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Abstract—The detection of murmurs from phonocardio-
graphic recordings is an interesting problem that has been
addressed before using a wide variety of techniques. In this
context, this article explores the capabilities of an enhanced
time–frequency representation (TFR) based on a time-varying
autoregressive model. The parametric technique is used to
compute the TFR of the signal, which serves as a complete
characterization of the process. Parametric TFRs contain a
large quantity of data, including redundant and irrelevant
information. In order to extract the most relevant features
from TFRs, two specific approaches for dimensionality
reduction are presented: feature extraction by linear decom-
position, and tiling partition of the t–f plane. In the first
approach, the feature extraction was carried out by means of
eigenplane-based PCA and PLS techniques. Likewise, a
regular partition and a refined Quadtree partition of the t–f
plane were tested for the tiled-TFR approach. As a result, the
feature extraction methodology presented, which searches
for the most relevant information immersed on the TFR, has
demonstrated to be very effective. The features extracted
were used to feed a simple k-nn classifier. The experiments
were carried out using 45 phonocardiographic recordings
(26 normal and 19 records with murmurs), segmented to
extract 548 representative individual beats. The results using
these methods point out that better accuracy and flexibility
can be accomplished to represent non-stationary PCG signals,
showing evidences of improvement with respect to other
approaches found in the literature. The best accuracy obtained
was 99.06 ± 0.06%, evidencing high performance and stabil-
ity. Because of its effectiveness and simplicity of implemen-
tation, the proposed methodology can be used as a simple
diagnostic tool for primary health-care purposes.

Keywords—Heart sounds, Feature extraction, Time–frequency

representation, Time-varying autoregressive model, Murmur

detection.

ABBREVIATIONS

2D-PCA Two-dimensional PCA
AR Autoregressive
BIC Bayesian information criterion
CWT Continuous wavelet transform
ECG Electrocardiogram
HS Heart sound
k-nn k-nearest neighbors
LS-TVAR Least-squares TVAR
PCA Principal component analysis
PCG Phonocardiogram
PLS Partial least squares
SNR Signal-to-noise ratio
t–f Time–frequency
TFR Time–frequency representation
TVAR Time-varying autoregressive
WVD Wigner–Ville distribution

INTRODUCTION

Cardiac mechanical activity is appraised by auscul-
tation and processing of heart sound (HS) records
(known as phonocardiographic signals—PCG), which
is an inexpensive and non-invasive procedure. Since
computer-based analysis of HS may contribute to
improve diagnosis of cardiac malfunctions, PCG has
preserved its importance in many medical fields of
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clinical practice.2,10,19 Specifically, murmurs, which are
sorted into systolic or diastolic, are some of the basic
signs of pathological changes to be identified, but they
overlap with the cardiac beat, and these HS cannot be
easily separated by the human ear, since a large
amount of information in the frequency domain is
below the audibility thresholds. Moreover, cardiac
murmurs are non-stationary signals that exhibit
sudden frequency changes and transients. Therefore,
the time–frequency representations (TFRs) have
been proposed before to investigate the correlation
between the time–frequency (t–f) characteristics of
murmurs and the underlying cardiac pathologies.19

For that matter, in the literature, both non-parametric
and parametric estimations of TFR are generally
employed.7,15,17 Non-parametric methods (e.g., Wigner–
Villle distribution—WVD, continuous wavelet trans-
form—CWT, etc.) are based on non-parameterized
representations of the signals as a simultaneous func-
tion of time and frequency, whereas parametric
methods are based on parameterized expressions of a
time-dependent autoregressive modeling (or related
types) and their extensions. In biomedical applications,
the non-parametric methods of estimation that are
commonly implemented by means of wavelet trans-
form suffer of a trade-off between time and frequency
resolution.21

Since there are large differences in the transition
patterns among the individual sets of multi-frame sig-
nals, a stable estimation of the transition patterns
should be carried out. In this line, and due to its
intrinsic generality and its capacity to detect formant
frequencies, the time-varying autoregressive (TVAR)
models, in which the auto-regressive coefficients are
allowed to vary with time, have provided useful
empirical representations of non-stationary time series
for biomedical signal analysis.6 The frequency resolu-
tion of the parametric methods is superior because of
the implicit extrapolation of the autocorrelation
sequence.21 Furthermore, the TVAR technique can
provide a higher resolution with respect to the non-
parametric estimations, and without the complication
of the quadratic terms regarded to the quadratic TFR,
or the need to generate a high time-resolution wavelet
analysis. Despite these advantages, the selection of the
model order and the methods of estimation for the
parameters are the two main problems, which had
discouraged the use of TVAR models to estimate the
TFR.6 Explicitly, the selection of the model order has a
large effect on the quality of the signal representa-
tion,15 and for pathological PCG signals it is often
difficult to select a unique value correctly.12,14,16 As a
result, the TVAR model may not resolve well enough
the fine structure in the data. However, the methods of
estimation of the TVAR parameters can help with this

issue. In general, these methods should be directly
coupled with the time-varying dynamics of the PCG
signal. Assuming that the signal is stationary within
short segments, and under the assumption that the
parameters and innovations variance are independent
of time,17 AR estimators can be used in short time
windows. Because of the lack of resolution, this
method is basically suitable for cases where the evo-
lution in the dynamics is slow. This is the case of the
PCG signals. It must be quoted that regardless of the
improvement of the TVAR models for the represen-
tation of non-stationary signals, the modeling of the
PCG signal to automatically detect murmurs remains
still an open issue.

