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Abstract—This study is a comparative evaluation of nonlin-
ear classification methods with a focus on nonlinear decision
functions and the standard method of support vector
machines for seizure detection. These nonlinear classification
methods are used on key features that were extracted on
subdural EEG data after a thorough evaluation of all the
frequency bands from 1 to 44 Hz. The sensitivity, specificity,
and accuracy of seizure detection reveal that the gamma
frequencies (36–44 Hz) are most suitable for detecting seizure
files using a unique 2D decisional plane. We evaluated 157
intracranial EEG files from 14 patients by calculating the
spectral power using nonoverlapping 1-s windows on differ-
ent frequency bands. A key finding is in establishing a 2D
decision plane, where duration of the seizure is used as the
first dimension (x coordinate) and the maximum of the
gamma frequency components is used as the second dimen-
sion (y coordinate). Within this 2D plane, the best results
were observed when the nonlinearity degree is three for the
proposed nonlinear decision functions, with a sensitivity of
96.3%, a specificity of 96.8%, and accuracy of 96.7%.

Keywords—Intracranial EEG (iEEG), Epilepsy, Seizure

detection, Gamma frequency, Nonlinear decision functions.

INTRODUCTION

Epilepsy is the second most prevalent neurological
disorder in humans after stroke. According to the
World Health Organization, approximately 1% of the
world population is affected by this neurological dis-
order. Epilepsy is a disorder with many possible cau-
ses, many of which remain unknown. Anything that
disturbs the normal pattern of neuronal activity, from
illness to brain damage to abnormal brain develop-
ment, can unfortunately lead to seizures. Current

treatments for epilepsy include: anti-epileptic drugs,
brain therapies that involve direct electrical brain
stimulation. However, not all patients benefit from
these treatments, in which case brain surgery may be
the only resort, especially for intractable seizures. Most
of the treatments for intractable seizures are very
limited. The most critical involves focal resections of
abnormal brain tissue when the epileptogenic region
can be accurately defined. This is a critical task that
requires subdural EEG recordings of seizures to define
their onset, electrodes of interest, and their region of
involvement.

The main objective of this study endeavor is focused
on developing an automated algorithm for the detec-
tion of seizures offline, based on subdural EEG data
that would satisfy a high sensitivity (i.e., minimum
number of false negatives), and a high specificity (i.e.,
minimum number of false positives). The stopping
conditions are implemented in order to achieve the
highest accuracy, so the main objectives are satisfied.

Since epileptic seizures occur erratically and ran-
domly, enormous amounts of subdural EEG needs to
be read and precisely analyzed offline in order to detect
the origin of the seizures. This is a critical challenge
that can be automated through reliable and computa-
tionally efficient seizure detection paradigms.

Several studies related to automated seizure detec-
tion paradigms focusing mainly on scalp EEG have
been published with diverse level of success and
inherent challenges.3,7,11,12,19,20,32 These investigations
employ the use of multichannel trends, neural net-
works applications, the use of orthogonal transforms,
such as the Walsh Transform, genetic programming,
and all dwell in either time or frequency domains. The
results are based on EEG recorded from the scalp that
has lower signal-to-noise ratio compared to the EEG
recorded from the cortex. Since one of the main goals
in the area of epilepsy is to detect and ultimately to
predict seizures, the use of several features has been
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adopted by various research groups for many years
with varying degrees of success. In the context of this
study, many of the methods currently available in the
specialized literature have been tested yielding different
results. In this field, the issue of debate is not based in
the implementations of all these features, but in
determining which ones are more suitable. In this ini-
tial assessment of the study, it was determined in a
previous paper that the correlation sum is the temporal
measure that performed best, while the gamma power,
as reported specifically in this study, is found to be the
most revealing frequency range for seizure detection
purposes.

EEG signals have been analyzed over the years with
much effort toward a better understanding of the
functional characteristics of the brain, including the
complex and yet to be resolved problem of seizure
prediction.14,18,24,26,30 Researchers have thus consid-
ered different approaches using a diversity of linear
and nonlinear parameters in order to automate
processes of seizure detection, eliciting a better
understanding of the chaotic dynamics in biological
systems,6,15,21,23 and where promising results have been
substantiated.1,2,16,29,31

In using subdural EEG data in this study, we have
taken into consideration the fact that there is a con-
siderable attenuation effect of the skull on the scalp
EEG. This data generally reveal very little fast activity
exceeding the beta range [>30 Hz], limiting as a result
the application scope of seizure detection algorithms
that rely on scalp EEG recordings since there is a
limitation in the use of higher frequency components.
A sustained increase in the very high frequency activity
exceeding 30 Hz, defined here as the gamma band, is
seen only at ictal state onset and during early evolution
of the seizure. These empirical facts served as the
foundation of this research endeavor.

