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Abstract—Stress analyses of patient-specific vascular struc-
tures commonly assume that the reconstructed in vivo
configuration is stress free although it is in a pre-deformed
state. We submit that this assumption can be obviated using
an inverse approach, thus increasing accuracy of stress
estimates. In this paper, we introduce an inverse approach of
stress analysis for cerebral aneurysms modeled as nonlinear
thin shell structures, and demonstrate the method using a
patient-specific aneurysm. A lesion surface derived from
medical images, which corresponds to the deformed config-
uration under the arterial pressure, is taken as the input. The
wall stress in the given deformed configuration, together with
the unstressed initial configuration, are predicted by solving
the equilibrium equations as opposed to traditional approach
where the deformed geometry is assumed stress free. This
inverse approach also possesses a unique advantage, that is,
for some lesions it enables us to predict the wall stress
without accurate knowledge of the wall elastic property. In
this study, we also investigate the sensitivity of the wall stress
to material parameters. It is found that the in-plane
component of the wall stress is indeed insensitive to the
material model.

Keywords—Cerebral aneurysms, Wall stress, Patient-specific

analysis, Inverse elastostatics, Inverse shell analysis.

INTRODUCTION

Assessing the rupture risk of cerebral aneurysm
(CA) has been an area of considerable interest for
many years. The size of the lesion is traditionally
considered as a main prognostic indictor, with factors
such as age, gender, and smoking history being sub-
jectively taken into consideration. However, data from
large population studies like the International Study
of Unruptured Intracranial Aneurysms suggest that

size is not a reliable index of rupture risk.1 Recently,
other physics-based indicators, in particular the
mechanical stress, have been submitted based on the
premise that aneurysms rupture when the local wall
stress exceeds the tissue strength. Along this line of
thinking, the mechanical behavior of cerebral aneu-
rysms has received considerable attention in recent
years.2,4,11,15,16,22–24

While early investigations on aneurysm wall stress
mostly focused on idealized lesions, recently the
emphasis has shifted to patient-specificity in the
attempt to predict the wall stress on a patient-specific
basis. A common approach is to utilize patient-spe-
cific geometries derived from biomedical images but
use reported population average wall properties. Most
previous works, include one of our own,16 assumed
the imaged geometry to be the initial stress-free con-
figuration and proceeded to compute the wall stress
under pressures using the standard forward method. It
should be noted that the in vivo images of aneurysm
correspond to a pre-deformed state due to the pres-
ence of arterial pressure. Ignoring the pre-deformation
was certainly a limitation in the previous works and
would inevitably result in some error in stress esti-
mates. To address this limitation, the present authors
have introduced the inverse elastostatic method12–14 in
aneurysm mechanics. In the inverse approach, the
image geometry is taken as a deformed configuration
as it should be. The stress in the deformed state, along
with an initial stress-free configuration, are deter-
mined from solving the equilibrium equations. It has
been found that ignoring the pre-stretch tends to over-
predict the wall stress. For abdominal aortic aneu-
rysm, we reported a stress error margin of 13–17%
within a reasonable range of material parameter
variation.13 For cerebral aneurysm, the stress
difference from these two approaches is expected
to be smaller because the physiological deformation of
cerebral aneurysms is normally smaller than that of
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aortic aneurysms. Nevertheless, the existence of
pre-deformation is a characteristic of aneurysm
mechanics and its influence on stress prediction
should be investigated.

The inverse approach has an even more important
implication to patient-specific analysis. It is well-
known that a pressurized thin-walled sac-like structure
is statically determined, or at least approximately so, in
the sense that the wall stress depends primarily on the
deformed shape and the pressure but minimally on the
material’s elastic properties. This unique feature has
been recognized and utilized in aneurysm mechanics.
Analytical stress solutions have been derived for ide-
alized aneurysms.3,5,24 For relatively deep lesions
(which the height is comparable to the diameter), the
stress in regions away from the neck is expected to be
statically-determined. However, in the forward
approach, the dependence on material property is im-
plicit because the deformed geometry is yet to be
determined. In contrast, the inverse approach is
expected to sharply capture the ‘‘static stress’’ because
the equilibrium analysis is carried out on the deformed
geometry. This implies that for a certain groups of
lesions the wall stress (to be precise, the in-plane
components of the stress resultant) may be accurately
predicted without accurate knowledge of patient-
specific wall properties. In a recent work,14 the present
authors reported a profound material insensitivity in
membrane models of cerebral aneurysms. This unique
characteristic of inverse approach is significant for
patient-specific analysis, because the current diagnostic
tools are unable to obtain patient-specific wall prop-
erties.

