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Abstract—High resolution (HR) multi-electrode mapping is
increasingly being used to evaluate gastrointestinal slow wave
behaviors. To create the HR activation time (AT) maps from
gastric serosal electrode recordings that quantify slow wave
propagation, it is first necessary to identify the AT of each
individual slow wave event. Identifying these ATs has been a
time consuming task, because there has previously been no
reliable automated detection method. We have developed an
automated AT detection method termed falling-edge, vari-
able threshold (FEVT) detection. It computes a detection
signal transform to accentuate the high ‘energy’ content of
the falling edges in the serosal recording, and uses a running
median estimator of the noise to set the time-varying
detection threshold. The FEVT method was optimized,
validated, and compared to other potential algorithms using
in vivo HR recordings from a porcine model. FEVT properly
detects ATs in a wide range of waveforms, making its
performance substantially superior to the other methods,
especially for low signal-to-noise ratio (SNR) recordings. The
algorithm offered a substantial time savings (>100 times)
over manual-marking whilst achieving a highly satisfactory
sensitivity (0.92) and positive-prediction value (0.89).

Keywords—Gastric electrical activity, Gastric slow wave,

Activation time map, High-resolution mapping, Energy

operator.

INTRODUCTION

The stomach and small bowel have an omnipresent
electrical activity, known as slow waves, which serve to
initiate and organize the rhythmic muscle contractions
that enable digestion.10 In the normal human stomach,
slow waves originate near the proximal greater curva-
ture of the corpus, and propagate toward the pylorus
at a rate of three cycles per minute (cpm). In the small
intestine, slow waves originate in the proximal duo-
denum, and propagate distally at a frequency ranging
from 12 cpm (duodenum) to 8–9 cpm (distal ileum).3

Abnormalities of slow wave activity are known to
contribute to common and highly symptomatic
dysmotility conditions, such as gastroparesis, a disor-
der in which the stomach fails to empty normally.2

The recent advent of high-resolution (HR) mapping
has proved to be an important advance for studying slow
wave behaviors.18,19 HR mapping involves the place-
ment of spatially dense arrays of electrodes on the
surface of an intact tissue along GI tract, and simulta-
neously recording the resultant signals across a large
number of sites. Typically, tens to hundreds of elec-
trodes are employed in HR mapping, typically posi-
tioned on a rectangular lattice less than 10 mm apart,
covering an area of >50 cm2.5,19 Graphical ‘‘activation
time maps’’ (for example, see Fig. 1) are generated from
these recordings, providing a detailed spatiotemporal
description of slow wave propagation across an area of
tissue. HR mapping has recently been used to provide
improved descriptions of normal and dysrhythmic gas-
tric slow wave propagation in the stomach and small
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intestine of animal models,18,19 and is now being adap-
ted for human research.25

Due to the large number of electrodes used and the
length of recording times, a vast quantity of electro-
physiological data is accumulated during HR mapping
studies. A key issue in the analysis of HR mapping
data sets is the identification of activation times (ATs)
of the slow wave event for each electrode site, in order
to determine the precise timing of electrical events
that characterize gastrointestinal slow wave propaga-
tion.5,18,19 At present, the common practice is to
visually assess the traces from every electrode channel,
and then to manually mark the appropriate times in
the graphical interface of software programs such as
SmoothMap.15 This is an extremely time intensive
task: for example, in a 5 min gastric recording segment
using 192 electrodes there could be up to 2880 ATs to
individually locate, assess and manually mark. Fur-
thermore, the accuracy of the manually marked ATs is
dependent on the experience and interpretation of the
marker. The development of an automated and accu-
rate slow wave AT marking algorithm would greatly
improve the efficiency of analyzing HR mapping
results. Reliable systems for the automated identifica-
tion of electrical events are in widespread use in for
cardiac and neural electrophysiology,13,31 but no such

tool has been developed and widely adopted for gas-
trointestinal (GI) studies. Existing cardiac14 and neural
methods20 are specialized for detection of waveform
features (e.g., the QRS peak) which are not charac-
teristic of gastrointestinal (GI) waveforms. Therefore,
cardiac and neural event detection techniques can
motivate methods for, but can not be directly applied
to, GI HR studies. A number of previous studies have
attempted to develop methods for the automated
processing and analysis of GI electrical activity.4,27,28

However, these studies were based on a previous gen-
eration of experimental and computational technolo-
gies that are now outmoded. More recently, Lammers
et al. have described an ‘‘amplitude-sensitive differen-
tiator’’ (ASD) based algorithm, which was used in the
the context of the automated on-line analysis of
recordings from chronically instrumented conscious
dogs.16 The performance of this algorithm, however,
was not quantitatively evaluated, nor validated using a
range of commonly observed waveforms and SNRs. In
particular, the flexible printed circuity board (PCB)
electrodes that are currently used for human HR map-
ping achieve a significantly lower signal to noise ratio
(SNR) than the silver electrodes used by Lammers et al.
in their on-line analysis study,5 in which context Lam-
mers’ ASD algorithm may be less effective, as it is
unlikely that their algorithm would accurately identify
slow waves in lower SNR signals. A new automated
slow wave AT detection method is required, that is
optimized, validated, and appropriate for use with
multi-electrode recording arrays in current use, and in
the context of modern signal processing capabilities.

The aim of our current work was to develop a novel
algorithm for the automated marking of gastric slow
wave activity that performs robustly in response to
variations in the type and quality of waveforms
recorded. Importantly, this algorithm is the first to be
validated and optimized for use in in vivo HR mapping
studies. The algorithm has also been found to perform
well in the context of the more difficult low-SNR sig-
nals achieved by the flexible PCBs, and it will therefore
will useful for analyzing the results of human studies
where the flexible PCBs have been employed.

METHODS

Experimental Methods

Porcine experiments were conducted at Vanderbilt
University, USA, and The University of Auckland,
New Zealand, following ethical approval from both
institutional ethics committees. Anesthesia, animal
care, surgery and subsequent euthanasia were per-
formed in a similar manner to that described in our
previous work.5 Briefly, test subjects were anesthetized,

FIGURE 1. Example of an activation time map. The black
dots represent the individual electrodes from the array, and
each black dividing line (isochrone) represents a 1 s time
step. The colored bars (isochronal bands) illustrate the area of
slow wave propagation per time step. The PM (pacemaker)
designates the site of origin of this cycle. Slow waves did not
propagate into the blank (white) areas.
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and a midline incision was made to gain access to the
stomach. Gastric electrical activity was directly mea-
sured by situating an electrode array directly on the
stomach, as illustrated in Fig. 2.

Two types of electrode arrays are presently used in
gastrointestinal GI HR mapping research, and signals
recorded from both array types were evaluated in this
study. The first array (the ‘‘E48’’) is a custom-built
platform with 48 silver wire electrodes embedded in a
rigid silicone platform (4 9 12 configuration; inter-
electrode distance 9 mm). The second was a flexible
PCB platform with 32 gold-plated electrode contacts
(4 9 8 configuration; inter-electrode distance 7.62 mm)
and copper connecting channels embedded in polyimide
base. The PCB platform is suitable for use in humans
due to its ability to be easily sterilized, and can be dis-
posed of if necessary. Previous studies have shown that
the PCB platforms demonstrate a lower SNR than the
silver wire platforms (9.7 dB vs. 18.7 dB).5 The lower
SNR of the PCB electrodes is likely partly due to the
fact that they are cannot be extensively shielded, unlike
the custom-built platforms. In addition, gold is a less
ideal contact material for bioelectrodes than silver.22

Recordings from both types of array were taken from
the anterior serosal surface of the porcine gastric corpus
(see Fig. 2), as described in a previous study.5 We
selected one 180 s data segment from each of five
experiment animals to validate and compare the auto-
mated marking methods. These 180 s segments were

selected becausewe considered them tobe representative
of the recording quality achieved in our two laborato-
ries. Two segments were recorded via the E48 platform
(48 channels in each segment for a total of 96 E48
channels). Three segments were recorded via 5 tessel-
lated PCB arrays. A selection of channels was chosen
from each of these PCB studies, in order to match the
recording area of the E48 platform studies—48 channels
from each of two PCB data segments, and 41 from the
remaining segment (the other 7 were off the active tissue
area)—giving PCB 131 channels in total.

