ing. To minimize flow separation, one may therefore
envision altering the leaflet ear design as well as the
hinge geometry at the edge of the recess. Sharp edges
would lead to immediate flow separation while rounded
edges would tend to reduce it. Changes in the curvature
of the hinge edges and leaflet ear curvature should
therefore reduce the propensity for platelet aggregation
and thrombus formation.

Finally, it should be noted that the overall size of
the leaflet is large compared to the dimensions of the
hinge recess and leaflet ear. Consequently, the leaflet
motion is expected to be predominantly dominated by
the large-scale flow features. This is further confirmed
by previous studies where the hinge recess was modeled
as a simple pivot point, and yet the computed leaflet
kinematics and overall fluid dynamics were in good
agreement with in vitro data.3,15 In this study, only
small variations in the hinge design are included.
Accordingly, solely the local hinge flow features are
expected to be affected, while the bulk flow dynamics
and global leaflet motion should remain unaltered.
However, such a hypothesis would no longer hold if
the modifications to the hinge design modified the fully
closed/open leaflet angles or the leaflet span. Such
variations would have to be taken into account in the
simulations of both the bulk flow and the detailed
hinge flow fields to accurately capture the physics of
the blood flow near the valve.

LIMITATIONS

In this study, the physiologic conditions are repro-
duced as closely as possible. However, the instant of
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valve closure, with the associated sudden increase in
velocity magnitude and cross-valvular pressure gradi-
ent, is not accurately captured by the current modeling
approach. Valve closure is here modeled such that
pressure and flow smoothly transition toward their
diastolic value. Such a smoothing likely leads to an
underestimation of the shear stresses experienced by
the blood elements. Accurate numerical modeling of
the instant of valve closure would require a full two-
way coupling between the large-scale and the hinge
solvers and would exceed currently available compu-
tational resources. Nonetheless, all investigated hinge
designs suffer from the same limitation and the design
implications drawn here are expected to be comparable
to those that would have been drawn with the inclusion
of the exact valve closure instant modeling.

Additionally, the blood is here modeled as an
incompressible single-phase Newtonian fluid. In real-
ity, blood is a particulate fluid that exhibits non-
Newtonian properties. Because of the small dimension
of the hinge, large cell-to-cell interactions are expected,
and these interactions would likely influence the
overall trajectory and behavior of the particles. As a
result, the validity of the Newtonian single-phase flow
assumption used to describe the flow in the hinge recess
is limited. Nevertheless, in this study, all three hinge
designs have been compared within the same compu-
tational framework and the observed differences indi-
cate the potential for significant differences in
hemodynamic performance under more realistic in vivo
conditions. Finally, it should be acknowledged that
even the most advanced blood damage models to date
only provide a rough estimate of the actual blood
damage. Nonetheless, these models provide useful in-
sights, in particular in terms of relative performance
comparison across different hinge designs. An area of
interest might thus be to refine the existing BDI
models, thereby increasing the accuracy of fluid-based
optimization frameworks such as the one described
herein.

In this study, a selectively stretched grid of about
6 million nodes was used to discretize the fluid domain.
Due to computational limitations, further refinement
in the grid and time increment could not be performed.
Nonetheless, the numerical results were found to cap-
ture the essential hinge flow structures seen experi-
mentally, and thus, could be used to estimate the
overall relative blood damage induced by the three
hinges. However, in order to accurately compute the
blood damage at the cell level, spatial and temporal
refinement studies of particulate simulations would
need to be completed to ensure (1) accurate modeling
of the path of each blood cell and (2) accurate esti-
mation of the instantaneous fluctuations of the viscous
shear stresses experienced by each blood cell. Such

complex and thorough refinement studies would
become possible as computer cluster capabilities
increase.

CONCLUSIONS

This study provides a detailed insight into the 3D
flow structures within three different hinge recesses and
in their vicinity while subjected to physiological aortic
conditions. The findings highlight the complexity and
three-dimensionality of the hinge flow fields through-
out the cardiac cycle. The diastolic phase is found to be
associated with the highest shear stress levels. The
bottom of the hinge recess and the wake of the leakage
jets are identified as the most harmful regions from a
blood cell standpoint. During the forward flow phase,
the shear stress levels are lower than during the leakage
flow phase; however, a region of elevated shear stress is
identified immediately upstream of the hinge recess at
peak systole. Moreover, the velocities are also lower
during systole compared to diastole. The systolic phase
is thus more prone to thrombosis than diastole while
the diastolic phase is plagued by an elevated risk for
platelet activation.

As expected, the comparative assessment of the
three hinge designs shows that the geometrical design
of the hinge recess and leaflet ear has a large impact on
the flow features and the associated shear stress levels.
In particular, avoiding sharp corners or sudden shape
transitions appears as a key geometrical design
parameter. Smooth streamlined geometries, with
gradual changes, should be favored to abrupt and
angulated geometries to optimize hinge flow fields and
minimize flow-induced complication rates. Specific
studies on smooth streamlined geometries could help
determine the optimal curvature of the recess and
leaflet ear that will concurrently minimize blood
damage and ensure that the leaflet is securely
entrapped within the hinge recess and cannot be
dislodged. More importantly, this study shows for
the first time that the housing region immediately
upstream of the hinge and the edge of the leaflet are
two critically important regions to optimize in order to
reduce detrimental flow conditions during the forward
flow phase. Finally, in contrast to the shape of the
hinge and near-hinge regions, the width of the hinge
gap was found to have a minimal influence on the
levels of shear stresses. Nonetheless, this parameter
should not be overlooked as it could help in reducing
the overall valvular thromboembolic potential.

The implications of this study are twofold. First, the
computed flow fields underscore the need to perform
full 3D pulsatile simulations throughout the cardiac
cycle in order to fully capture the complexity and
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unsteadiness of hinge flows. Second, the developed
framework enables rapid and cost-efficient preclinical
evaluation of prototype BMHV designs prior to valve
manufacturing. Application to a wide range of hinges
with varying design parameters will help in determin-
ing optimal hinge design criteria. Such a study, com-
bined with parametric studies investigating the
different leaflet designs and their effect on global flow
features (for instance15) is essential to optimize the
overall valve design and reduce the valvular throm-
boembolic potential.
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