The analysis in Lu et al.14 assumed that the aneu-
rysm wall is a thin membrane that does not sustain
flexure bending and transverse shear. This assumption
is inadequate for thin structures having concave sur-
face regions. Due to lack of bending, a membrane
theory precludes deformations that ripple the wall.
The membrane assumption places a rather severe
limitation on the application to aneurysms. Realistic
cerebral aneurysms often have undulated surfaces
even when pressurized. The inverse membrane simu-
lation in Lu et al.,14 although possessing a remark
feature, is not suited to general patient-specific
applications.

In this paper, we further eliminate the restrictions
on surface shape by introducing an inverse nonlinear
shell analysis for cerebral aneurysms. The inverse for-
mulation of stress resultant shell theory recently
introduced in Zhou and Lu32 is utilized. For the sake
of completeness, a brief description of the inverse shell
is given in ‘‘Method’’ section. An image-reconstructed
cerebral aneurysm is considered. Using an anisotropic
Fung material model reported for cerebral aneurysm

tissue, we predicted the initial geometry and the stress
resultants in the given deformed state. To investigate
static determinacy, we performed material sensitivity
analyses by comparing the in-plane stress resultant
predicted from two families of material models with
drastically different symmetry characteristics and large
variations of stiffness parameters. We demonstrate
that, despite the consideration of bending and the
transverse shear, the in-plane stress resultant remains
insensitive to the material parameters. The in-plane
stress, which is the major index in rupture assessment,
may still be estimated without accurate knowledge of
the wall elastic parameters.

METHOD

Stress Resultant Shell

A shell is a thin material body in which the thickness
is much smaller than the other dimensions. The theo-
ries of shell have been developed mainly along two
approaches, the continuum theory and the direct
(stress resultant) theory.18,27 In the latter, a shell
structure is modeled as a deformable surface equipped
with a director field. The initial (undeformed) config-
uration is

R :¼ X 2 R3jX ¼ Uþ nD; n 2 �h
2
;
h

2

� �� �
; ð1Þ

where U and D are the positions of material points in
the mid-surface and the reference director field,
respectively, and both are functions of the surface
coordinates (n1, n2). The current, or deformed config-
uration is specified by

C :¼ x 2 R3jx ¼ uþ nd; n 2 �h
2
;
h

2

� �� �
: ð2Þ

where u and d are the current mid-surface and the
directors, and h is the current wall thickness.

The local deformation of the shell is described by
the following deformation measures

aab :¼ u;a � u;b; Aab :¼ U;a � U;b;
jab :¼ u;a � d;b; Kab :¼ U;a �D;b;
ca :¼ u;a � d; Ca :¼ U;a �D;

ð3Þ

where aab and Aab are components of surface metric
tensors. Note that in this paper, the notation (),a
indicates the partial derivative relative to the coordi-
nate na, and the summation convention applies to the
Greek indices which range from 1 to 2. The vectors
aa ¼ u;a at a material point form convected bases
tangent to the surface, with Aa ¼ U;a being the bases in
the reference state. It is also convenient to describe the
deformation in terms of the surface strain tensor e; the
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relative curvature tensor q; and the transverse shear
strain d:

e :¼ eabA
a � Ab ¼ 1

2
ðaab � AabÞAa � Ab;

q :¼ qabA
a � Ab ¼ ðjab � KabÞAa � Ab;

d :¼ daA
a ¼ ðca � CaÞAa:

ð4Þ

The kinetics of the shell is formulated in terms of the
stress resultant n and stress couple ~m: In relation to the
3D Cauchy stress r they are defined as

na :¼ 1ffiffiffi
a
p
Z h

2

�h
2

rgajdn; ~ma :¼ 1ffiffiffi
a
p
Z h

2

�h
2

nrgajdn; ð5Þ

where
ffiffiffi
a
p
¼ a1 � a2k k is the surface Jacobian, j is the

3D Jacobian of configuration mapping R! C; and ga

is the 3D contravariant basis vectors induced by the
convected coordinates (n1, n2, n3 = n). Note that the
resultants contain an in-plane and a transverse com-
ponent. To decompose the stress we write

na ¼ nabab þ qad; ~ma ¼ ~mabab þ ~m3ad; ð6Þ

where nabab is the in-plane component. The in-plane
tensor nab is nevertheless not work-conjugate to the
surface stretch measure aab. Following the development
in Naghdi18 and Simo and Fox27 we introduce the
work-conjugate stress resultants ~n ¼ ~nabaa � ab and the
shear resultant ~q ¼ ~qaaa: In terms of these variables, the
weakform of the equilibrium equations is given asZ

A

1

2
~nabdaab þ ~mabdjab þ ~qadca

� �
dl� GextðdwÞ ¼ 0;

ð7Þ

where dw denotes an admissible variation to the cur-
rent configuration, A is the current surface area,
dl ¼ a1 � a2k kdn1dn2 ¼

ffiffiffi
a
p

dn1dn2 is the area element,
and GextðdwÞ is the virtual work done by external force
and moment.