Unipolar recordings were acquired from the elec-
trode platforms via the ActiveTwo System (Biosemi,
Amsterdam), at a recording frequency of 512 Hz. The
common mode sense electrode was placed on the lower
abdomen, and the right leg drive electrode on the hind
leg. The PCB electrode platforms were connected to
the ActiveTwo via a 1.5 m 68-way ribbon cable, which
was in turn fiber-optically connected to a notebook
computer. The E48 platform was connected to the
same system via a custom-build shielded cable. The
acquisition software was written in Labview 8.2
(National Instruments, TX, USA).

The acquired signals were pre-processed by applying
a second-order Butterworth digital band pass filter
(using MATLAB; Natick, MA). The low frequency
cutoff was set for 1 cpm (1/60 Hz); the high frequency
cutoff was set to 60 cpm (1 Hz). The low fre-
quency cutoff was chosen so that slow baseline wander

FIGURE 2. PCB and E48 electrode recording platforms and representative recordings. Five tessellated PCB platforms (each with
a 4 3 8 electrode grid, spaced at 7.62 mm) positioned on gastric corpus (left, top) with representative recordings form four
channels (right, top). Resin-embedded silver wire (E48) platform (4 3 12 electrode grid, spaced at 9 mm) positioned on the gastric
corpus (left, bottom) with representative recordings from four channels (right, bottom). Red vertical marks indicate manually
marked activation times. Black arrows indicate possible slow wave events, that were not marked by the majority of the manual
markers because the morphology was not typical (refer to ‘‘Manual Marking of Slow Wave Activation Times’’ section).
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typical of serosal electrode recordings would be
diminished without altering the slow wave waveform.
The high frequency cutoff was chosen to suppress high
frequency noise, but not alter the fast, negative-going
component in the recording that marks the arrival of
the slow wave at an electrode. These pre-processed
signals were input to the automarking algorithm
described herein.

Manual Marking of Slow Wave Activation Times

The slow wave ATs in each selected data segment
were firstmanuallymarked to provide a baseline against
which the automated detection methods could be com-
pared. Within the electrode signal V(t), there are three
dominant features of a slow wave event: (1) a small
magnitude upstroke, immediately preceding (2) a fast,
large magnitude, negative deflection (dVdt � 1 mV/s, DV
‡ 50 lV), followed by (3) a relatively long (�5 s) plateau
phase that decays slowly back to baseline (Fig. 2). The
fast negative-going transient corresponds with the
depolarizationwave front of the propagating slowwave,
signaling the arrival of the slow wave at the recording
electrode site. The point of most negative gradient
during a slow wave is determined to be the AT.5,17

Three investigators with experience in slow wave
identification independently manually marked each
data segment, by visually locating slow wave events
according to the above morphology, and then manu-
ally selecting the point of apparent steepest negative
slope in SmoothMap v3.03.15 Signal noise such as
respiration artifacts can mimic slow wave morphology,
so it is usual for manual markers to also ensure that
there is an appropriate ‘‘time lag’’ between the ATs of
events in adjacent channels (Fig. 2). When the mor-
phology and/or time lag was not clearly demonstrated,
a possible slow wave event was not marked. Further-
more, an AT was chosen only if all three markers had
marked the same event. Thus, the hand-markers set of
ATs was conservative, and more slow wave events may
exist than those manually marked.

Basic Constant Threshold (BCT) Detection Algorithm

Our initial algorithm—termed Basic, Constant
Threshold Detection (BCT)—was motivated by the
observation that the relevant component representing
the AT in the gastric serosal potential V(t) (the fast,
large negative transient) can be viewed as a spike-like
waveform embedded in a more slowly oscillating
background signal (plateau slowly recovering to base-
line). Also, a respiration artifact is prevalent in many
serosal recordings, superimposing another slowly
oscillating component. Therefore, the main step of the
BCT algorithm was to transform the signal V(t) into

one which accentuates the high-frequency, large-
amplitude content of the AT component.

Signal Transforms

We evaluated four distinct, but related, signal
transforms to accomplish this task, which are outlined
below. The signal processing procedures described
herein were applied to recordings from all electrode
sites, treating each electrode individually. For the
remainder of this manuscript we denote the electrical
potential recorded by a serosal electrode as V(t), which
contains N discretely sampled points: t 2 tn = nTs, n
= 1, 2, 3, …, N; Ts = 1/fs). For simplicity of nota-
tion, in the remainder of this section we use only the
integer subscript n to denote discrete time samples tn
(for instance, tn fi n; V(tn) fi Vn).

Negative Derivative Transform

The basis for the ‘‘negative derivative’’ (ND)
method was originally introduced in Du et al.7 The
main idea is to compute the first-derivative and con-
sider only those values which correspond to negative
deflections in V(t). The first derivative was approxi-
mated using the three-point central difference:
dV
dt

�
�
n
� dVn=dt � Vnþ1�Vn�1

2DTs
: All values of dV/dt greater

than zero were set to zero, as they correspond to
upward deflections. Finally, the ND detection signal
was inverted (multiplied by �1) so that a negative
deflection in V(t) manifested as a positive deflection
(‘‘energy pulse’’) in the ND signal:

ND Vn½ � ¼
�dVn=dt if dVn=dt � 0
0 if dVn=dt>0

�

ð1Þ

Amplitude-Sensitive Differentiator Transform

The core idea of the ‘‘amplitude-sensitive differen-
tiator’’ (ASD) method, originally introduced in Lam-
mers et al.,16 is to enhance the large negative-flank in
V(t) that represents the AT by multiplying the elec-
trode signal and its first-derivative, and subsequently
taking the absolute value of this quantity:

ASD Vn½ � ¼ Vn ��dVn=dtj j: ð2Þ

The first-derivative is computed as described above,
but without explicitly setting any points of the signal to
zero. The ASD signal should contain large positive
deflections (‘pulses’) where the electrode signal con-
tains a large negative deflection.

Non-Linear Energy Operator Method

The non-linear energy operator (NEO) (originally
introduced by Kaiser and Teager11,12) accentuates the
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high-frequency content in the signal, making it effica-
cious for detection of spike-like (fast, large amplitude)
events embedded in low frequency noise.23 The non-
linear energy operator is of the form11:

WðVðtÞÞ ¼ _V _V� V €V ð3Þ

where the over-dot notation indicates a derivative with
respect to time.

In our context, the NEO of the electrode signal can
be computed as11:

NEO Vn½ � ¼ VnVn � Vn�1Vnþ1: ð4Þ

The arrival of each slow wave event should manifest as
a relatively large discrete pulse of energy in the NEO
transform signal, and the AT should occur at the rising
edge of an energy pulse.