For the automatic detection of murmurs, the
TFR-based classification methods are preferred with
respect to other techniques because t–f planes have
clear discriminant capabilities to separate signals
belonging to different classes. In addition, even that the
flexibility to form the feature vector in 2D representa-
tions is considered the main advantage of a t–f domain-
based classification, this enhanced representation also
tends to contain a large amount of redundant data, and
hence a dimensionality reduction is required. Thus,
there is a growing need for new data reduction methods
that can accurately parameterize the activity in TFR of
biosignals, particularly those with higher resolution, as
stated in Bernat et al.5 for the case of electroencepha-
lographic signals. A direct approach is the use of
principal component analysis (PCA) to reduce the
dimensionality of the feature space resulting from the
t–f plane, assuming that the information is equally
distributed along with the TFR. As concluded in
Englehart et al.,11 a PCA-reduced t–f representation
has shown to effectively accommodate the loosely
structured waveforms of some transient biological sig-
nals, when quantitative and decision-based analysis is
required. PCA models each TFR as the weighted sum
of base functions obtained as the components, which
maximize the variability on the dataset. Nevertheless,
for classification purposes, the components obtained
are not always related with the most discriminative
information. Thus, similar decomposition approaches,
such as partial least squares (PLS), can be used as a
supervised dimensionality reduction approach that
yields components maximally related with labels.4

Nonetheless, as commonly known in the state-of-
the-art, the methods, which classify the TFRs based on
the local regions of the t–f plane, have achieved higher
success rates than those based on the entire image22;
and for PCG signals this supposition is more adequate,
since most of the information is concentrated wherever
the heart murmurs are present. But there is a note-
worthy unsolved issue associated with local-based
analysis, namely, the selection of the size of local
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relevant regions. As a result, the choice of feature
extractors in the t–f domain, and the classifier, is highly
dependent on the final application.19

A major motivation in this study is to generate a
set of parametric TFR-based features extracted from
PCG recordings, capable of detecting murmurs with
higher accuracy than using static features. So, the aims
of this study are (a) the calculation of TFRs using a
TVAR model, taking directly into account the vari-
ability of the PCG induced by the murmurs originated
by valve pathologies; (b) the evaluation of the best set
of dynamic features, estimated from parametric-based
TFR, and suitable for the classification of heart
murmurs.

Throughout this article, the criterion followed to
compare the different approaches is the classifier
accuracy, obtained using the well-known k-nn
approach. For the sake of comparison and for the
different feature extraction techniques described, the
results—in terms of accuracy—of the proposed para-
metric approach were compared with those obtained
using two non-parametric methods, namely, WVD and
CWT (estimated as explained in Quiceno-Manrique
et al.18). Moreover, the results were compared with
other assumed baseline methods in the literature.8,23

The rest of this article is organized as follows: first,
the time-varying representation implemented is intro-
duced, followed by a brief description of the TVAR
parameter estimation method used, computed by min-
imizing the mean-square error. Then, the methodology
for feature extraction is described in detail (based on
linear decomposition and partition schemes). Lastly,
the effectiveness of a feature set based on parametric
TFR representing the dynamics of the HS is applied to
the detection of murmurs, comparing the results with
other methods in the literature. Finally, there is a brief
discussion of the results obtained.

BACKGROUND

The stochastic parameters that define the TVAR
model, and that are used to generate the TFRs, are
briefly described in this section. Moreover, the feature
extraction techniques from TFRs considered in this
article are presented.

TVAR Models with Locally Stationary Assumptions

A time-variant autoregressive model of pth order,
shortly TVAR(p), is described as follows

x½t� ¼ hT½t�h½t� 1� þ e½t�; e½t� � Nð0; r2
e ½t�Þ ð1Þ

where h½t� ¼ fx½t� i� : i ¼ 1; . . . ; pg; h � Rp is a
non-stationary (real-valued vector) processes to be

modeled, e[t] is an unobservable and uncorre-
lated Gaussian sequence with zero mean and time-
dependent variance re

2[t] (or innovations variance) and
h½t� ¼ fhi½t�g; h � Rp are the parameters of the
TVAR model. The order of a stationary model can be
used as starting point to set the TVAR model order,1

but a more accurate estimation can be achieved by
trial-and-error procedures using a fitting function such
as Bayesian information criterion (BIC).17

The vector of parameters, h[t], and the innovations
variance, re

2[t], for a given value of the sampling
frequency, fs is related to the spectral content of x[t]
by21:

Sxðt; f Þ ¼
r2
e ½t�

1þ
Pp

i¼1 hi½t�e�jxit=fs
�
�

�
�2
; Sxðt; f Þ � RT�F

ð2Þ

that can be assumed as the time-varying power spectral
density (i.e., the TFR) of the signal if the system were
stationary at the time instant t. The dimension of the
TFR is given by the time and frequency resolution (T
for time, and F for frequency).

TVAR representations differ from their conven-
tional stationary counterparts in that they are time-
dependent. The methods upon them provide a set
of potential advantages listed in Poulimenos and
Fassois,17 namely, (a) its simplicity of representation,
since these models may be potentially specified by a
limited number of parameters; (b) improved accuracy;
(c) better resolution; (d) better tracking of the time-
varying dynamics; (e) flexibility of analysis, since the
parametric methods are capable of directly capturing
the underlying structural dynamics regarded to the
non-stationary behavior.

The TVAR model of Eq. (1) is completed specify-
ing the evolution of {hi[t]} and re

2[t]. These two
parameters will take a value at the time instant t for
each window of analysis. Nonetheless, if the coeffi-
cients at each time are assumed to be independent,
then the number of parameters needed becomes usu-
ally greater that the amount of data. In the context of
biological signal processing and to overcome this
problem, the stochastic regression approach is likely
more suitable.6 Specifically, in a locally stationary
method for TVAR model estimation (referred as
LS-TVAR), the parameters, h[t], are commonly com-
puted by minimizing the mean-square error within a
window of size M:

bh½t� ¼ argmin
h

Xt

s¼t�M
x½t� � hT½t�h½t� 1�
� �2 ð3Þ

leading to the Yule-Walker equations that can be
solved by any of the standard algorithms such as
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Burg’s one.21 The tracking ability of the LS-TVAR
algorithm is prescribed by either the size of a window
or the value of a fading rate, but conditioning the
limitation of this approach: if the process evolves too
quickly, the algorithm will not properly track the
evolution of the coefficients, unless the window
becomes very short which in turn degrades the spec-
tral resolution.7 Consequently, for the LS-TVAR
approach (Eq. 3), only a coarse adjustment of the
tracking properties can be carried out,13 which is
enough for the slowly changing dynamics of the PCG
signals.