In this study, we, therefore, explore the role of the
gamma frequency band in developing a reliable offline
seizure detection algorithm for EEG recorded intra-
cranially, by establishing a unique 2D decision space
and implementing nonlinear decision functions to
confront the complex nature of iEEG data. The pro-
posed method is based on aggregating the power in the
36–44 Hz frequency range and analyzing its behavior
in time using windows of 1 s of duration, looking for
patterns indicative of seizure evolution. The perfor-
mance of the algorithm, which was evaluated by means
of the receiver operating characteristics (ROC) termi-
nology, relied on two primary aims: (1) establishing a
decision space most suitable for iEEG data classifica-
tion, and (2) implementing to their full extent gen-
eralized decision functions that are operational under
any number of dimensions and for any degree of
nonlinearity with the gradient descent method used as

means to generate the weights for the highest classifi-
cation accuracy possible.

METHODS

Data Collection

The data used in this study were obtained sequen-
tially from a significant sample of 14 patients who
underwent two-stage epilepsy surgery with subdural
recording. The age of the subjects varied from 3 to
17 years. An overview of the patients’ clinical infor-
mation is provided in Table 1. The number and con-
figuration of the subdural electrodes differed between
subjects, and were determined by clinical judgment at
the time of implantation. Grid, strip, and depth elec-
trodes were used, with a total number of contacts
varying between 20 and 88. The amount of data
available for analysis was influenced by recording
duration, and by the degree to which the interictal
EEG was ‘‘pruned’’ prior to storage in the permanent
medical record. The intracranial EEG (iEEG) data
were recorded at Miami’s Children Hospital (MCH)
using XLTEK Neuroworks Ver.3.0.5, equipment
manufactured by Excel Tech Ltd., Ontario, Canada.
The data were collected at 500 Hz sampling frequency,
and the DC component was removed.

Data Analysis

Data Preprocessing

For all patients, the length of the files was approx-
imately 10 min. Out of the total 157 files considered, 35
(21 interictal and 14 ictal) iEEG data files or 22% were
used initially in a training phase to ascertain the reli-
ability of the gamma power in the seizure detection
process. The remaining 122 iEEG data files or 78%
were then used in the testing phase to assess the merits
in selecting gamma power as means to detect a seizure.
In retrospect, the ictal and interictal files used for each
patient are summarized in Table 2. Each file was cat-
egorized by whether or not it contained a seizure, and
were randomly assigned to avoid unwanted biases to
either the small training set (22% of the data) or the
large testing set (the remaining 78% of the data).

Extracting the Power of Gamma Frequency

The gamma frequency power of each electrode
was calculated from the EEG data using consecutive
1-s windows (500 samples). Fourier Transform was
applied to each window in order to extract the fre-
quency components of interest.
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Due to the high volume of information contained
in the prefiltered iEEG data files, two key prepro-
cessing steps were performed in order to (1) reduce

the data to be analyzed, reducing asa consequence the
computational requirements, and (2) seek a transfor-
mation of the raw iEEG data in order to enhance the

TABLE 1. Patients’ clinical information.

Patient DOB (m/y) Sex Clinical overview EEG SPECS

1 9/92 M Tuberous sclerosis with intractable epilepsy since

2 years of age. S/p resection of R frontal tuber/

hamartoma resection but not seizure-free.

Right frontotemporoparietal craniotomy, L parietal

craniotomy.

2 4/87 M Intractable seizures that is now s/p craniotomy.

1 seizure per day.

PMH intractable seizures. S/p craniotomy Right

craniotomy, frontal lobectomy and removal

of electrodes.

3 1/01 F R partial resection. Abnormal movements (tremors,

shivering, shaking), ADHD, and ADD.

Normal EEG study obtained in the awake and

drowsy states.

4 10/90 M Intractable epilepsy and L temporal cortical

dysplasia. Three antiepileptics (lamictal, trileptal,

and topamax without response). L Craniotomy with

L anterior temporal lobe resection.

Intractable seizure unresponsive to medical

therapy. Craniotomy with L anterior temporal lobe

resection.