Fourth-Order Differential Energy Operator Transform

The concept of energy operators can be generalized
further into higher order differential energy operators
(DEOs), which are reported to be useful for estimating
the instantaneous energy in a signal.21 In particular, we
computed applied the fourth-order DEO (DEO4)—
also termed the ‘energy acceleration’—to the electrode
signal, which is of the form21:

!ðVðtÞÞ ¼ _VVð3Þ � VVð4Þ ð5Þ

where the parentheses in superscript indicate the order
of the derivative taken with respect to time. For a
discretely sample signal, this quantity is computed as21:

DEO4 Vn½ � ¼ VnVnþ2 � Vn�1Vnþ3: ð6Þ

Like the NEO signal, the negative transient in the
electrode signal marking the arrival of the slow wave
should manifest as a discrete positive pulse of energy in
the DEO4 signal.

Relationship of Different Transforms

The four transforms described above can all be
thought of as representing different orders of (modi-
fied) DEOs. Specifically, the NEO signal is equivalent
to the second-order DEO signal.21 Also, the ASD
signal is equivalent to a modified form of the 1st-order
DEO; and the ND signal can be thought of as a
modified form of the zeroth-order DEO. If we
approximate the fast deflection in V(t) representing
the arrival of the slow wave as a cosine, Vfast(t) =
A cos(xt), then the amplitude of the corresponding
segment in the ND signal is proportional to Ax;
the ASD signal to A2x; the NEO signal to A2x2; and
the DEO4 signal to A2x4.21 (A table summarizing the
acronyms used throughout this manuscript is provided
in Table 1.)

Smoothing the Detection Signal

After having computed the detection signal trans-
form, X(t) (according to any of the four methods
described above), it is subsequently smoothed with a
moving average filter of width p.

bp ¼
1

p
� 1; . . . ; 1½ �
|fflfflfflfflffl{zfflfflfflfflffl}

p elements

ð7Þ

SðtÞ ¼ bp � XðtÞ: ð8Þ

where * denotes convolution, and S(t) is the (option-
ally) smoothed detection signal transform.

Smoothing can help improve the SNR in the detec-
tion signal by reducing high frequency noise. The width
of the smoothingwindow p is a tunable parameter in our
algorithm. We evaluated smoothing window widths
corresponding to 0 (no smoothing), 1, 2, 3, and 4 s.

Computing the Constant Threshold

After the smoothed detection signal was computed,
a constant detection threshold Sthresh was computed as
a multiple of the estimated RMS noise present during
quiescent periods in S(t). Specifically,

Sthresh ¼ g� r̂ ð9Þ

where g was another tunable parameter in our algo-
rithm. The value for r̂ was computed as the median of
the absolute deviation of the S(n), following24:

r̂¼M Sð0Þ�SðtÞ
�
�
�

�
�
�; . . . ; SðNÞ�SðtÞ

�
�
�

�
�
�

n o

=0:6745 ð10Þ

where SðtÞ is the sample mean of S(t) and Mf�g
denotes the sample median. It is a robust estimate of
the standard deviation during the quiescent segments
of the smoothed detection signal because it is not
sensitive to outliers—i.e., the points in S(n) that
represent ATs themselves.24 The factor of 0.6745 in the

TABLE 1. List of abbreviations.

Acronym Meaning

GSER Gastric serosal electrode recording

AT Activation time

ND Negative derivative

ASD Amplitude-sensitive differentiator

NEO (Second-order) non-linear energy

DEO4 Fourth-order differential energy operator

BCT Basic constant threshold

FEVT Falling-edge variable threshold

TP True positive

FP False positive (false alarm)

FN False negative (missed detection)

PPV Positive prediction value

FEVT Slow Wave Detection 1515



denominator derives from approximating the standard
deviation of a sample using its median.24

Identification of Individual Events

The next step was to find the times at which S(t)
exceeded a threshold value. These times define the
times at which slow wave events might occur. We
denote the list of times meeting this condition as:

u ¼ tn:SðtnÞ 	 Sthreshf g: ð11Þ

Next, in order to identify individual slow wave events
from a trace containing a multiple slow-wave events, we
employed a simple clustering algorithm based on a
temporal closeness criterion. Specifically, two consecu-
tive members of the list u are members of the same
cluster—i.e., regarded as representing the same slow
wave event—if they were close enough in time:

uiþ1 � ui � Tr: ð12Þ

where i indexes the times listed in u, and Tr is termed the
‘‘refractory period’’ (see below). Otherwise, where a large
gap in time occurred (ui+1 � ui>Tr) a new cluster was
started to represent the next individual slow wave event.
At the end of this process, there are k clusters of points,
denoted asU(k), where each individual cluster delimits the
time-window within which an AT occurs. The AT was
defined as the time at which the maximally negative
derivative occurs within each of these k time-windows:

ATðkÞ ¼ tn: tn 2 UðkÞ; max
tn
�dVn=dtð Þ: ð13Þ

The quantity Tr is termed the ‘‘refractory period’’, as
it represents the minimum difference in time required to
distinguish between two successive slow wave events. It
is also a tunable parameter in our algorithm. We chose
to test refractory period values of 2–6 s based on
biophysical considerations of the gastric slow wave
recordings, namely that the slow wave should be peri-
odic with a dominant frequency of 0.05 Hz (peri-
od = 20 s), and that the smoothed detection signal S(t),
may contain pulses of high energy content several sec-
onds in duration. In addition, since some gastric slow
wave waveforms may be fractionated,8,19 there is a
possibility of two main energetic phases (fast, large,
downward transients) occurring up to 2 s apart. Thus,
the refractory period must be tuned to be short enough
to properly partition distinct slowwave events, butmust
be long enough to properly accommodate detection of
fractionated waveforms as single events.

Falling-Edge, Variable-Threshold Method

The results obtained by applying our initial BCT
algorithm to the gastric serosal electrical recordings

(GSERs) provided valuable insights to help guide
development of a significantly more robust algorithm
(see Results). This more sophisticated algorithm—
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FIGURE 3. Four serosal electrode signals and correspond-
ing detection signal transform outcomes. Each panel I–IV
illustrates a serosal electrode signal (A) along with the cor-
responding autodetection result using each detection signal
transform in panels B–E: Negative Derivate (ND; B); ampli-
tude-sensitive differentiator (ASD; C); second-order non-lin-
ear energy (NEO; D); and fourth-order Differential Energy
(DEO4; E). IA: Stereotypical high SNR recording. IIA: Wave-
form with slow downward deflection. IIIA: low SNR recording
with wandering baseline waveform. IVA: Fractionated wave-
forms with fast repolarization upstroke. Scalebars in I, II, and
IV: 300 lV. Scalebar in III: 500 lV. In B–E gray rectangles
delimits the time-window of each identified slow wave event
(see ‘‘Identification of Individual Events’’ section). Red circles
indicate the identified ATs. The black dotted horizontal line
indicates the constant event detection threshold (see ‘‘Com-
puting the Constant Threshold’’ section). All ATs are properly
detected for signal I. For signal II, only the NEO transform
properly detects all four ATs; ASD and DEO4 each miss
detection of the first event at 4 s, while ND detects one false-
positive at 29 s. For signal III, ND yields a false-positive at 15
s, ASD misses detection of the third event at 41 s, while NEO
and DEO4 properly detect all ATs. For signal IV, the fast
repolarization upstroke causes multiple false-positives to be
detected for all signal transform methods.
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termed the Falling-Edge, Variable Threshold (FEVT)
Method—builds on the BCT method described in the
sections above. The motivation for this updated, more
powerful algorithm was motivated by the following
observations.