In order to complete the LS-TVAR model, the
variance of the observation noise re

2[t] must be esti-
mated. A sliding window on the square of estimation
error21 can be used:

r2
e ½t� ¼

1

M

Xt

s¼t�M
w½s; a�e2½t� ð4Þ

where w[s, a] is a smoothing Gaussian window with
aperture of value a and length M which determines the
quantity of data considered in the window.

Feature Extraction From the Enhanced t–f Planes

The TFR can be represented as a matrix,
Sxðt; fÞ � RT�F; with T time and F frequency points.
This matrix can be used to characterize the dynamics
of the PCG signals, but contain a large amount of
information difficulting further processing. Thus, the
problem stands on how to reduce the large amount of
information and redundancies of the TFRs, but
keeping most of the relevant information. The goal is
to reduce the original TFR, Sx(t, f ), into a set of fea-
tures, n � Rn; with a smaller dimension but containing
the most important information available in the former
dataset. The main drawback is that TFRs lie on a
bidimensional space, RT�F; while a set of features
amenable for a simple classifier should reside on an
unidimensional space Rn:

A simple approach for manipulating the TFR
matrix is reducing its dimension by downsampling or
even decimating the time and frequency resolution.
However, this method has not been considered, since it
removes some important information from the TFR.
An alternative approach to reduce the dimensionality
would be to divide the two-dimensional TFR in
two-dimensional bins with similar characteristics,
characterizing each bin with an average of the energy
contained within it. The bigger the area of these bins,
the smaller the final feature space, but the lower the
resolution. These bins could be equally distributed or
defined according to the amount of information pres-
ent in each part of the TFR. On the other hand, as

quoted before, another direct approach for feature
extraction would be the use of a linear decomposition
method (e.g., PCA, 2D-PCA, PLS) to decrease the
dimensionality projecting the whole TFR into a
smaller subspace but keeping the most relevant infor-
mation. The feature extraction approaches used
throughout this study have been grouped into two
subsections: (a) tiled-TFR approaches; and (b) linear
decomposition-based approaches.

Tiled-TFR Approaches

A straightforward approach for 2D feature
extraction is to divide a given t–f plane into tiles
evaluating their informativity (the lower the proba-
bility of the dynamic occurrence, the higher the tile
informativity). The informativity can be carried out
computing a statistic operator, Lf�g; over a deter-
mined tile of the t–f plane Sx(Dt, Df ) such as the
variance var{Æ}:

n ¼ varfSxðDti;DfjÞg; i ¼ 1; . . . ; NDt; j ¼ 1; . . . ;NDf

ð5Þ

where Dti stands for the ith time segment; Dfj is for
the jth frequency bin; NDf stands for the number of
frequency bins; and NDt is the number of time seg-
ments. Therefore, it is expected that the feature set
extracted from Eq. (5), n, holds enough information
related to the non-stationary properties of the signal.

In the beginning, the t–f tiles can be made up
of fixed size frameworks, so that the feature vector can
be described as n ¼ ni : i ¼ 1; . . . ; Nb; ni 2 R1

� �
;

n 2 RNb ; where Nb ¼ NDf �NDt is the number of tiles.
Both, NDf and NDt can be determined empirically.9,22

Time and frequency partitions are defined as:

Dti ¼ ti�1 ti½ �; where ti ¼
i � T
NDt

; 8i ¼ 1; . . . ;NDt

Dfj ¼ fj�1 fj½ �; where fj ¼
j � F
NDf

; 8j ¼ 1; . . . ;NDf

ð6Þ

This regular configuration of time windows and
frequency bins assumes that the information content is
equally distributed along the t–f plane. However, for
PCG signals, this assumption might be inadequate,
since most of the information is concentrated around
the HS,1 S1, and S2, and eventually between them, in
the systole and diastole, wherever the heart murmurs
are present.

1S1 implies the closing of the tricuspid and mitral valves immediately

preceding the systole, whereas S2 corresponds to the closing of the

aortic and pulmonary valves at the end of systole.

Feature Extraction for Heart Murmur Detection 2719



Thus, a more efficient representation might be
reached using unfixed and adaptive size frameworks:
for instance, using adaptive multiscale representations
via the Quadtree decomposition that splits the t–f
domain into four equally sized tiles, where each tile can
be successively decomposed into four new tiles.20 The
root of the tree is the initial TFR.

Linear Decomposition-Based Approaches

The PCA and the PLS methods were used
throughout this article as unsupervised and supervised
methods, respectively, to perform dimensionality
reduction in the TFRs. Moreover, a two-dimensional
extension of PCA was used to represent the reduced
feature space.

PCA Decomposition
Let X = {vi: i = 1,…,Nr} be a set of Nr objects
generated by m random variables. Thus, for the ith
object, the respective data set vi ¼ v1i ; v

2
i ; . . . ; vmi

� �
is

given, and from which the centralized data matrix is
built as:

X0 ¼ ðv1 � lvÞ
T; ðv2 � lvÞ

T; . . . ; ðvNr
� lvÞ

T
h iT

;

lv ¼
1

Nr

X

i2Nr

vj; X0 2 RNr�m ð7Þ

The conventional PCA looks for an orthogonal
transformation matrix W, (being WTW ¼ I; I 2 Rn�n;
W 2 Rm�nÞ; to project the data onto a smaller set of
variables with the maximum variance, by means of the
linear transformation Y = X0W, where:

W ¼ argmax tr
W

ðWTXT
0X0WÞ ð8Þ

In practice, the solution is found by setting the
columns of W to the n leading eigenvectors of the
covariance matrix X0

TX0.
Now consider the case when each object is not

defined as a vector but as a matrix, such as TFR
matrices. Then, each object is described by a dataset

Sxiðt; fÞ � RT�F; which from now on will be denoted by
Si for shorter notation. Every variable of each set Si

is time-dependent and has been measured upon a set of
T instants of time. Thus, for each object the following

dataset is given S
ðj;kÞ
i : i ¼ 1; . . . ; Nr; j ¼ 1; . . . ; T;

n

k ¼ 1; . . . ; F
o
; where notation Si

(j,k) stands for the kth

point, measured for the ith object, at the instant of
time j.