5 5/96 M ADHD and partial epilepsy, s/p right FT resection.

Seizures are now associated with more vocaliza-

tion and are now only nocturnal. They recur two to

three times per day.

Seizures in the R hemisphere. Interictal abnorma-

lities are limited to some slowing involving the RF

central region and some rare sharply contoured

slow waves over the R frontal region and L

temporal slowing.

6 6/94 F Intractable epilepsy. Left frontotemporal craniotomy. Sharp waves are recorded in the L frontotemporal

region. Epileptiform activity over the mesial tem-

poral surface. Ictal EEG discharges involve the

left temporal and central regions. EcoG shows

frequent epileptiform abnormalities over the pole

and superior temporal gyrus.

7 7/91 M Seizures since age 10. Develops sensory symptoms

at onset, paresthesias behind right thigh.

Slower frequencies noted maximal in the L central

region, also L parietal region during sleep, Some

sharp waves in the L central and frontal regions,

in sleep.

8 7/98 M Seizures (1–3/week) despite a tritherapy. Seizures

started at 6 months of age.

EEG and clinical findings are consistent with frontal

lobe epilepsy with interictal abnormalities and

may be ictal behavior suggestive of L frontal

origin.

9 12/97 M Simple partial seizures since 3 years of age.

Syndrome: Symptomatic partial seizure disorder.

Etiology: Lesion in R central area.

Slower frequencies in both central regions, R > L.

Focal seizure pattern with build up over the R

central region, with propagation to the L frontal/

central region.

10 9/91 F Intractable epilepsy. History of glioma and hydro-

cephalus s/p shunt placement and intractable

seizures S/p right frontal craniotomy, right temporal

lobectomy and subdural electrode removal. Sur-

gery was successful.

Seizure began in 11/96. It is believed to have

seizures arising for the R temporal lobe with

secondary propagation to the supra-sylvian

region. Seizure foci identified in R temporal lobe.

11 1/93 M History of L temporal lobe ganglioglioma. Semiology:

Complex partial seizures.

Syndrome: Symptomatic partial seizure disorder.

Etiology: Lesion in the left temporal region.

Epileptiform activity in the L temporal region, rare

sharp waves in the L posterior quadrant.

Focal ictal patterns in the L temporal region, with

late hemispheric spread.

12 1/01 M Intractable epilepsy since 1.5 year of age. Freq is

3–5 per day. Duration is 30 seconds. Seizure clas-

sification: Complex partial seizures of the R central

area. Epilepsy syndrome: localization-related.

Rare spikes seen over R central region. Three

seizures that are stereotyped with C4 onset and

LUE flexion and behavioral arrest.

13 1/97 M Intractable seizures, having two-stage epilepsy

surgery. Severe cerebral dysfunction in the region

of the upper parietal interhemispheric region.

Frequent epileptiform activity was recorded inferior

to the upper parietal interhemispheric region as

well as on the midsection of the parietal convexity

behind the grid.

14 2/03 F Tuberous sclerosis and medically intractable seizures.

Seizures are clinically brief periods of behavioral

change. Seizure type/semiology: complex partial

seizures. Syndrome: Symptomatic partial seizure

disorder. Etiology: Tuberous sclerosis.

Multifocal epileptiform activity adding emphasis

over the L temporal region. Multiple seizures

having nonlocalizing patterns at ictal onset, with

predominant involvement of the L frontotemporal

region late in the event.
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accuracy, specificity, and sensitivity of the seizure
detection algorithm. In step (2), the transformation
chosen is that of gamma frequency component after a
thorough evaluation of several other standard
parameters in the time domain, such as mobility,
complexity, and activity,22 as well as in the frequency
domain by evaluating all other frequency ranges. The
iEEG data files were further analyzed with 1 s timed
windows, and the power of the gamma frequency
component was extracted for all these 1-s windows
and for each electrode.

The power Pg of the gamma frequency spectrum
was computed as given in Eq. (1):

Pg ¼
Zbend

bstart

FðwÞj j2dw ð1Þ

where bstart and bend are its starting and ending fre-
quencies in the 36–44 Hz band, with F(w) defining the
complex fast Fourier coefficient at frequency w.