(1) Some GSERs, such as the one illustrated in
Fig. 3IVA, exhibit a relatively fast recovery to
baseline. This produces two large pulses in the
ASD, NEO and DEO4 detection signals per
each slow wave (e.g. Fig. 3IVC–E; t = 4 and
12 s), leading to erroneous double count-
ing—the secondmark in a set of two should not
be marked. The updated FEVT algorithm,
therefore, incorporates a falling-edge (FE)
detector as an additional signal processing
stage to avoid double counting and mis-mark-
ing some ATs.

(2) Multiple slow wave events recorded by an
electrode are not identical over time. For
example, Fig. 3C–E shows that the third and
fourth pulses in ASD, NEO, and DEO4
detection signals have much larger amplitudes
than the first and second pulses, even though a
substantial difference in the serosal recordings
(Fig. 3A) may not be clearly apparent to the
naked eye. This large amplitude difference
leads to missed detection of the smaller ampli-
tude events (e.g., Fig. 3IIC–E) Thus, instead of
using a constant threshold for slow wave event
detection, the FEVT algorithm implements a
time-varying threshold (VT) to aid in the
detection of ATs when recorded serosal wave-
forms may change over time.

Falling-Edge Detector and FEVT Signals

To rectify the issue of double-counting noted above,
we made use of a falling-edge detector signal, E(t), to
amplify the large-amplitude, high-frequency content
associated only with negative deflections, suppressing
positive-going transients in the process. It is formed by
convolving the serosal electrical potential signal with
an ‘‘edge-detector kernel’’ dNedge

:

EðtÞ ¼ VðtÞ � dNedge
ð14Þ

where * denotes the convolution operator. We
employed the edge-detector kernel originally intro-
duced by Sezan,30 which is formed from the convolu-
tion of a ‘‘smoother’’ with a ‘‘differencer’’ (see Sezan30

for full details). Nedge defines the width of the kernel.
We chose a fixed value of Nedge = 30 (see Fig. 4), a 1-s
wide kernel at fs = 30 Hz, to correspond to the time-
scale of a typical large, negative transient. The kernel
width could be a tunable parameter, but we did not

examine the effect of varying its value in this study
because we were already smoothed the detection signal
(ND, ASD, NEO, or DEO4).

A falling edge (negative transient) in V(t) produces a
positive deflection in E(t) (and vice-versa). When V(t)
remains relatively constant, E(n) is approximately 0.
Thus, E(t) is large and positive when V(t) contains a
falling edge, and is negative for a rising edge. There-
fore, in order to help focus our slow wave detection
algorithm on only the falling edges in V(t), we com-
puted the (element-wise) product of the smoothed
detection signal S(t) with the falling edge detection
signal E(t), setting all negative values to zero. The
resulting signal is termed the FEVT signal, F(t), which
is thus summarized:

FðtÞ ¼ SðtÞEðtÞ if SðtÞEðtÞ 	 0
0 if SðtÞEðtÞ<0

�

ð15Þ

Computing the Time Varying Threshold

In order to rectify the issue with slight variations in
the GSER waveforms leading to some events escaping
detection, the FEVT method incorporates a time-
varying detection threshold. Specifically, the time-
varying threshold is based on the running median of
the absolute deviation for time t using a window of
half-width sHW centered at t for the FEVT signal, F(t):

−0.5 −0.25 0 0.25 0.5

−0.4

−0.2

0

0.2

0.4

Time (s)

Peak Detector Kernel (N=30)

FIGURE 4. Peak-detector kernel employed in the robust
FEVT algorithm. The peak detector kernel is convolved with
the serosal electrode signal to help identify and amplify high
frequency, large amplitude content of negative-going tran-
sients only. A kernel width of 30 points—corresponding to
1 s—was used.
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r̂ðtÞ ¼ M

�

Fðt� sHWÞ � dFðtÞ
�
�
�

�
�
�; . . . ;

Fðtþ sHWÞ � dFðtÞ
�
�
�

�
�
�

�

=0:6745 ð16Þ

where dFðtÞ is the sample mean of F(t) in the time range
[t � sHW, t + sHW] and Mf�g denotes the sample
median, as before. The variable threshold was then
defined as: Fthresh ¼ g� r̂ðtÞ, where g is a tunable
parameter, as before. The moving median window
must be long enough to include the quiescent period in
F(t) between the pulses of energy associated with the
AT, but not so long that one slow wave can unduly
influence the threshold defined for an event occurring
much earlier or later. We tested values of 15, 30, and
45 s, which corresponds to about 1–2 full cycles 3 cpm
gastric slow-wave waveform.

FEVT Algorithm Outline

The outline of the full FEVT algorithm is summa-
rized as follows (see also Fig. 5):

(1) Use the electrode recording to compute the
smoothed detection signal, S(t), as described
in the previous sections, using any of the four
transform methods described above—ND,
ASD, NEO, or DEO4 (see Fig. 5B)

(2) Convolve the edge-detector kernel (described
below) with the serosal electrode signal (see
Fig. 5C). The result is termed the falling-edge
detector signal.

(3) Compute the FEVT signal, F(t) as the product
of falling-edge detector and smoothed detec-
tion signals (Fig. 5D), setting all negative
values to 0.

(4) Compute the time-varying detection threshold
(described below; see red curve in Fig. 5E)
from FEVT signal.

(5) Find all times at which the value F(t) is greater
than or equal to the time-varying detection
threshold.

(6) Identify individual slow wave events and mark
the corresponding ATs using the clustering
algorithm described in the previous section.

Parameter Optimization

As identified above, the automated slow wave
detection algorithms—both the BCT and FEVT ver-
sions—have the following tunable parameters: the
detection threshold g, the refractory period Tr, and the
smoothing windowwidth p. Additionally, for the FEVT
algorithm, the running median window half width sHW

is a tunable parameter. We analyzed various combina-
tions of various parameter values to optimize the
default settings of our algorithm. These can be tuned
according to the nature and quality of the serosal
recordings. The trade off to be made is sensitivity vs.
specificity (positive-prediction value) (Table 2).

For our initial BCT algorithm, we tested all
parameter combinations using values selected from
those listed in Table 2. For our FEVT algorithm, we
tested all combinations of parameter values selected
from those listed in Table 3. (Note that the values
for g tested did not depend on the detection signal

B

C

D

0 10 20 30 40 50 60

Time (sec)

E

A

FIGURE 5. Illustration of signal processing sequence for
negative-edge-detection with variable detection threshold.
A: Example serosal electrode recording (same signal as is
shown in Figs. 3 and 6, IIA). Red vertical dashes denote hand-
marked ATs, while filled red circles indicate ATs detected with
the Falling-Edge, Variable-Threshold algorithm. Note that the
small difference (�1 s) in automated and hand-marked ATs,
especially in the last two marks. It was typical of the hand-
marker ATs to precede the automated marks by 0.2–0.3 s (see
‘‘General Conclusions’’ section). All four automated marks are
TPs (with no FP or FN). B: NEO signal computed from A (same
as Fig. 3IID). C: Edge-detector signal computed from A. The
horizontal dashed line marks the value of 0. Local maxima in C
correspond to a falling edge in A (and vice-versa). D: The
result of multiplying signals B and C. E: Signal D with all
negative-values set to 0. The red curve represents the detec-
tion threshold which varies over time. It is computed as the
running median of the absolute deviation in a 15 s window.
Comparing B to E, one notes the large reduction in noise. The
four pulses of energy corresponding to each of the slow wave
events is evident to the naked eye (and are properly detected).
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transform.) The selection of these values were guided,
in part, by our analysis of the BCT results.