The shell theory is completed upon introducing con-
stitutive equations which relate the resultant tensors
ð~nab; ~mab; ~qaÞ to the strain variables ðeab; qab; daÞ: The
constitutive equations used in this study will be pre-
sented later. The physical in-plane resultant nab is related
to ~nab and ~mab; and can be backed out in postprocess
computations. The formula is omitted here; interested
readers are referred to Simo and Fox27 for details.

Forward and Inverse Analyses

This weak form (7) facilitates both the forward and
the inverse solution. In the forward analysis, the refer-
ence configuration is given while current configuration
is sought. The kinetic variables ð~nab; ~mab; ~qaÞ are treated
as functions of the deformation measures (aab, jab, ca),

which in turn depend on the deformed configuration in
question. Upon introducing the finite element approx-
imation, the weak form gives rise to a set of algebraic
equations for the nodal values of the deformed mid-
surface position and directors. The details of the for-
ward element formulation are contained in the seminal
papers by Simo et al.26–29 This family of elements utilize
a geometrically exact representation for the rotation
update, and consequently they can handle arbitrarily
large rotations. The element has been applied in bio-
mechanical studies. In Kim et al.,9,10 the stress resultant
shell with experimentally derived nonlinear material
model were used to simulate the dynamic motion of
prosthetic heart valves.

The inverse solution pursues exactly the opposite of
the forward analysis. The kinetic variables ð~nab; ~mab; ~qaÞ
are regarded as functions of the referential measures
(Aab, Kab, Ca), which are functions of the initial config-
uration. Upon introducing finite element approxima-
tion, the weak form gives rise to a set of nonlinear
equations for the initial nodal positions and directors,
which are subsequently solved. Once the initial mid-
surface positions and directors are determined, the strain
and curvatures are computed, with which the stress
resultant, the stress couple, and the transverse shear stress
are computed from the constitutive equations.

This inversed paradigm of stress analysis builds on a
fundamental characteristic of an elastic system, that is,
the stress depends on the relative deformation from the
initial to the current configuration. If either of these
configurations is given together with the load, the
other can be determined from equilibrium. The inverse
analysis applies to both continuum and structure
analysis. For structural problems additional kinematic
and kinetic assumptions are introduced, but the fun-
damental premise of reversibility remains intact.

The inverse shell element in Zhou and Liu32 utilized
the same mathematical formulation for kinematics, in
particular the rotation description, of the forward shell
element. As a result, the inverse element can exactly
revert the deformations predicted by the forward
analysis. The element was developed within the
framework of FEAP, a nonlinear finite element pro-
gram initially developed at the University of California,
Berkeley.30 The inverse shell formulation is described in
Zhou and Liu,32 and the details are omitted here.

Material Model

In the direct shell theory, properly invariant con-
stitutive equations are defined in terms of the referen-
tial resultants

~N :¼ J~nabAa �Ab; ~Q :¼ J~qaAa; ~M :¼ J ~mbaAa �Ab;

ð8Þ
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where J ¼ a1�a2k k
A1�A2k k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðaabÞ
detðAabÞ

q
is the area stretch. The

standard argument involving the balance of mechanical
power shows that these variables are work-conjugate to
the deformation measures in (4), viz.

~N
ab ¼ @w

@eab
¼ 2

@w
@aab

; ~Q
a ¼ @w

@da
¼ @w
@ca

;

~M
ab ¼ @w

@qab
¼ @w
@jab

;
ð9Þ

where w is the strain energy per unit undeformed surface.
The strain energy w consists of contributions from

the in-plane stretching, the flexure, and the transverse
shear. The in-plane properties of thin tissues are rela-
tively easy to characterize, and considerable research
has been devoted to the experimental determination of
the membrane energy function of various thin tissues,
e.g., Humphrey et al.6,7 and Sacks.19 In contrast, the
flexure properties are difficult to determine experi-
mentally. Only recently the bending properties of some
tissues have been investigated17 and incorporated into
shell models.9 Given the difficulty in obtaining the
bending properties, a common treatment is to derive
approximately the bending contribution from a known
in-plane constitutive equation. This approach often
leads to a decoupled energy form

w ¼ wm þ wb þ ws; ð10Þ

where wm, wb, and ws corresponds to the membrane,
bending, and transverse shear energies respectively.
Deriving energetically consistent bending energy from
in-plane constitutive equation has been an area of
interest in nonlinear shell mechanics.20,25 Among many
attempts, Schieck et al.20 showed that the bending
energy can be consistently approximated by

wb ¼
h2

24
Habdcqabqdc; ð11Þ

where H ¼ HabdcAa � Ab � Ad � Ac is the elasticity
tensor at the ground state (i.e., when e ¼ 0Þ;

Habdc :¼ 4
@2wm

@aab@adc

����
e¼0
: ð12Þ

The shear strain energy ws is regarded as a penalty
function for approximately enforcing the Kirchhoff-
Love assumption.