Figure 1 shows the gamma power near the time of
seizure onset using iEEG data from four different
patients. It shows the intricate and yet informative
nature of the gamma power signal. At the time of
seizure onset (vertical line), there is an abrupt change
in magnitude almost in synchrony for all electrodes.
The vertical line represents the seizure onset previously
labeled at the observation room by the EEG expert.
It should be noted that the onset as marked by the
EEG expert and the results of the synchronized
increment in magnitude of the gamma frequency do
not coincide exactly in time, which only heightens the
relevance and need for an automated seizure detection
process. Further clinical evaluations reveal that the

synchronized increment in magnitude of the gamma
frequency does actually coincide with the actual clini-
cal onset of the seizure. This is viewed as another
interesting finding of this study.

Aggregating EEG Features

As stated earlier, 35 files were randomly assigned for
use in the so-called training phase, and the remaining
122 files were used for testing. If the file contained a
seizure, it was considered to be an ‘‘ictal’’ file. Other-
wise, it was considered to be ‘‘interictal.’’ It is worthy
to note that even though a file was classified as ‘‘ictal,’’
the files usually lasted longer than an individual sei-
zure. Therefore, it was possible for ‘‘ictal’’ files to in-
clude some interictal data, which nonetheless the
classifier needed to handle correctly.

Table 1 shows the distribution of patients along
with the number of ictal and interictal files that were
selected for both the training and testing phases. The
table is set up such that patients (1–7) were those that
were randomly selected for the training phase, and
patients (8–14) were those used subsequently in the
testing phase in order to validate the classifier’s ability
to perform well on an inter-patient level.

In order to handle the variable number of electrodes
used from patient to patient, we averaged the power in
the gamma frequency range across all electrodes. This
averaging process, which is referred to as the inter-
electrode mean, was used as input to the classifier. Our
use of the inter-electrode mean is a result of the
experimental studies4,5,9,27 that reveal that electrodes
tend to interlock in behavior at the onset moment of a
seizure. Therefore, this average process of all elec-
trodes did not distort the results, and yet allowed for
uniformity in the implementation process across
patients independent of the varied number of elec-
trodes used for each.

With this fact, it is emphasized that the concept of
averaging for a representative signal does not sidetrack
from the main intent of detecting a seizure with the
highest accuracy, specificity, and sensitivity possible.
At the same time, such a step minimizes to a great
extent the computational burden10 that would have
been required in dealing with all of the iEEG data as
input to the classifier, and simplifies greatly the seizure
detection process as only one representative signal is
fed into the classifier. Figure 2 illustrates this assertion
by comparing the contributions of individual elec-
trodes to the behavior of gamma frequency for every
single electrode used for a particular patient, and the
results obtained using averaging or the so-called inter-
electrode mean signal Sl for an arbitrary section of
iEEG.

TABLE 2. Number of ictal and interictal files used.

Patient

Training files Testing files All files

Interictal Ictal Interictal Ictal Interictal Ictal

1 0 3 0 2 0 5

2 0 1 0 1 0 2

3 0 2 0 1 0 3

4 0 1 0 1 0 2

5 6 3 30 3 36 6

6 5 2 10 1 15 3

7 10 2 5 1 15 3

8 0 0 12 2 12 2

9 0 0 9 5 9 5

10 0 0 15 2 15 2

11 0 0 4 2 4 2

12 0 0 5 3 5 3

13 0 0 1 1 1 1

14 0 0 4 2 4 2

Total 21 14 95 27 116 41
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Determining the Seizure Detection Rules

Critical Issue of Thresholding

A threshold must be established before the inter-
electrode mean of the power in the gamma frequency
band can be used to detect a seizure. If the threshold
was crossed at any point during a file, then the entire
file is classified as a possible ‘‘seizure’’ file. If the
threshold was never crossed, then it was classified as a
‘‘nonseizure’’ file. At stake is therefore an objective
choice of this threshold.

Threshold Determination

The seizure detection method tests a threshold based
on the inter-electrode mean signal Sl, which has a

natural variability even in a single patient, and even in
the absence of a seizure. Using the same threshold in
many patients makes the variability even greater, but
increases the clinical usefulness of the test. This is
essentially a dilemma that is faced due to unreliable and
changing thresholds and varying standard deviations
that can be experienced even within a single patient.