Automated Marking Performance Benchmarks

In order to evaluate the performance of our auto-
marking algorithm, we tallied the following quantities:
Number of True Positives (TP): A true-positive is de-
fined as an automarked AT that matches a hand-
marked time to within 1 s: dt = |tauto � tmanual| £ 1 s.
A value of 1 s was chosen to allow a small amount of
leeway between the auto- and hand-marked times,
while still being a strict enough condition to produce
adequately accurate activation time maps. Number of
False Positives (FP): A false-positive, (or ‘‘false
alarm’’) is defined as an automarked AT for which
there is no corresponding manual mark within 1 s. As
stated above, manual marking is conservative and
therefore not all FPs may strictly be true FPs, however
this definition was accepted as sufficient for the pur-
poses of this study. Number of False Negatives (FN):
A false-negative (or ‘‘missed detection’’), is defined as a
manually marked AT for which there is no corre-
sponding automark within 1 s.

We computed three performance metrics, the sen-
sitivity (Sens.), the positive-predictive value (PPV), and
the product of the two, denoted as Aroc, defined as
follows. The sensitivity quantifies the fraction of (val-
idated) hand-marks which were also detected by the
automarking algorithm:

Sensitivity ¼ TP

TPþ FN
ð17Þ

The PPV (or ‘‘specificity’’) quantifies the fraction of
erroneous automarks.

PPV ¼ TP

TPþ FP
ð18Þ

The values for Sens. and PPV are between 0 and 1.
The higher the values, the better the algorithm. The ideal
algorithm will achieve a value of 1 for all performance
metrics. In practice, however, the Sens. and PPV are
inversely correlated: tuning the algorithm to be more
sensitive typically makes it less specific, while tuning the
algorithm to have a higher PPV value typically makes it
less sensitive. Taking this trade-off into account, we
quantified the overall performance of the algorithm as
the product of the sensitivity and positive-predictive
value by defining the the quantity Aroc (the area under a
receiver operating characteristic (ROC) curve):

Aroc ¼ Sens.� PPV ð19Þ

An ideal algorithm will achieve a value of Aroc = 1.
However, from our experience, an algorithm achieving
a combination of 85% sensitivity and 85% PPV (Aroc ‡
0.74) is satisfactory because it allows for the generation
of sufficiently accurate activation time maps derived
from the automarked ATs, without the need for an
unreasonable time loss spent in the manual correction
of erroneous automarks.

RESULTS

Manual Marking Outcomes

Three investigators took an average of 10.7 ±

2.5 min to manually mark each individual E48
recording segment (48 channels/180 s each), and an
average of 9.5 ± 2.6 min to mark each PCB recording
segment (48, 48 and 41 channels/180 s each). There
was modest variability in the number of ATs identified
by the three manual markers. For the two E48 data
segments a mean of 418 ± 18 and 396 ± 2 events were
manually marked, and for the PCB segments a mean of
221 ± 5, 169 ± 7, and 158 ± 3 events were marked.
The mean RMS deviation of the ATs identified by the
three manual markers was 0.2 s, relative to the extra-
cellular potential duration of �1–2 s.

Automated Marking Outcomes: BCT Algorithm

BCT Results Summary

Figure 7 summarizes the performance obtained for
BCT, for all four detection signal transforms.The results

TABLE 2. Tuning the BCT algorithm parameter values. The
performance of the BCT algorithm was evaluated using all 125
combinations for the refractory period (Tr), the smoothing
kernel width (p), and the detection threshold multiplier (g).
Note that the values used for g depended on the detection

signal transform.

BCT algorithm parameter values

Tr [2, 3, 4, 5, 6] s

p [0, 1, 2, 3, 4] s

gND [2, 3, 4, 5, 6]

gASD [3, 5, 7, 9, 11]

gNEO [5, 7.5, 10, 12.5, 15, 20]

gDEO4 [5, 7.5, 10, 12.5, 15, 20]

TABLE 3. Tuning the FEVT algorithm parameter values. The
performance of the FEVT algorithm was evaluated using all 81
combinations for the refractory period (Tr), the smoothing
kernel width (p), the detection threshold multiplier (g), and the
running median window half-width (sHW). Note that the values
used for g were independent of the detection signal transform.

FEVT algorithm parameter values

Tr [3, 5, 7] s

p [0, 1, 2] s

g [4, 6, 8]

sHW [15, 30, 45] s
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were tabulated for processing all electrode signals from
both the PCB and E48 platforms, and for each platform
individually. Results are shown for the optimal param-
eter set for each of the signal transform methods. The
optimal BCT method parameters for each signal trans-
form method are given in Table 4. For the high SNR
(E48) data, the performance of this algorithm was sat-
isfactory. Little difference in performance was noted
between the different detection signal transforms
implemented, though the performance of higher order
methods (NEO andDEO4) was slightly superior to that
of the lower order methods (ND and ASD), as shown in
Fig. 7c. For all transforms, the sensitivity was approx-
imately 0.95, and the PPVwas in the range of 0.89–0.92.
The value of the overall performance metric, Aroc, for
theND,ASD,NEO, andDEO4methodswas 0.85, 0.85,
0.88, and 0.88, respectively. (Results in this section are
always quoted in this order.)

For the low SNR (PCB) data set, the performance of
the algorithm was strongly dependent on the detection
signal transform method (see Fig. 7b), with the higher
ordermethods being substantially superior to that of the
lower-order methods. The optimal parameter set for
each of the four signal transform methods maintained a
high value of sensitivity at the expense of achieving a
relatively low PPV. The sensitivity values were 0.95,
0.86, 0.92, and 0.93 for each method, respectively.
However, the PPV outcomes were not satisfactory: 0.51,
0.54, 0.66, and 0.66. TheAroc values achieved were 0.53,
0.59, 0.70, and 0.70. The fact that the performance of
BCT was the same using the second or fourth-order
differential energy operators as the transform method
suggests that no gains can bemade simply by using an even
higher order detection signal. While the higher order
methods performed significantly better than the lower
order methods on low SNR data, there was still much
room for improvement, and this motivated the devel-
opment of our FEVT algorithm.

Effect of Tuning Parameters

The BCT algorithm was optimized, for each detec-
tion signal transform, across the parameter space

created by its three tunable variables (data not shown).
The algorithm was most sensitive to the detection
threshold g. The performance of the outcome varied
with the detection signal smoothing kernel size p, and
was essentially insensitive to the refractory period Tr.
As expected, increasing g decreased the sensitivity, and
increased the PPV. Therefore, setting a higher value for
the detection threshold caused some manually marked
ATs to escape detection, but also avoided FPs.

BCT Method Mishandled Low SNR Signals

A detailed examination of the PCB platform auto-
marking results revealed typical causes of mishandled
signals—those with a large fraction of FPs and FNs.
Whereas Fig. 3, illustrates a high SNR signal for which
all ATs are properly detected, Figs. 3II–3IV illustrate
three types of problematic signals which have several
FPs and FNs

Figures 3II and 3III show signals that demonstrate
why the performance of the ND and ASD methods
were inferior to higher order methods. The wandering
baseline and relatively small downward deflections of
the slow wave events in the electrode signal (Fig. 3III)
led to FPs with the ND method (at 19 and 49 s), and a
FN with the ND method (at 24 s).