PCA can be carried out on these data performing
the same singular value decomposition but on a data
matrix of vectorized t–f domains, thus dealing with the
stochastic nature of the variables by assuming that

each instant of time and frequency point Si
( j,k), "j,

constitutes a new random variable. Therefore, each
object can be described by

vi ¼ S
ð1; 1Þ
i ; . . . ;S

ð1;FÞ
i ; � � � ;SðT; 1Þi ; . . . ;S

ðT;FÞ
i

h i
;

vi 2 RT�F ð9Þ

and a linear component decomposition can be carried
out over the rewritten centralized data matrix in
Eq. (7). Lastly, it must be quoted that the PCA
transformation provides a means of unsupervised
dimensionality reduction, as no class membership
qualifies the data when specifying the eigenvectors of
maximum variance.

2D-PCA Decomposition
Another approach of bi-dimensional component
analysis (known as 2D-PCA) is discussed in Yang
et al.24 and Avendano-Valencia et al.3 Further refine-
ment of the object description represented in Eq. (9)
can be achieved if the vector used to represent an
object, vj 2 X; is represented by the following matrix,
taking into account the variability of the whole vari-
able set:

vi ¼

S
ð1;1Þ
i S

ð1;2Þ
i � � � S

ð1;FÞ
i

S
ð2;1Þ
i S

ð2;2Þ
i � � � S

ð2;FÞ
i

..

. ..
. . .

. ..
.

S
ðT;1Þ
i S

ðT;2Þ
i � � � S

ðT;FÞ
i

2

6
6
6
6
4

3

7
7
7
7
5
; vi 2 RT�F ð10Þ

In this case, the matrix of the data projected,
Y ¼ ½wT

1 ; . . . ;wT
Nr
�T; is described by the elementary

matrices wi ¼ viV; wi 2 RT�nF : The reduction of the
model in Eq. (8) is carried out over the column of the
objects, which implies that the variables projected are
capturing the variability of each object in time.

Also, the description of the object in Eq. (11) can be
transposed to compute a transformation matrix
W 2 RF�nT : Such matrix can reduce the dimensionality
of the vi rows, by means of the operation wi = WTvi,
where the matrix W is calculated from the matrix
set {ui = vi

T:i = 1,…,Nr}. After the calculation of
the arrangements, VT�nf ; WF�nT ; a column–row-based
dimensionality reduction is carried out for each vj, i.e.,
wi ¼WTviV; wi 2 RnT�nF : As a result, the dimen-
sionality reduction takes into account not only the
instant-by-instant variability of each random variable,
given by the model represented in Eq. (9), but also
checks for information variability through the fre-
quency spectrum.

Mainly, the difference between PCA and 2D-PCA
approaches is based on the form to tackle the matricial
data. Both algorithms are graphically depicted in
Fig. 1.
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PLS Decomposition
This regression is a recent technique that somehow
generalizes features from PCA, by projecting a set
of dependent variables from a set of independent

variables, but preserving the asymmetry of the
relationship between independent variables, repre-
sented by a (very) large set, and dependent variables,
whereas PCA treats them symmetrically. Specifically,

FIGURE 1. Dimensionality reduction procedure for TFR matrices; (a) PCA and vectorization; (b) 2D-PCA approach.
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a multidimensional input TFR space X0, can be
projected onto the basis vectors (planes), {ki: i =

1,…,m}, through the following transformation:

wi ¼ kT
i X0; i ¼ 1; . . . ;m ð11Þ

The set of weights U ¼ fwig describes the contri-
bution of each basis plane to the input TFR, and
Eq. (11) is used as a feature vector for recognition
tasks. The vector ki = diag{R} comprises the diagonal
elements of the diagonal matrix R, resulting after sin-
gular value decomposition of X0 (i.e., X0 = URV,
being UTU = VTV = I the matrices of the left and
right singular vectors). The PCA orthogonal decom-
position of Eq. (11) remains the same for PLS, but
choosing in a different way the latent vectors where
additional conditions are required. So, the new basis
vectors are recalculated after simultaneous decompo-
sition: X0 = TPT + eX, with TTT = I, and Y =

TQT + eY, being the matrices eX and eY the error
terms, assumed to be i.i.d. normal. P and Q are the
weight matrices used to reveal the influence of the
individual variables X0 and Y, respectively.

EXPERIMENTAL SETUP

Figure 2 shows the proposed methodology for heart
murmur detection appraising the next stages: (a) pre-
processing; (b) estimation of the parameters of the
TVAR model; (c) computing the TFRs from the
TVAR parameters; (d) feature extraction and dimen-
sionality reduction of the t–f planes; and (e) training
and validation.

Database Acquisition and Pre-Processing

The database used in this study is made up of 45
adult subjects, who gave their informed consent
approved by an ethical committee, and underwent a
medical examination. A diagnosis was carried out for
each patient and the severity of the valve lesion was
evaluated by cardiologists according to clinical routine.
A set of 26 patients were labeled as normal, while 19
were tagged as pathological with evidence of systolic
and diastolic murmurs caused by valve disorders.
Furthermore, eight phonocardiographic recordings
corresponding to the four traditional focuses of aus-
cultation (mitral, tricuspid, aortic, and pulmonary

areas) were taken per patient in the phase of postexpi-
ratory and postinspiratory apnea. Every recording
lasted 12 s approximately, and was obtained from the
patient standing in dorsal decubitus position. Next,
after visual and audio inspection by cardiologists, some
of the eight signals were removed because of artifacts
and undesired noise; moreover, it was taken into con-
sideration that most of the time murmurs do not nec-
essary show up for all focuses at once, unless they are
very intense (which is evidence of their harmfulness).
An electronic stethoscope (WelchAllyn� Meditron
model) was used to acquire the PCG simultaneously
with a standard 3-lead ECG (since the QRS complex is
clearly determined, DII derivation is synchronized as a
time reference). Both signals were sampled with
44.1 kHz rate and amplitude resolution of 16 bits.
Tailored software was developed for recording, moni-
toring, and editing the HS and ECG signals.