In what follows we introduce the constitutive con-
struction used in the present study. Seshaiyer et al.21,22

showed that a Fung-type nonlinear constitutive model
describes well the in-plane stress–strain response of
cerebral aneurysm wall. The Fung energy function
assumes the form

wm ¼ cðeQ � 1Þ;
Q ¼ d1E

2
11 þ d2E

2
22 þ 2d3E11E22 þ d4E

2
12;

ð13Þ

where Eab represents the physical components of the
Green-Lagrangian strain relative to a local Cartesian
basis that aligns with the orthogonal symmetry axes
(E1, E2) in the initial configuration. By assumption,
E1 coincides with the preferred fiber direction in the
initial configuration, which is written as E1 = saAa in
the convected basis. In the current configuration, the
fiber direction becomes e1 = saaa. Since E1 is not
known in the inverse analysis, it is convenient to use
the invariant form of the energy function, so that
the function can be used once the current fiber
direction is given. To this end, introduce the strain
invariants

I1 ¼ trC ¼ aabA
ab; I2 ¼ detC ¼ det aab

detAab
;

I4 ¼
saaabsb

sdAdcsc
;

ð14Þ

where I1 and I2 are the principal invariants of C and I4
is the squared stretch of a material line element along
the preferred direction. In terms of the invariants, one
has

E11 ¼
1

2
ðI4 � 1Þ; E22 ¼

1

2
ðI1 � I4 � 1Þ;

E2
12 ¼ I1I4 � I24 � I2:

ð15Þ

Therefore,

Q ¼ 1

4
d2I

2
1 þ

1

4
ðd1 þ d2 � 2d3 � 4d4ÞI24

þ 1

2
ðd3 � d2 þ 2d4ÞI1I4 � d4I2 �

1

2
ðd2 þ d3ÞI1

� 1

2
ðd1 � d2ÞI4 þ

1

4
ðd1 þ d2 þ 2d3Þ: ð16Þ

This gives the following tension function:

~N
ab ¼ ceQ½½d2I1 þ ðd3 � d2 þ 2d4ÞI4 � d2 � d3�Aab

� 2d4I2a
ab þ ½ðd1 þ d2 � 2d3 � 4d4ÞI4

þ ðd3 � d2 þ 2d4ÞI1 � d1 þ d2�ðsdAdcs
cÞ�1sasb�:

ð17Þ

The above derivation used the relations @I1
@aab
¼ Aab;

@I2
@aab
¼ I2a

ab; and @I4
@aab
¼ sasb

sdAdcsc :

For this model, the material Hessian at the zero-
stress state is

Habdc ¼ 2c½ðd2�2d4ÞAabAdc

þd4ðAadAbcþAacAbdÞ:
þðd3� d2þ2d4ÞðsdAdcs

cÞ�1ðAabsdscþ sasbAdcÞ

þðd1þd2�2d3�4d4ÞðsdAdcs
dÞ�2sasbsdsc

i
:

ð18Þ
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The associated bending energy is given as

wb ¼
h2

24
Habdcqabqdc

¼ h2c

12

h
ðd2� 2d4ÞðtrqÞ2þ 2d4ðtrðq2ÞÞ

þ 2ðd3� d2þ 2d4Þqstrq

þðd1þ d2� 2d3� 4d4Þq2
s

i
: ð19Þ

For relatively large deformation, the use of material
tangent at ground state clearly underestimates the
bending stiffness. As a remedy, we introduced a
amplifying correction factor f, such that ~M

ab ¼ f
@wb

@jab
:

It follows that

~M
ab ¼ fh2

12
Habdcqdc: ð20Þ

For the transverse shear, we assume ws can be repre-
sented as a function of scalar invariants

ws ¼
G1

2
daA

abdb þ
G2

2
ðdas

aÞ2 ð21Þ

where G1 and G2 are the material shear modulus. Using
Eq. (9), the shear resultant is derived as:

~Q
a ¼ G1A

abdb þ G2s
asbdb: ð22Þ

RESULTS

Stress Analysis of a Patient-Specific
Cerebral Aneurysm

The aneurysm model considered here was originally
constructed in the study by Ma et al.15 The original
mesh contains large portion of regular vascular struc-
tures. Here, we remove most of the vasculature and
retain only short segment of arteries connecting to the
lesion. The remaining structure is remeshed to attain
better element quality. The ensuing mesh is shown in
Fig. 1. Although not reported here, we have performed
convergence analysis on a refined grid (by subdividing
the triangles) and the stress results were nearly identi-
cal. Therefore, the current mesh size was found ade-
quate.