Figure 3II shows an electrode signal with a rela-
tively slow downward deflection, with a noticeable
respiration waveform (�15 cpm) superimposed on the
gastric serosal potential. In addition, the waveform for
the first two slow waves differs from the latter two,
which contain relatively large pre-potentials (upward
deflections) occurring at 36 s and 52 s. The respiration
waveform leads to a FP at 30 s using the ND detection
signal transform. The ASD and DEO4 transform each
contain one FN (at 4 s), due the low SNR of the
detection signal, and due to the constant threshold
being set too high, in part because the first two events
manifest as a relatively small pulse, while the last two
exhibit a much larger amplitude.

Figure 3IV shows and electrode signal with fast
down- and upward deflections. The fast upward
deflections terminates abruptly with a small-amplitude
downward deflections. The sharp local maxima mani-
fest as a second large pulse for each slow wave event in
the detection signal transforms. This leads to double-
counting of many slow waves events, such as the FP
automarks at 28 and 38 s.

Automated Marking Outcomes: FEVT Algorithm

FEVT Properly Handles Problematic Signals

Figure 6 illustrates how the FEVT algorithm prop-
erly autodetects ATs in signals mishandled by BCT
method. In each case, four manually marked ATs were

TABLE 4. The following parameters optimized the perfor-
mance of the BCT algorithm over all electrode recordings

(high and low SNR).

Method g Tr (s) p (s)

Optimal parameter values

ND 5 6 1

ASD 11 5 1

NEO 15 6 0

DEO4 15 4 0

g is the detection threshold multiplier. Tr is the refractory period. p is

the detection signal smoothing kernel width.
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detected with the FEVT algorithm, all TPs with no FPs
or FNs. Figures 6IA–6IVA, repeat those of Figs. 3I–
3IV, respectively. Panels B–E in Fig. 6 illustrate the
FEVT detection signal computed using each of the four
detection signal transformations (ND, ASD, NEO,
DEO4), respectively, with the time-varying threshold
overlaid (red curves). The FEVT detection signals
contain large positive pulses corresponding to the neg-
ative-flanks of the corresponding electrode signal, while
no such pulse is observed for positive-flank (e.g., see

Figs. 6III and 6IV). The FEVT detection signals have a
higher SNR than the corresponding detection signals
used in the initial algorithm (e.g., compare Figs. 6 and
3II). Also, the time-varying threshold better accom-
modates detection of ATs in an FEVT detection signal
with a variable SNR. For example, Fig. 6II shows that
the detection threshold is set relatively low for
approximately the first 30 s, then increases for the latter
30 s to adjust to the increasing amplitude of the peaks in
the FEVT signal. This allows the first two ATs to be
properly detected (whereas they were not using the BCT
algorithm). In short, the FEVT algorithm is much bet-
ter suited to properly detect ATs in low SNR signals,
while retaining the same satisfactory level of perfor-
mance for high SNR recordings.

FEVT Performance Summary

Figure 8 summarizes the performance obtained with
the FEVT algorithm, for all four detection signal
transforms. The results were tabulated for processing
all electrode signals from both the PCB and E48
platforms, and for each platform individually. Results
are shown for the optimal parameter set for each of the
signal transform methods. The optimal FEVT algo-
rithm parameters for each signal transform method are
given in Table 5.

As expected, for the high SNR (E48) data, the
performance of the FEVT algorithm remained satis-
factory (see Fig. 8c). Sensitivity values were in the
range of 0.94–0.96; the ND transform was most sen-
sitive. The PPV for the ND method was lowest (0.88)
compared to that of the other three signal transform
methods (0.93). The value of the overall performance
metric, Aroc, for the ND, ASD, NEO, and DEO4
methods 0.85, 0.87, 0.87, and 0.87, respectively. Thus,
only negligible performance differences between BCT
and FEVT algorithms’ performance were observed
when processing high SNR data.

For the low SNR (PCB) data (Fig. 8b), the perfor-
mance of the FEVT algorithm was substantially
superior to that of the BCT algorithm (compare Figs. 8
and 7b). Comparing the values for the overall perfor-
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FIGURE 6. Four serosal electrode signals and correspond-
ing FEVT outcomes. Panels I–IVA illustrate serosal electrode
signals (recapitulating those in Figs. 3IA–3IVA), along with
the corresponding FEVT signal (see ‘‘Falling-Edge Detector
and FEVT Signals’’ and ‘‘Identification of Individual Events’’.)
IA: Stereotypical high SNR recording. IIA: Waveform with slow
downward deflection. IIIA: low SNR recording with wandering
baseline waveform. IVA: Fractionated waveforms with fast
repolarization upstroke. Scalebars in I, II, and IV: 300 lV.
Scalebar in III: 500 lV. In B–E gray rectangles delimit the time-
window of each identified slow wave event. Red circles indi-
cate the identified ATs. The red curves show the time-varying
detection threshold (see ‘‘Computing the Time Varying
Threshold’’ section). All ATs are properly detected for all
signals I–IV with no false-positives or false-negatives, in
contrast to the BCT method (compare to results in Fig. 3).

TABLE 5. The following parameters optimized the perfor-
mance of the FEVT algorithm over all electrode recordings

(high and low SNR).

Method g Tr (s) p (s) sHW(s)

Optimal parameter values

ND 8 7 0 15

ASD 4 7 2 15

NEO 4 7 2 15

DEO4 4 7 2 15

g is the detection threshold multiplier. Tr is the refractory period. p is

the detection signal smoothing kernel width. sHW is the half-width of

the running median window.
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mance metric (Aroc) the FEVT algorithm performance
was substantially superior, especially when using low-
er-order S(t) (see Table 6). The overall performance
advantage of the FEVT algorithm is attributed to gains
made in the PPVs (+0.37, +0.34, +0.24, and +0.24,
respectively, for each transform) without comprising
the sensitivity. Interestingly, the overall performance
of the FEVT algorithm was essentially invariant to the
type of signal transform used when computing the
FEVT signal: all Aroc values were between 0.76–0.77

(see Table 6). However, as shown in Fig. 8, the ND
and ASD transforms achieved a slightly higher PPV,
while the NEO and DEO4 transforms achieved a
slightly higher sensitivity.

Optimizing FEVT Input Parameters

Figures 9–12 show the results for optimizing the
performance of the FEVT algorithm over the
parameter space. The parameter values over which
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FIGURE 7. Performance summary of the BCT algorithm. The positive-predictive value (PPV), Sensitivity (Sens.), and Aroc = PPV 3
Sens. for all serosal recordings (a), low SNR recordings (b), and high SNR recordings (c). ATs were detected with the negative
derivative (ND); amplitude-sensitive differentiator (ASD); non-linear energy (NEO); and fourth-order differential energy operator
(DEO4) signal transforms. The performance was nearly the same across all methods for high SNR data. However, for low SNR data,
NEO and DEO4 significantly outperformed both ND and ASD.
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FIGURE 8. Performance summary of FEVT algorithm. The positive-predictive value (PPV), Sensitivity (Sens.), and Aroc = PPV 3
Sens. for all serosal recordings (a), low SNR recordings (b), and high SNR recordings (c). ATs were detected employing the
negative derivative (ND); amplitude-sensitive differentiator (ASD); non-linear energy (NEO); and fourth-order differential energy
operator (DEO4) signal transforms. The overall performance is essentially independent of the basis signal type. Compare to Fig. 7.
The performance gains of the FEVT algorithm for analysis of low SNR data were especially significant. The FEVT algorithm
increases the PPV from 0.68 up to 0.87 over the BCT algorithm, while maintaining a sensitivity value of about 0.90. The performance
of the FEVT and BCT algorithms were nearly the same for analyzing high SNR data.
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the optimization was performed are summarized in
Table 3. The performance of the FEVT algorithm is
essentially invariant to sHW and Tr, regardless of the
detection signal transform S(t) employed. We
observed only very minor differences (£0.02) in the
outcomes for Sens., PPV, and Aroc. The FEVT
algorithm performance did depend on the detection
threshold multiplier, g, as expected: increasing g
decreased the sensitivity, and increased the PPV.