Preprocessing was carried out as in Quiceno-
Manrique et al.,18 and consists on downsampling at
4000 Hz, amplitude normalization and inter-beat seg-
mentation. Finally, the database holds 548 HS beats in
total: 274 with murmurs (73 of diastolic class and 201
systolic), and 274 that were labeled as normal. The
selection of the 548 beats used for training and vali-
dation was carried out by expert cardiologists, who
choose the most representative beats of normal and
pathologic patients (with murmurs). Table 1 summa-
rizes the records stored in the database.

Although the database discriminates among nor-
mal, systolic, and diastolic murmurs, the objective in
this study consists on the detection of heart murmurs
for screening purposes.

Methods to Adjust the Parameters of the TFR
Enhancement Techniques

Estimation of the TVAR Model Order

As stated before, an improved TFR estimation of
non-stationary signals can be achieved by a locally

Preprocessing
Filtering
Segmentation
Normalization

TVAR model estimation
Model order estimation
Model parameters
estimation

TFR estimation

Compute TFR from
TVAR parameters

Selection of dynamic
features

Tiling
Linear decomposition

Training & Validation

K-NN classifier
Cross-validation

FIGURE 2. Experimental outline of murmur detection, and the methods subject to investigation.

TABLE 1. Recordings stored in the database.

Systolic Diastolic Normal Total

Patients 8 11 26 45

Beats 201 73 274 548
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stationary TVAR model (LS-TVAR), defined by the
model order p. The literature reports that a large
order of the linear predictor (e.g., 28) is necessary to
model the PCG signal over its full frequency range.16

Nevertheless, the use of parametric TVAR modeling
allows representing the process with a lower quantity
of components.17 But, as explained in Poulimenos A,
Fassois,17 a more accurate selection of the model order
can be achieved based on the minimization of a fitness
function. Specifically, the fitness function is estimated
for each HS (i.e., heart beat) by means of the BIC. As
suggested in Poulimenos A, Fassois,17 the approach
consists on evaluating BIC for every family of
parameters, e[t] and re[t], obtained for a given order of
the model p:

BICðpÞ ¼ �
XN

t¼1
ln r2

e ½t� þ
e2½t�
r2
e ½t�

	 


ð12Þ

where N is the number of signal samples. The BIC
curves were computed for different cut-off frequencies
(raw signal, 500 and 1000 Hz), and ranging the model
order from 1 to 15 (Fig. 3a). Likewise, the respective
histograms are depicted in Fig. 3b for all the records in
the database. The optimum model order is the one that
minimizes the mean BIC function (i.e., the elbow of the
curve). The figure shows that the lower the cut-off
frequency signal the smaller the order selected for the
model. Initially, the model order selected is p = 6, in
line with the order reported in Güler et al.12 and Kanai
et al.14 for time-varying AR modeling of HS.

Later, in the ‘‘Results’’ section, a finer empirical
adjustment is presented ranging p from 1 to 15 and
trying to maximize the classifier accuracy.

Estimation of the Parameters of the TVAR Model

The parameters of the autoregressive model with
smoothness priors were estimated by means of the
aforementioned LS-TVAR approach (Eq. 3). Under
the assumption that the AR parameters do not change
quickly, the PCG recordings were divided initially into
windows of short duration (100 samples). The coeffi-
cients of the LS-TVAR model were found using the
Burg Algorithm.

Once the parameters of the TVAR model were
estimated, the TFRs were computed by means of
Eq. (2). Figure 4 illustrates an enhanced TFR for
normal and pathologic HS, estimated using non-
parametric methods (WVD and CWT which were
estimated as explained in Quiceno-Manrique et al.18),
and the LS-TVAR parametric method used in this
study. The TFRs shown in Fig. 4 are the matrices of
dimension T 9 F, where F is the number of spectral
components of the PCG signal, f = [0, 400] Hz; and
T is the number of discrete-time samples of each
recording. This arrangement is intended to cover the
full-time range and a broad range of frequencies.

Methods to Adjust the Feature Extraction Algorithms

The next three sections describe the criteria and
methods followed to adjust the aforementioned feature
extraction and dimensionality reduction algorithms:
(a) First of all, it is described the procedure to remove
the area of the spectral surface that does not contain
relevant information; (b) Secondly, and regarding the
feature extraction for the tiled-based approach, it is
defined empirically the size and distribution of the t–f
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FIGURE 3. Estimation of model order for parametric TVAR model; (a) mean BIC curves; (b) histogram of minimum BIC values.

Feature Extraction for Heart Murmur Detection 2723



bins that divide the TFR; (c) Third, the methods to
adjust empirically the size of the projected space
with the linear decomposition methods (e.g., PCA,
2D-PCA, PLS) are described. The criterion used to
adjust the feature extraction algorithms was the max-
imization of the classifier performance. A simple k-nn
classifier was used in order to assess the goodness of
the feature extraction methods.

Estimation of the Relevant Area of the TFRs

A straightforward observation of the TFR in
Fig. 5 suggests that there are large areas of the spectral

surface that do not contain relevant information for
the detection of murmurs. Thus, the irregular con-
centration of information suggests cropping nil content
areas that lie adjacent to the border of the t–f plane.
Thus, a coarse estimation of the relevant area can be
accomplished computing the complement set of any
measure of informativity, given in Eq. (5):

arg max dim var Sð0Þx

� �
[ var Sð1Þx

� �n on o
� d ð13Þ

where varðSðkÞx Þ; k 2 f0; 1g stands for the variance
matrix of both TFR classes: normal and pathologic,
respectively. The threshold, dmin, is assumed to be
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FIGURE 4. Examples of enhanced TFR for the methods of estimation considered: WVD, CWT, and LS-TVAR. (a) Normal
recording; (b) PCG signal with systolic murmur.

FIGURE 5. Computing the relevant area of the TFR. The different contours appraise the changes of the threshold d.
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the minimum value of the relevant variability. Figure 5
depicts different complement sets of variances
depending on the value d; the lower the threshold, the
wider the relevant area.