The surface mesh is taken to be the deformed mid-
surface under 100 mmHg pressure. The director vector
d at each node is computed as the average of normal
vectors of the adjacent elements. For the boundary
condition, the edges of the vasculature are fixed. We
have considered other types of boundary conditions
(for example, partially free edges allowing displace-
ment along some pre-defined directions) and confirmed
that the boundary conditions only affect the stress
distribution in nearby regions in the vasculature. The

influence on the stress distribution in the sac is very
small.

The inverse analysis is carried out for a Fung
material model presented in ‘‘Material model’’ section.
The membrane energy for the Fung model is given
in Eq. (13) with baseline parameters adapted from
Seshaiyer et al.22:

c ¼ 0:016N/mm; d1 ¼ 14:50; d2 ¼ 15:28;

d3 ¼ 7:57; d4 ¼ 4:96:

Note that the Fung function (13) is energy per unit
surface area, and therefore the parameter c has the
dimension of force per unit length. In the aneurysm
model the current preferred direction is assumed to be
tangent to the surface and parallel to the horizontal
plane at every material point. The associated bending
constitutive model is given in Eq. (19) with the
amplifying correction factor f = 1.57, which assumes
the value of eQ evaluated at a bi-axial strain
E11 = E22 = 0.1. Note that the inverse shell analysis
outputs the stress resultant ~n: The in-plane membrane
stress is computed by

rab ¼ ~nab

h
: ð23Þ

Here, due to the lack of knowledge about the wall
thickness, a uniform value of h = 0.1 mm is assumed.

The predicted initial configuration is shown in
Fig. 1 superposed on the imaged mesh. The membrane
stress in the deformed configuration are shown in
Fig. 2. The large membrane stress happens near the
(flatter) shoulder area and the (saddle) root regions.

In Fig. 3, the transverse shear stress norm, defined

as q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~q1Þ2þð~q2Þ2
p

h ; is shown. In the sac region, the

transverse shear stress norm is mostly below 0.05 N/
mm2, which is much smaller than membrane stress. At
several scattered points the shear stress is slightly
higher, around 0.1 N/mm2. Near the fixed boundary,
the transverse shear is much larger, with the maximum
value close to 1.0 N/mm2. However, the high shear
stress is restricted to a narrow boundary layer.

The norm of the stress couple M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1 þM2
2

q
(M1

and M2 are the principal couples) is shown in Fig. 4.
Clearly, larger stress couple happens at areas where the
lesion experiences significant curvature change. A larger
value in the stress couple indicates significant stress
variation across the thickness. Note that the M is the
stress couple per unit length, thus bears the unit of force.

Material Sensitivity Analysis

Evaluating the sensitivity of stress solution to
material parameters is an important task for aneurysm
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stress analysis, because currently it is impractical to
obtain and apply patient-specific tissue properties. For
pressurized conduit-like structures, the in-plane stress
resultant should depend primarily on the geometry and
load, although the influence of material parameters
presents in regions near boundary constraints. In Lu
et al.,14 we have demonstrated numerically a lack of
material influence in a membrane model of cerebral
aneurysm. In this section, we will examine the material
sensitivity in the inverse shell analysis.

The inverse shell analyses are carried out on the
cerebral aneurysm for two family of materials. Within
each family, the material constants are varied to create
two sub-models. The baseline model for the first family
is the Fung model used in ‘‘Stress analysis of a patient-
specific cerebral aneurysm’’ section. The sub-model in
this family is generated by magnifying the stiffness
parameter c 100 times. The second family is modeled

after the isotropic Mooney-Rivlin material, which is an
isotropic hyperelastic function. This material is intro-
duced to signify that even models with incorrect sym-
metry description may lead to close stress prediction.
The membrane energy density for this material takes
the form

wm ¼
l1

2
ðI1 � 2 log J� 2Þ þ l2

2
ðI2 � 2 log J� 1Þ;

ð24Þ

where l1 and l2 are material parameters. The baseline
parameters are

l1 ¼ 0:16N/mm; l2 ¼ 0:1872N/mm:

The numbers are obtained by fitting the averaged iso-
tropic parameters in Seshaiyer et al.22 to the Mooney-
Rivlin model. The other model in this family is defined
by magnifying the parameter l1 and l2 100 times.