With these observable facts, the problem becomes
difficult to contain not only in terms of these noted
variations, but also in ascertaining in a meaningful way
the performance evaluation of the classifier. The
example given in Fig. 3 illustrates perfectly this
dilemma. Note how different is the variation of the
magnitude of the inter-electrode mean signal between
patient 1 and patient 2. However, if one is to rescale
the y-axis for patient 2, it will reveal that an ictal

FIGURE 1. An illustrative example of gamma power for all electrodes versus time (shown in terms of samples) for four different
seizures from different patients. The vertical line is the seizure onset as identified by medical experts. Note that the scales are
different for the different subjects, thus making absolute thresholds impossible to use.
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change similar to that of patient 1 is indeed present,
which only amplifies the fact that a singular threshold
computed on the basis of patient 1 would have missed
the ictal change in patient 2 observed after rescaling.

Therefore, a generalized statistical threshold was
established for the power of the gamma frequency that
will work across all patients independently of its
magnitude. This threshold is thus defined by the
average of inter-electrode mean plus one standard
deviation of the inter-electrode mean signal as defined
in Eq. (2).

T ¼ Sl þ r ð2Þ

In terms of the proposed classifier, any point which
exceeded the threshold was considered a point
belonging to a potential seizure, with the first such
point together with all consecutive points exceeding
this threshold defining the duration of such seizure.
Such a determination constitutes a first and most
critical requirement for the proposed algorithm.

The next stage of the algorithm is to determine
additional means to validate that such potential seizure
can indeed be declared an actual seizure.

Establishing the 2D Decisional Space

At this stage of the investigation, two measurements
were taken into consideration. The first measurement

is the duration in time in which the signal Sl was
consistently above the aforementioned threshold, and
the second measurement is found to be the maximum
value of Sl. These two measurements were deemed
sufficient for the detection algorithm to work properly.

With these two measurements in place, a table was
constructed to train the seizure detector. The table
contains as many records as data files were used in the
training, whereas each record contains three values: the
two aforementioned measurements and also a target
(+1 for seizure file and �1 for nonseizure file). Recall
that nonseizure data files that did not meet the first
requirement (not having a single point that passed the
set threshold) were not used in this table to begin with,
since they were already identified as true negatives.

Nonlinear decision functions were derived using the
training data. The results are displayed in the 2D
decisional space, which helps in visualizing the geo-
metrical placement of the two pattern classes with
respect to the resulting decision function. All points on
the decision function curve itself are considered of an
undetermined class, since the decision function is zero
for those points. In the result plots, positive and neg-
ative signs denote seizure and nonseizure files, respec-
tively. In this, the 2D decisional space, the x-axis
represents the duration which was divided by a nor-
malization factor of 1000 in order to accelerate the

FIGURE 2. Top figure shows the behavior of the gamma power for each of the 48 electrodes used for subject 1, seizure 5, and the
bottom figure displays its respective inter-electrode mean signal.
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convergence of the gradient descent, and thus facilitate
the determination of the optimal weights of the deci-
sion function; while the y-axis represents the maximum

of Sl. When this 2D space is chosen appropriately,
which was the most challenging part of this research
problem, patterns of the same class will tend to cluster
together and the nonlinear decision functions will yield
optimal results.33

Derivations of the Nonlinear Decision Functions

To address this problem and begin its implementa-
tion steps, each nonlinear decision function is obtained
from the training data using the gradient descent
method. The gradient descent method is known as an
optimization algorithm that seeks a local minimum for
a given function. The problem of classification is
therefore one that is reduced to identify the boundary
Dð~XÞ ¼ 0; which defines the decision function itself, in
order to partition the pattern space into different
classes. Vector ~X is the pattern with up to n dimensions
that needs to be classified. In the case treated here, the
classification rules are as follows:

� If Dð~XÞ>0; X
!2 the class of seizure files

� If Dð~XÞ<0; X
!2 the class of nonseizure files

� If Dð~XÞ ¼ 0; indeterminate condition

Nonlinear decision functions have long been estab-
lished in the literature,4 but it is their implementation
that is regrettably lacking in the resolution of real-
world problems such as the one addressed in this study.
The general recursive formula as expressed in Eq. (3)
allows for deriving any nonlinear decision function
with any number of dimension (n) and with any degree
of complexity (r), and is structured as follows:

Drð~XÞ ¼
Xn
P1¼1

Xn
P2¼P1

. . .
Xn

Pr¼Pr�1

WP1P2...Pr
XP1

XP2
. . .XPr

þDr�1 ¼ 0 ð3Þ

where WP1P2...Pr
represents the weights and XP1

XP2
. . .