DISCUSSION

General Conclusions

We have presented the FEVT method for automati-
cally detecting gastric slow wave ATs in HR serosal

recordings. The FEVT detection signal is a non-linear
transform of the electrode signal that accentuates the
rapidly negative-going transient which characterizes the
arrival (activation time) of the propagating gastric slow-
wavewavefront. The FEVT algorithm alsomakes use of
a time-varying threshold and simple clustering proce-
dure to identify individual slow wave events. The FEVT
algorithm is robust in that tuning any or all of the input
parameters results in only small changes in its perfor-
mance, and its performance was found to be satisfac-
tory, even in the context of analyzing lower SNR signals
generated by the PCB electrodes.

The demonstrated time savings in this study were of
major significance. The manual marking of ATs
required approximately 10 min for a 180 s segment of
48 channels, whereas the automated method only
required approximately a few seconds. Therefore, the
automated marking process was around at least an
order of magnitude faster than manual marking, on
average, presenting attractive efficiency gains for iden-
tifying ATs. This acceleration of analysis time will be of
enormous value in HR mapping studies, as many hours
of recordings may be necessary to quantify physiolog-
ical changes in slow wave propagation.18 In practice,
however, it may still sometimes be necessary to manu-
ally correct for the FP or FN events, somewhat

TABLE 6. Overall performance metric (Aroc values) for BCT
and FEVT for each signal transform method.

BCT FEVT D(FEVT � BCT)

Aroc values

ND 0.53 0.77 +0.24

ASD 0.59 0.76 +0.17

NEO 0.70 0.77 +0.07

DEO4 0.70 0.77 +0.07
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FIGURE 9. FEVT performance optimized over the parameter space using the ND transform. Each panel plots a performance
metric vs. the detection threshold parameter g. Top row: positive-predictive value (PPV). Middle row: Sensitivity (Sens.). Bottom
row: Aroc = PPV 3 Sens. Performance metrics are tabulated using all serosal recordings (high and low SNR). Data are displayed in
columns according to the value of the running median window width parameter sHW. Each colored set of colored markers cor-
responds to a particular value for the smoothing window width parameter p: red diamonds: 0 s; blue crosses: 1 s; and black
asterisk: 2 s. Only data for a refractory window value of Tr = 7 s because the performance was essentially invariant to Tr. Note that
the performance of the FEVT algorithm using the ND transform signal is strongly dependent on the parameter p. The algorithm’s
performance was optimized when no smoothing was applied (p = 0).
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reducing the dramatic time savings demonstrated here.
In particular, whereas the FEVT algorithm achieved a
highly satisfactory sensitivity and specificity in relation
to the E48 (silver wire) platform, the specificity for the

PCB recordings was somewhat reduced. Investigators
using the PCB platform will therefore need to devote a
modestly greater proportion of their time to review and
correct the auto-marked segments. Evaluating the use
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FIGURE 10. FEVT performance optimized over the parameter space using ASD transform. Data are plotted in the same manner as
is described in Fig. 9. The performance of the FEVT algorithm using the ASD transform signal is dependent on the parameter p, but
relatively insensitive to sHW. Optimal performance was achieved at lower values of g.
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FIGURE 11. FEVT performance optimized over the parameter space using NEO transform. Data are plotted in the same manner as
is described in Fig. 9. The performance of the FEVT algorithm using the NEO transform signal is dependent on the parameter p,
especially so for the PPV. However, the performance is essentially invariant to the value of sHW. Optimal performance was achieved
at lower values of g.
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of silver contacts instead of gold contacts may be a
means to improve the SNR of the PCBs in future.

As demonstrated in this study, manual marking of
slow waves is a somewhat subjective exercise, and
modest variability in the number and exact timing of
marked ATs is the result of an individual’s experience
and visual assessment. Although manual marking was
used as the baseline standard in this study, it is there-
fore possible that the actual sensitivity or specificity of
the automarking methods was underestimated or
overestimated in this study. The manual markers did
not mark an event unless they were highly confident
that it was a true slow wave, as seen in Fig. 2, and
therefore it is most likely that the specificity of the
FEVT method has been slightly under-estimated in this
study.

Small variability in the relative timing of the man-
ually marked ATs was also demonstrated in this study.
The fact that the manual marks were made on average
0.2–0.3 s earlier than the FEVT-detected AT is an
interesting visual/psychological phenomenon only. In
practice, since this small time difference is constant
among all electrodes, the slight forward marking has
no effect on the accuracy of, or conclusions drawn
from, the activation maps generated from the corre-
sponding automarked ATs. Moreover, automated
marking will more faithfully identify the true moment
of the ATs than could be achieved by visual assess-

ment, achieving greater marking accuracy for each TP
slow wave event.

Comparison to Other Methods

We have found the performance of FEVT to be
superior to the other potential methods that have been
examined by ourselves and others. A method similar to
that of our BCT algorithm employing the ASD
transform has been previously demonstrated for the
on-line detection of ATs in conscious animals by
Lammers et al.16 Results reported in Lammers et al.16

appear to based only on analysis of high SNR
recordings similar in quality to those obtained with the
E48 electrode platform. However, they did not quan-
tify the performance of or attempt to validate their
method using a variety of low SNR waveforms, so a
quantitative comparison cannot be drawn. The FEVT
algorithm can be readily adapted for the on-line
detection of ATs, and we anticipate it may be found to
be useful in future on-line conscious animal studies
evaluating slow wave activity.32

Generalization

One concern is whether the FEVT algorithm gen-
eralizes to a wide-range of data sets and test subjects,
in light of the fact that it was developed using five
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FIGURE 12. FEVT performance optimized over the parameter space using DEO4 transform. Data are plotted in the same manner
as is described in Fig. 9. The performance of the FEVT algorithm using the DEO4 transform signal is dependent on the parameter p,
especially so for the PPV. However, the performance is essentially invariant to the value of sHW. Optimal performance was achieved
at lower values of g.
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animal test subjects. However, the critical determinant
in how well the algorithm’s performance should gen-
eralize to other data sets is based on the wide intra-
subject range in recordings used to validate it. That is,
the FEVT algorithm was validated using 227 record-
ings exhibiting a wide range of signal quality and
morphology (for example, see Fig. 13). We fully expect
that its performance will be robust to a wide variety of
recorded signal morphologies, thus generalize well to
processing other data sets. Indeed, we have begun
processing large amounts of HR mapping data from
more than a dozen animal and human test subjects,
and have found the performance of the FEVT algo-
rithm to be highly satisfactory, attaining performance
metrics just as high as those reported for the validation
data set.