FIGURE 1. Views of the stress-free configuration of a pressurized cerebral aneurysm predicted by the inverse shell approach. The
predicted initial geometry (shaded) is visibly smaller than the in vivo shape (mesh). In the FE model, the nodes at the boundary
edges are fixed.
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The Mooney-Rivlin model gives the following ten-
sion function:

~N
ab ¼ l1A

ab � ðl1 þ l2 � l2I2Þaab: ð25Þ

The ground state elasticity tensor of the membrane
energy function in Eq. (12) is obtained as

Habdc ¼ l1ðAadAbc þ AacAbdÞ þ 2l2A
abAdc: ð26Þ

The associated bending energy is characterized by

wb ¼
h2

24
Habdcqabqdc ¼

h2

12
l2ðtrqÞ2 þ l1trðq2Þ
h i

: ð27Þ

It follows that

~M
ab ¼ h2

6
l1A

adqdcA
bc þ l2ðtrqÞAab

� �
: ð28Þ

FIGURE 2. Predicted principal stresses from the shell model with a Fung material. From left to right: the first principal membrane
stress; the second principal membrane stress; the von Mises membrane stress. Unit of stress: N/mm2.

FIGURE 3. Distribution of the shear stress norm. Unit: N/mm2.

ZHOU et al.484



The transverse shear constitutive equation is specified
in Eq. (22). Due to isotropy, G2 = 0. We assume G1 =
l1 + l2.

The initial configuration predicted with the baseline
Mooney-Rivlin material is comparable to the one
obtained with the baseline Fung material, while for the
stiff models the deformation is very small. Figure 5
presents the principal stresses distributions (top view)
for all four material models. Despite the difference in
material properties, the predicted stress distributions
appear very close for all cases.

In Fig. 6, the percentage stress difference between
the baseline Mooney-Rivlin model and the baseline
Fung model is plotted. In order to avoid the stress
difference being divided by very small number, here
the stress difference is divided by a reference value
0.3 N/mm2, which is close to the maximum stress value
in the sac region. As seen from the figure, in the sac
region the relative stress difference is mostly below 3%.
Away from the sac, the difference elevates while the
maximum difference occurs near the boundary due to
boundary effects.

DISCUSSIONS

Comparison of Stress Solution with Other Models

In the sac region, as shown in the corresponding top
view in Fig. 5a, the von Mises stress mostly ranges
from 0.11 to 0.36 N/mm2. The maximum stress ap-
pears larger than that from the membrane analysis,14

which predicted a maximum membrane stress of
approximately 0.30 N/mm2. The difference in these
two models may be attributed to the different surface
characteristics. In the membrane model, the concave
and locally flat regions are artificially removed, resulting
a smoother surface. Nevertheless, the distributions are

very similar. In particular, the high stress regions
around the shoulder are captured in both models.
Compared to the forward analysis by Ma et al.,16 in
which the same cerebral aneurysm but only the sac was
analyzed (with a finner mesh), the inverse stresses
appear to be uniformly smaller. This is expected,
because the forward analysis adds an artificial disten-
sion to the in vivo configuration and result in a larger
radius. The maximum von Mises stress in Ma et al.16

was 0.52 N/mm2. It should be noted that the model in
Ma et al.16 assumed a wall thickness of 0.086 mm,
which is smaller than the thickness of 0.1 mm used in
this analysis. Moreover, the stress value in Ma et al.16

also includes the bending contribution whereas the
current computation does not. Considering the thick-
ness difference, the stress value should be scaled down
to 0.52 9 0.86 = 0.45 N/mm2. The scaled maximum
stress is approximately 30% greater than the inverse
prediction. If the bending contribution is considered
the difference is expected to be smaller. This over stress
pattern is in agreement with our previous investigation
on an abdominal aortic aneurysm (AAA),13 in which
we observed that the forward analysis over-predicted
the stresses.

In overall, the stress distributions predicted from the
shell model with forward analysis in Ma et al.,16 the
membrane model with modified surface characteris-
tic,14 and the present inverse shell model are in good
agreement. In all three models, large membrane stress
occurs at the flatter regions near the shoulder. The
deformation in this region is likely dominated by
membrane stretching. Therefore, as in the membrane
model,14 the wall stress is directly related to the local
surface curvature, and a relatively flatter surface
(smaller curvature) gives higher stress. The current
model, which includes short segments of the regular
vasculature, further reports high stress near the lesion
root. Since the stress is simply computed by dividing

FIGURE 4. Distribution of the stress couple. Unit: N (torque per unit length).
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the resultant with the thickness, a high tension in the
root does not mean the rupture will most likely happen
there, because in reality the wall at root is typically
thicker than that of the dome region. Moreover, the
material strength in the dome region is in general
weaker due to the degeneration of the lesion wall.