The relevant area was empirically calculated evalu-
ating the average variability of the classifier perfor-
mance within the interval d = [0.01, 0.08]. In this
article, the relevant surface of the TFR was allocated
within the framework described by the time interval
0 £ t £ 0.8 s and the frequency band 0 £ f £ 400 Hz.

Tuning of the Tile-Based Dimensionality Reduction

On the other hand, the tiled-based approach
described in the ‘‘Tiled-TFR approaches’’ section was
carried out extracting several features from the TFR
that estimates the normalized energy on each specific
t–f framework. These features were used only for
partitioning the TFR, but were not used for the
posterior classification. For this purpose, two parti-
tion schemes were tested in the time and frequency
domains: (a) First, dividing the time and frequency
axes into equally spaced intervals, as suggested in
Tzallas et al.22; (b) Second, performing a Quadtree
partition scheme upon the TFR surface based on the
pixel variance estimates, thus making smaller those t–f
tiles with more information.

The Quadtree algorithm for computing the t–f
framework (shown in Fig. 6a) is summarized next.

1. Using all the signals in the dataset used for
training the system, compute the pixel vari-
ance matrix of every TFR surface, S0

(i,j) =

var{Sx(Dti, Dfj)}, which is defined as the root of
the tree decomposition.

2. Define an information threshold 1min and a
maximum number of quad decomposition
iterations Nd. Otherwise, it leads to intractable
computational load.

3. Divide S0
(i,j) into four equally sized submatrixes

Sði; jÞ
1
¼ varfS0ðDti; DfjÞg partitioning time and

frequency axes in equal segments.
4. Compute the pixel variance in each submatrix

S1
(i,j). If varfSði; jÞ

1
g>1min; 8i; j; then repeat steps

3 and 4 for further splitting of quad subma-
trixes, but not exceeding the number of itera-
tions Nd. Otherwise, the values of Dti and Dfj
are retrieved.

The tuning of the tile size for each one of the con-
figurations considered was carried out by estimating
the average variability of the classifier performance
while changing the information threshold 1min, which
ranges within the interval 1min = [0.01, 0.1]. Specifi-
cally, Fig. 6b shows the outcomes with respect to the
tile size, evidencing that a low value of 1min improves
the accuracy of the classifier but increases the com-
putational load.

Tuning of the Linear Decomposition Methods

The normalized matrix assessing the relevant area of
the TFR is the basis for the following feature extrac-
tion. An obvious question is how to find the number of
latent variables needed to obtain the best generaliza-
tion for the prediction of new observations. The
amount of relevant latent components, n, was chosen
as follows: for PCA, this value is based on the number
of breaks in the plot of the singular values, whereas for
PLS, the same value is achieved by cross-validation
techniques.

The n latent variables are often interpreted by
plotting them in a TFR plane (as shown in Fig. 7 with
n = 4), for systolic and diastolic murmurs, and for
both decompositions considered: PCA and PLS. For
PCA, considering just the first principal component it
can be noticed the strong influence of the S1 event; the
S2 event showed less variability. A more detailed
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FIGURE 6. Computation of the Quadtree algorithm. (a) partition of the TFR information matrix; (b) number of partitions vs.
framework variability.
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scrutiny of the PCA-based average reconstruction
corroborates that most of the information is concen-
trated around the S1 and S2 events, which may be
explained not only because of the instantaneous power
of the PCG recordings, but also due to the irregularity
of the cardiac rhythm (specially, for pathological
cases). This fact becomes evident looking at the way
that the intensity of S2 diminishes as n increases. At the
same time, it can be noted that the influence of systole
and diastole (i.e., wherever the heart murmurs are
present) occurs in a different way. The presence of

systolic murmurs (see Fig. 7a) becomes more evident
as the number of components increase, starting from
weak values. In the case of diastolic murmurs, their
presence can be clustered into two types: (a) Murmurs
with weak but spread power concentrated in the lowest
spectral band (e.g., mitral stenosis, aortic insufficiency,
pulmonary regurgitation; noted in Fig. 7b as type 1);
(b) Those with a remarkable spectral variance, and
allocated in the upper part of the spectrum (e.g., aortic
valve regurgitation; noted in Fig. 7c as type 2). It can
be noticed that their influence vanishes as the number
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FIGURE 7. First four principal vectors obtained after PCA and PLS linear decompositions multiplied by TFRs corresponding to
different types of murmurs: (a) systolic murmur; (b) diastolic murmur (type 1); (c) diastolic murmur (type 2).
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of components increases. A different situation is
observed for the PLS decomposition: if n = 1, there is
a great influence of S1 and S2 events, but at the same
time the presence of systolic and diastolic murmurs
become quite evident.

RESULTS

In order to illustrate the problem addressed, and its
difficultness, Fig. 8 shows several PCG waveforms
belonging to normal and pathological states along
with their respective TFR estimated by means of the
LS-TVAR algorithm. Figure 8 shows that there are
some normal signals whose waveform looks like
pathological: waveforms x1 and x5 in Fig. 8a are very
similar to murmurs, whereas x1, x3, and x5 in Fig. 8b,
at first sight, resemble normal signals.

For the sake of comparison, the feature extraction
algorithms proposed were also applied to two non-
parametric TFR estimations: CWT and WVD.

As commented before, the criterion used to adjust
the aforementioned procedures was the maximization
of the average accuracy for the detection of murmurs,
given by the following definition:

Accuracy ð%Þ ¼ NC

NT
� 100 ð14Þ

where NC is the number of correctly classified patterns,
and NT is the total number of feeding patterns to the
classifier. Moreover, the sensitivity and specificity

measures are defined to assess the performance of the
detector:

Sensitivity ð%Þ ¼ NTP

NTP þNFN
� 100;

Specificity ð%Þ ¼ NTN

NTN þNFP
� 100

ð15Þ

where NTP is the number of true positives (murmurs
accurately classified as murmur), NFN is the number of
false negatives (murmurs classified as normal signals),
NTN is the number of true negatives (normal signals
accurately classified as normal signals), and NFP is the
number of false positives (normal signals classified as
murmurs). The accuracy was evaluated with a simple
k-nn classifier using a cross-validation strategy. The
cross-validation was carried out generating 11 inde-
pendent sets (i.e., folds) from the database with records
randomly selected. Each fold contains the same num-
ber of records from both classes (i.e., normal and
pathological). Ten sets were used for training while the
remaining one was used for validation. The perfor-
mance was calculated averaging the results for each
fold. Moreover, the standard deviation was calculated.