Parameter Tuning: Performance Trade-offs

The optimized FEVT parameters identified in this
study presented in Table 5 provide a guideline FEVT
setting for gastric slow wave identification, but could
be tuned according to the needs of the investigator,
and according to the data set under investigation. For
example, small bowel slow wave activity occurs at a
faster rate than gastric activity (�8–12 cpm vs.
�3 cpm in humans),3 and therefore a shorter refrac-
tory period may be required to prevent an unsatisfac-
tory FN rate. During gastric dysrhythmias, successive
slow wave sequences may occur rapidly and irregu-
larly, and their analysis may therefore also necessitate
a shorter refractory period to prevent excessive FNs.18

As discussed in ‘‘Optimizing FEVT Input Parame-
ters’’ section, the performance of the FEVT algorithm
depends most strongly on the detection threshold
multiplier g. If the investigator places higher priority
on ensuring there are no FPs, then the value of g
should be adjusted higher; if the priority is to ensure
there are no FNs, then the value of g could be adjusted
lower. Properly setting the value for the smoothing
window parameter p is also important, as the outcomes
are substantially different when choosing to smooth
the detection signal transform S(t), or not (i.e., p = 0).
For the ASD, NEO, and DEO4 methods, smoothing
results in higher PPV values, but lower Sensitivity
values. The difference between smoothing or not
becomes more pronounced at higher values of g. For
example, Fig. 11, left column shows that not smooth-
ing leads to about 5% greater sensitivity when g = 4,
and about 30% greater sensitivity when g = 8. Con-
versely, smoothing leads to about a 3% greater PPV
than not smoothing when g = 4, and a 10% difference
when g = 8. When the ND signal transform is used in
the FEVT algorithm, the both the sensitivity and PPV
attain much higher values when no smoothing is

applied; thus smoothing should not be used with the
ND transform. When using any of the other trans-
forms, however, one must consider the sensitivity-PPV
trade-off.

Remaining Erroneous FEVT Automarks and Further
Improvements

The FEVT algorithm attains satisfactory perfor-
mance, but it still detects some erroneous automarks
(FPs and/or FNs). It is worth examining the wide
ranging types of waveforms recorded during a single
experiment to understand where the FEVT algorithm
is still in error. Figure 13 shows 180 s data segments
from the 41 selected channels from one experiment
recorded using the PCB platform. The FEVT algo-
rithm properly detects all TPs on most channels
(marked as red circles on the waveforms). Note that
most FPs (blue squares) are confined to a few prob-
lematic channels. For example, electrode signals 8, 25,
26, 27 and 34 contain all FPs. It is possible that these
automarks do indeed faithfully represent a recorded
slow wave event. However, based on visual inspection,
they do not appear to contain any obvious slow wave
waveforms, which means they would not have been
manually marked. Two of these recordings (channels
8 and 25) contain very large artifactual transients
(occurring at approximately 130 and 70 s, respec-
tively). Channel 26 initially exhibits a large sinusoidal
waveform with time-varying amplitude, which is not
present in the latter half of the recording. These FPs
may indicate that the FEVT algorithm can not dis-
criminate between a large energy pulse generated by an
actual AT and one generated by a large artifact. One
option to improve the overall performance of the AT
automarking process is to pre-screen GSERs, classi-
fying any obviously ‘‘bad’’ channels containing outli-
ers,9 and ignoring them for the remainder of the
automarking procedure.

Signal 33 is a special case, as it contains all FPs and
FNs. This result indicates that the automarked ATs
differed by the manual marks by just slightly more
than the allowed 1 s range. Upon closer inspection, all
FNs are found to occur at the maximally negative
derivative, while the manual-marks were made about
1.1 s before this point. Therefore, the automarks on
this channel should be regarded as all TPs. In fact, we
discovered that manual-marks are almost always made
about 0.2–0.3 s earlier than the actual time at which
maximally negative derivative occurs.

Some channels are more problematic as they con-
tain a mix of TPs, FPs, and FNs (e.g., channels 16, 17
and 23). Channel 16 has an atypically low SNR—the
recording is very noisy for most of the data segment,
but did record a few clear slow wave events, especially
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toward the end of the 180 s segment. With regard to
channel 17, the FPs occur on a very large falling-edge
that precedes the much smaller negative flank of the
actual AT. The FEVT algorithm defined the AT as the

time at which the maximally negative derivative
occurred, thereby missing the detection of the true AT.
The same is true for a few of the waveforms recorded
on channel 23. A few of the waveforms in the earlier
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FIGURE 13. A variety of waveforms recorded from 41 channels of the PCB electrode platform, with marked results from auto-
mated AT detection using FEVT method. Each of 41 panels shows a 180 s-long signal recorded with a PCB electrode. The geometry
shown in the figure is isomorphic to the physical arrangement of electrodes. Automarking results are marked as TPs (filled red
circles), FPs (filled blue squares), and FNs (filled green triangles). Note that the signal 41 in this figure is the same as the recording
shown in Fig. 3IA; signal 1 is the same as that shown 3IIA; signal 12 is the same as 3IIIA; and signal 24 is the same as 3IVA. For
most electrodes, the FEVT detection algorithm succeeding in finding all ATs, without finding any false positives. For almost all
channels, all marks were the same type: either all TPs, all FPs. For example, signals 25, 26 and 34 contain FPs only. Signal 33
shows an equal number of FPs and FNs which resulted from the hand-marks differing from the automarks by slightly more than the
1-s range allowed to declare a TP. Signals 16, 23, and 27 exhibit a mix of TP, FP and FNs. Overall the performance of the FEVT
algorithm was highly satisfactory.
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part of the segment (about the first 60 s) exhibit a very
large downward transient just prior to the actual AT.
These are difficult cases to remedy while still main-
taining the generality of the FEVT algorithm. One
possible solution would be to apply a template
matching scheme to classify the problematic wave-
forms to help define the actual AT. Another possibility
is to integrate spatial information about the direction
of slow wave propagation to help decide which part of
the recording represents the true AT.

Finally, we noticed that the few erroneous auto-
marks detected in the E48 data tend to be FPs on
‘‘dead’’ electrodes, i.e., those recording very low
amplitude (<10 lV) white noise. In these cases, the
FEVT algorithm is overly sensitive. One easy remedy is
to additionally apply minimum amplitude or derivative
criteria. We have found that imposing a very modest
amplitude criterion (|DV | ‡ 5 lV) remedies almost all
instances of this problem.

Future Directions

This study is important because the use of gastro-
intestinal HR mapping is growing. HR mapping has
recently been used to describe the sequences of normal
and abnormal slow wave propagation in canines,18,19

and this work now awaits to be repeated and expanded
in humans, for both normal and pathological states.
The recent advent of the PCB electrode platform, and
a new minimally invasive tool that can be deployed
during laparoscopic surgery will enable this work.5,26

We have applied the FEVT algorithm to small bowel
slow wave recordings made on the serosa. Preliminary
results suggest that FEVT method is also effective for
detecting ATs in these recordings, but with a different
parameter set to account for the higher slow wave
frequency (typically 8–12 cpm), and the fact that the
fast, negative deflection tends to not be as sharp as
those in gastric recordings. HR mapping is also being
used as a standard to inform the analysis of biomag-
netic signals, as recorded by the Superconducting
QUantum Interference Device (SQUID), which offers
potential to non-invasively diagnose significant clinical
GI disorders such as mesenteric ischemia.1,29 In addi-
tion, HR mapping is now being proposed as a tool to
more accurately investigate the physiological effects of
therapeutic gastric electrical stimulation.6 We antici-
pate that the FEVT automarking method will be of use
in all of these research programs. In conclusion, we
have developed and validated the FEVT algorithm for
the automated marking of slow wave activity, and
recommend its use to improve research efficiency in
future HR mapping studies.
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