Stress Couple

In the stress resultant theory, the stress couple is a
measure of stress variations over the thickness. If we
assume that the stress varies linearly across the thick-
ness, the stress distribution across the thickness can be

FIGURE 5. Comparative stress distributions from the Fung models and the Mooney-Rivlin models. Unit of stress: N/mm2. (a)
Principal stresses in the baseline Fung model (c, d1, d2). From left to right: the first principal membrane stress; the second principal
membrane stress; the von Mises membrane stress. (b) Principal stresses in the stiff Fung model (100c, d1, d2). (c) Principal
stresses stress in the baseline Mooney-Rivlin model (l1, l2). (d) Principal stresses in the stiff Mooney-Rivlin model (100l1, 100l2).

FIGURE 6. The percentage of the stress difference between the Mooney-Rivlin model (l1, l2) and the baseline Fung model
(c, d1, d2) relative to a reference value 0.3 N/mm2. From left to right: the percentage difference in the first principal membrane
stress, the second principal membrane stress, and the von Mises membrane stress.
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determined once the stress resultant and the stress
couple are found, in the same manner as the linear shell
theory. It should be noted that the linear variation is
not a valid assumption for nonlinear shells undergoing
large deformation. For this reason, we did not com-
pute the over-thickness distribution. Thus, the stress
reported here is the membrane stress only, that is, the
cross-thickness average. Nevertheless, it is informative
to estimate the contribution of the stress couple to the
total stress. To this end, we use a simple beam analogy.
If we regard the stress couple norm M as the bending
moment per unit width acting on a beam of height h,
the bending stress is on the order of M

h2
: As seen from

Fig. 4, the value of M over the sac region ranges from
0 to 4.0 9 10�4 N. The average is 2.25 9 10�4 N. The
average von Mises membrane stress is 0.248 N/mm2.
In terms of the averages the bending contribution is on
the order of 2.25 9 10�4/0.12 = 0.0225 N/mm2, which
is one order smaller than the membrane stress in the
same region. We conclude that for this cerebral aneu-
rysm the membrane stretch dominates bending in the
sac region.

Sensitivity

As pointed out in a previous study,14 the static
determinacy of stress in membrane theory hinges on
the fact the equilibrium equations form a closed system
for solving the stress resultant (there are three differ-
ential equations for three stress components). There-
fore, for membranes subject to traction boundary
condition the stress can be determined from equilib-
rium alone. Even with the presence of displacement
constraints, if the membrane is sufficiently deep,
the boundary effect is expected to exist only in a
thin boundary layer. However, this argument does not
apply to the shell theory. In the shell theory, the
equilibrium equations take the form

1ffiffiffi
a
p ð

ffiffiffi
a
p

naÞ;a þ �n ¼ 0;

1ffiffiffi
a
p ð

ffiffiffi
a
p

d� ~maÞ;a þ aa � na þ �m ¼ 0;

ð29Þ

where �n and �m are the resultants of external loads. A
close examination at the shell balance equation (29)
shows that these tension components can not be
determined by the balance equations alone. Consider-
ing only the three component equations of Eq. (29)1,
there are six unknown stress components, which
include four components from the membrane resultant
tensor (nab and n12 „ n21 in general) and two com-
ponents from the shear resultant ð~qaÞ: Obviously,
without introducing the material model and boundary
conditions, the equations are not closed.

Nonetheless, if the bending moment and transverse
shear are much smaller when compared to the mem-
brane stresses, the shell balance equations should
approach the same static determinacy. In order to
explain the material insensitivity, let’s re-examine the
shell balance equation (29)1 and the stress distribution
in the cerebral aneurysm sac region. If the stress couple
is very small (compared to the stress resultant times the
wall thickness), approximately nab ¼ ~nab; rendering the
symmetry of nab. It is the case for the sac region since
the value of stress couple (on the order of 10�4) is one
order smaller than the membrane resultant multiplying
the wall thickness (on the order of 10�3). Furthermore,
as shown in Fig. 3, in the sac region the transverse
shear stress is much smaller than the membrane stress
except a few scatted locations. Therefore, only the
three membrane stress components (n11, n22, and
n12 � n21) are significant for the shell balance equation
(29)1, which gives three components equations.
Apparently, this observation explains the material
insensitivity seen in the cerebral aneurysm sac region.