After filtering and length normalization of the heart
beat sounds the classification was carried out in
accordance to the following training stages:

	 Tuning of the k-nn classifier: By stepwise
increasing of neighbor number, the optimal
value of k is determined for the best classifier
accuracy. Figure 9 illustrates the outcomes for

FIGURE 8. Examples of enhanced TFR for several PCG recordings. (a) normal; (b) heart murmurs.
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each one of feature sets used. The figure shows
that the classifier performance decreases as the
number of neighbors increases. Therefore, and
in order to ensure the computational stability, a
value of k = 3 was selected.
	 Tuning of the linear decomposition methods to

reduce the dimensionality. For PCA, the infor-
mation threshold and the number of compo-
nents (base vectors) were the first parameters to
adjust. Once again, a stepwise calculation of
these parameters allowed selecting the optimum
values. Figure 10a depicts the estimation of

the parameter dmin (see Eq. 13) using PCA,
evidencing a large fluctuation of the estimates.
For the PLS classifier the performance was
better and more stable. Nevertheless, the value
of the threshold was chosen to be dmin = 0.07.
Figure 10b illustrates the classifier accuracy vs.
the number of relevant components selected for
the different schemes tested. The performance
shows an asymptotic behavior starting from
8 to 10 components for both PCA and PLS
techniques. However, the PLS components
achieved a better performance faster than for
the PCA technique. In addition, the tuning of
the 2D-PCA approach was assessed by com-
puting the accuracy for a different number of
components (see Fig. 10c), which was evaluated
separately for rows and columns. In the first
approach, a high performance can be achieved
for a low number of components (n = 6–8),
while for the column-based approach a steady
value of performance was reached just around
(n = 10–14). During the dimensionality reduc-
tion stage, the performance was recomputed to
tune the parameters of the model. Figure 10d
shows that PLS and 2D-PCA provided better
accuracies.
	 Tuning the tiled-based feature extraction methods.

For a regular tiling partition, the parameter to
FIGURE 9. Number of neighbors vs. accuracy for the differ-
ent feature extraction approaches used.

FIGURE 10. Performance of the linear decomposition approaches tested; (a) performance vs. variance threshold for PCA and
PLS; (b) performance vs. number of components of PCA and PLS; (c) performance vs. number of rows and columns for the 2D-PCA
approach; (d) performance of the classifier for PCA, PLS and 2D-PCA after tuning.
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be adjusted is the number of sub-bands
(Fig. 11a); in this case, the classifier perfor-
mance remains even, but the computational
load increases. Regarding the Quadtree tech-
nique, the parameter to be adjusted is the
threshold 1min (Fig. 11b).
	 Adjusting the parameters of the TVAR model:

As shown in Fig. 12, there is a slight improve-
ment in the accuracy as the order of the
LS-TVAR model increases, but above p = 6–8
the performance reached a steady value. The
evaluation of the accuracy with respect to the
window length is shown in Fig. 13. A value of
M = 100 can be assumed as steady. Moreover,
Fig. 14 shows that the classification accuracy
achieves the best performance when a = 1,
where the mean value and variance reached the
best values.

FIGURE 11. Tuning of the dimensionality reduction techniques; (a) number of time segments for the regular tiling; (b) information
threshold for the Quadtree partition algorithm.

FIGURE 12. Order of the LS-TVAR model with respect to the
accuracy for the different feature extraction methods used.

FIGURE 13. Sensibility to the window length of the LS-TVAR
model to the classification accuracy.

FIGURE 14. Sensibility of the classification accuracy to the
aperture of the window used to estimate re[t].

Feature Extraction for Heart Murmur Detection 2729



In summary, the number of neighbors of the k-nn
classifier was set to 3, and the parameters of the TVAR
model were fixed to:

	 The order of the TVAR model was fixed to 6.
	 The window length of the LS-TVAR model was

fixed to M = 100.
	 The value of the window aperture used to

calculate the variance estimator was fixed to
a = 1.

Once the dimensionality reduction was accom-
plished, the assemble of features used to train the
system is summarized in Table 2.

These sets of features were used to train different
k-nn classifiers with three neighbors. Table 3 summa-
rizes the classifier performance for the different
approaches tested. The accuracies were calculated
averaging for each fold of the cross-validation strategy.
The proposed methodology evidences a high accuracy
(ranging from 97 to 99%), but with no remarkable
differences among all the configurations considered.
This fact is also supported in view of the estimates for
sensitivity, and specificity.

The results evidence the effectiveness, stability, and
dimensionality reduction capabilities of the proposed
dimensionality reduction approach based on PLS
applied to LS-TVAR TFR. In order to evaluate the
robustness of this methodology against noise, it was
tested under different conditions, adding artificial
white Gaussian noise with signal-to-noise ratios
(SNR) ranging from 0 to 30 dBs, with steps of 5 dBs.
The results are shown in Fig. 15, where SNR = Inf,
represents clean signals. The figure evidences a good
stability of this methodology with respect to the pres-
ence of an additive white Gaussian noise: in the worst
case, with SNR = 0 dB, the accuracy decreased only
five absolute points.

Finally, Table 4 shows a comparison of the results
achieved with the proposed methodology and other
results reported in literature. The accuracy obtained
with the methods described in Wang et al.23 was
obtained with the same database used in this study.

The results obtained using the methods in Delgado-
Trejos et al.8 and Quiceno-Manrique et al.18 were
carried out using a subset of the database used in this
study that did not contain diastolic murmurs.

TABLE 2. Summary of the features extracted for each scheme proposed.