Strain and Material Property

In this study, the strain is not reported. Obviously,
the material parameters have a significant effect on
the strain. For example, the stiff Fung models used
give very small deformation while large deformation
is observed for more complaint models. Although the
results from this paper suggest that the stress resul-
tant may be predicted accurately even with nonreal-
istic material properties, the accurate material
properties are imperative if the strain, or equivalently
the initial configuration, or the stress at a different
pressure, are sought. If material properties are indeed
known, then this method can accurately determine
the initial stress-free configuration and hence, strain
distribution also. But perhaps the most exciting out-
come of this body of work is its implication to in vivo
material property estimation. With the advent of
dynamic imaging, it may be possible to accurately
obtain the aneurysm configuration under several dif-
ferent pressures. The inverse method would then be
ideal for reverse-estimating the material model for the
aneurysm wall using the known strain distributions
allowing for patient-specific, noninvasive assessments
of material wall caliber. Towards this end a general
framework has been proposed8,31 to utilize the inverse
stress analysis for noninvasive characterization of
thin-walled structures.

Limitations

A major limitation in this study is the assumption
on thickness. Due to lack of knowledge of the wall
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thickness, a uniform thickness is assumed based on
reported values. Although the stress resultant ~n is
found to depend primarily on the load and the
deformed geometry, the membrane stress, computed
from (23), depends inversely on the thickness. There-
fore, the stress is not accurate without knowing the
wall thickness. If the thickness varies from point to
point, the stress resultant should still remain insensitive
to all the material parameters. However, the stress
should be computed with the local thickness value. It
should also be noted that the thickness has a nontrivial
influence on the stress couple. Without knowledge of
the actual wall-thickness, the stress couple can not be
accurately predicted. This limitation can not be
addressed numerically; hopefully, it will be eliminated
with the improvement of imaging or other in vivo
measurement technology.

Another limitation in this work relates to our
treatment of bending constitutive equation. In the
stress resultant shell theory, both the in-plane stress–
strain relation and the bending–curvature relations
need to be specified. While this constitutive approach
opens the possibility of independently characterizing
the in-plane and flexure properties, in most cases only
the in-plane properties were characterized due to the
difficulties of thin-tissue bending test. In this work, we
employed the best-known model21,22 for the in-plane
response. The bending response was derived from the
in-plane function through the reduction procedure
proposed by Schieck et al.,20 thus bringing another
modeling error. The bending–curvature relation
derived in this manner is valid for small to moderately
large rotations. Nevertheless, this constitutive
approach is adequate for deformations where mem-
brane stretch dominates bending. For cerebral aneu-
rysms, we expect that the bending constitutive
equation, while critical to bending prediction, would
have a limited influence on the in-plane membrane
stress due to the thinness of the structure.

In the constitutive theory, the shear strain energy ws

is regarded as a penalty function for approximately
enforcing the Kirchhoff-Love assumption. The choice
G1 and G2 values needs numerical experiment. In the-
ory, if the values are sufficiently large in comparison to
the in-plane stiffness parameter, the predicted mid-
surface deformation should converge to a asymptotic
solution in which the directors d remain approximately
normal to the mid-surface. We have performed
numerical tests in the forward setting, in Ma et al.16

and Kim et al.9 It has been observed that as G1 (G2 was
taken to be zero) increases, its influence on the mid-
surface position (an therefore the in-plane stretching)
becomes diminishingly small. Converged solutions
were often obtained when G1 was comparable to the
major stiffness parameter (e.g., the parameter c in the

Fung model). Drawn on these experience, we did not
perform parametric study on G1, but selected values
based on the stiffness parameters. We believe that the
influence on the in-plane stress is sufficiently small.

Lastly, the uniqueness of the inverse solution
remains an open question. Although we did not
encounter nonunique solution in the reported example,
it is conceivable that multiple solutions may occur due
to material instability or structural buckling. It is
reasonable to expect that the uniqueness of the inverse
problem is the same as that of the forward problem,
but since the forward problem is only implicitly
defined, the uniqueness of which is not known a priori
and so is the inverse problem. The uniqueness issue
and its effect on stress analysis need further research.

Summary

We proposed an inverse approach of stress analysis
for cerebral aneurysms using the stress resultant shell
model. We demonstrated that the wall stress and an
initial stress-free configuration can be predicted by
taking a deformed configuration and the correspond-
ing pressure as input. For the particular aneurysm
considered, we showed that the sac deformation was
dominated by wall stretching, and the in-plane stress in
the sac was insensitive to material model. Our work
submitted a theoretically accurate way to consider the
pre-deformation in aneurysm stress analysis, and sug-
gested that for some lesions the wall stress may be
estimated using assumed tissue properties without
patient-specificity. The last feature is significant to
patient-specific studies, since currently it is impractical
to obtain patient-specific tissue properties for cerebral
aneurysm.
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