Dimensionality reduction

approach Parameters adjusted Value # features (n)

Linear grid Time partitions NDt 25 400

Frequency partitions NDf 16

Quadtree Information threshold 1min 0.06 355

PCA Information threshold dmin 0.07 16

PLS Information threshold dmin 0.07 20

2D-PCA Information threshold dmin 0.07 60

Number of time components 10

Number of frequency components 6

TABLE 3. Summary of the classification performance using
the proposed methodology.

Feature

extraction

method Accuracy (%) Sensitivity (%) Specificity (%)

WVD

Regular 98.44 ± 0.14 99.05 ± 0.08 97.84 ± 0.23

Quadtree 98.23 ± 0.07 98.55 ± 0.12 97.91 ± 0.16

PCA 97.67 ± 0.21 98.70 ± 0.11 96.66 ± 0.39

2D-PCA 98.27 ± 0.15 99.66 ± 0.19 96.91 ± 0.27

PLS 98.76 ± 0.15 99.51 ± 0.12 98.03 ± 0.20

CWT

Regular 96.71 ± 0.36 96.80 ± 0.37 96.61 ± 0.36

Quadtree 97.04 ± 0.31 97.19 ± 0.27 96.90 ± 0.40

PCA 96.57 ± 0.28 96.46 ± 0.26 96.67 ± 0.34

2D-PCA 97.35 ± 0.32 98.39 ± 0.35 96.32 ± 0.34

PLS 97.45 ± 0.32 98.56 ± 0.44 96.38 ± 0.29

LS-TVAR

Regular 99.00 ± 0.06 99.56 ± 0.13 98.45 ± 0.14

Quadtree 98.24 ± 0.12 98.74 ± 0.28 97.76 ± 0.13

PCA 98.17 ± 0.11 97.91 ± 0.16 98.42 ± 0.14

2D-PCA 97.56 ± 0.08 98.31 ± 0.07 96.83 ± 0.17

PLS 98.40 ± 0.19 98.31 ± 0.25 98.49 ± 0.20

FIGURE 15. Accuracy of the PLS dimensionality reduction
approach for different values of SNR.
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DISCUSSION

The classification accuracy remains stable as the
order of the TVAR model changes. This means that
the model order can take values lower than those
suggested in the literature. This fact lead us to think
that most PCG signals from the database are mono-
component, which are successfully represented with a
TVAR(2) model. Anyway, increasing the order com-
plements the information given by the first two
parameters modeling the noise components present in
the PCG signal.

Regarding the linear decomposition, an eigenplane-
based PCA technique (as simplest implementation)
and a PLS technique (as more sophisticated) were
considered. Likewise, the regular partition and a
refined Quadtree partition were examined for the tiled-
TFR approach. As shown in Table 3, the accuracy of
the regular tiling outperforms the rest of techniques.
However, this brute-strength approach has a higher
computational load, exceeding that of the methods
based on linear decomposition. Concerning to the
improved object representation with PCA, 2D-PCA
shows a light improvement, and reached a similar
accuracy than for PLS, but with a significant reduction
of the computational load. The PLS technique also
evidenced a good behavior against additive white
Gaussian noise.

Regarding the tuning of the feature extrac-
tion procedures it must be quoted that the compu-
tational stability of the tiled TFR-based techniques is
mostly guaranteed for actual matrix sizes of HS. But
for linear decomposition-based techniques, it is
strongly convenient to choose a confined area of
relevance on the t–f plane to achieve a stable
dimension reduction, and anyhow diminishing reso-
lution of the TFR.

For the sake of comparison, the feature extrac-
tion methodology discussed in this article was also
extended to two non-parametric TFRs: WVD and
CWT. A slight degradation is observed using CWT,
whereas WVD shows an equivalent performance to the
proposed TVAR estimation techniques (Table 3).

Furthermore, in terms of computational load and tun-
ing of working parameters can be stated that para-
metric and non-parametric TFR are alike to enhance
the resolution of non-stationary PCG signals.

CONCLUSIONS

In this article, the ability of an enhanced TFR and
two approaches for dimensionality reduction are
explored for the detection of murmurs. The enhance-
ment of the TFR resolution is carried out by means of
a parametric TVAR model-based estimation tech-
nique, allowing an improvement of the representation
capabilities of the HS, and hence to a better detection
of murmurs. The parametric TFR are more suitable
for capturing the time-varying dynamics of the PCG
signals than the common non-parametric approaches,
because the resolution and distortion issues are worked
out. Nonetheless, the emergent problems of this
parametric approach (i.e., the selection of the model
order and the estimation of the parameters) are effec-
tively solved using locally stationary assumptions.

For the PCG signals, since the enhanced TFR tends
to hold a lot of redundant data, a considerable
dimensionality reduction was required. Specifically,
two methods of feature extraction were analyzed: lin-
ear decomposition and tiling partition of t–f plane. The
results indicate that a similar accuracy can be accom-
plished with both methodologies. The main difference
lies on the effectiveness of the dimensionality reduction
and the interpretability of the components obtained
using the linear decomposition methods.

Because of the simplicity of implementation and
worthy improvement of the representation capabilities
determining the details of the pathological changes to
identify, the suggested TFR-based feature extraction
methodology appears to be very effective providing a
high accuracy for the detection of murmurs. Therefore,
in future studies, this framework could be applied to
the recognition among different kinds of murmurs, and
to the detection of pathologies for different types of
non-stationary biomedical signals.

In contrast, a serious drawback of the proposed
methodology is that these TFR-based feature extrac-
tion techniques require fixed length recordings (i.e.,
duration), so the HS must be chopped to a predeter-
mined duration. This fact could limit the possibility to
extrapolate the results to other databases, leading us to
be cautious, although optimistic with the results
obtained. A possibility to overcome this problem
was suggested in Quiceno-Manrique et al.,18 where
dynamic time warping techniques were used to nor-
malize the duration of each HS.

TABLE 4. Comparison with other works in the literature.

Method

Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

This study 99.00 99.56 98.45

Perceptual features23 88.90 93.03 85.81

Time, frequency, fractal,

and perceptual features8
96.39 95.40 95.00

Dynamic contours18 98.00 96.90 97.20
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