XPr
are the dimensions of the function. This equation

which is recursive in r is defined such that D0ð~XÞ ¼
Wnþ1, which is the last element of the augmented
weight vector. In this particular study, different results
are later provided for different values of r for both the
proposed nonlinear decision functions as well as for
the well-established SVM method under different
complexities of the polynomial kernel.

The way the proposed classification process was set
up resulted in decision functions that are derived using
two variables X1 and X2 which define the two identified
dimensions of the decision plane. Thus, for the prob-
lem at hand, Eq. (3) with n = 2 and r = 2 (second
degree polynomial) for example, reduces to Eq. (4):

Dð~XÞ ¼ W11X
2
1 þW12X1X2 þW22X

2
2 þW1X1

þW2X2 þW3 ¼ 0 ð4Þ

FIGURE 3. Illustration of the variation of the inter-electrode
mean signal Sl within the same patient: (a) seizure 1 of patient
1, (b) seizure 2 of patient 2, and (c) zoomed in view of seizure 2
of patient 2.
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where W11; W12; W22; W1; W2; and W3 are the
weights; and X1 and X2 are representatives of the first
and second dimensions, respectively. To obtain the
optimum parameters of this function (3), a cost func-
tion C was established as the sum of the square errors
between the function output and the targets as follows:

C ¼
XN
p¼1
ðDpð~XÞ � TpÞ2 ð5Þ

where p serves as the index for the data points, where
each data point is represented by its dimensions X1 and
X2 in reference to Eq. (4). N is the number of data
points in the files that have met the first requirement
for seizure detection; Tp is the target for point p (�1 or
+1), and Dpð~XÞ is the resulting value of the decision
function evaluated at point p. The optimal weights,
which define the ultimate nonlinear decision function,
are those that yielded a minimal value for the cost
function given in Eq. (5).

Nonlinear decision functions are far superior to
linear decision functions and guarantee better separa-
bility in complex and often overlapping datasets, which
is the case in most real-world datasets. Other good
candidates to deal with high data overlap are support
vector machines (SVMs) which have known significant
success in these types of data classification.8,13,34,35

SVM method can best be described as generalized
linear classifiers which map input vectors to a higher
dimensional space (feature space) where a maximal
separating hyperplane is sought to separate two dif-
ferent classes. The idea is thus to minimize the classi-
fication risk by maximizing the inter-class margins or
distances. The mapping of the data into the so-called
feature space is accomplished by means of kernel
functions and the decision function is expressed in
terms of the so-called support vectors. However, SVM
rely on a set of prescribed kernels that can be used for
this problem of complex mapping. As opposed to
SVM, which remains a powerful classification tool, the
proposed nonlinear decision method allows us to take
full ownership of its implementation with the flexibility
of changing the complexity order (r) and investigating
any number of potential dimensions (n) and assess
their individual merit in the classification process of the
dataset and can accommodate any number of dimen-
sions as can be seen from Eq. (2). It is this flexibility of
the nonlinear decision functions and their ability to
handle complex overlapping data that led to the pro-
posed nonlinear approach. Furthermore, the minimi-
zation technique represented by Eq. (4) was selected
because it allowed for defining any type of decision
function, and yet optimization expressions can be
established for any specific measures for seizure
detection.

The minimization of the cost function for all data
points is achieved by setting the partial derivatives of
this cost function with respect to all the weights to
zero. This generates a system of equations that can be
solved iteratively following the gradient descent
method approach, in which the weight increments are
dictated by a learning rate that is chosen to be small
enough to simultaneously seek high accuracy and fast
convergence rates. Thus, for a given point p, the
notation as used in Eq. (5) simplifies to the following
equation:

C ¼ ðD� TÞ2 ð6Þ

to which the chain rule is applied in the following
way:

@C

@W
¼ @C

@D

@D

@W
ð7Þ

where

@C

@D
¼ 2ðD� TÞ ð8Þ

and evidently, the value of @C=@D depends on the
specific decision function used. For simplicity in the
notation, parameter ðXÞ is excluded in the formulation
of C and D.

By subsequently applying this procedure with
respect to all the weights, the following set of equations
are obtained:

@D

@W11
¼ X2

1 ) DW11 ¼ 2kðT�DÞX2
1

@D

@W12
¼ X1X2 ) DW12 ¼ 2kðT�DÞX1X2

@D

@W22
¼ X2

2 ) DW22 ¼ 2kðT�DÞX2
2

@D

@W1
¼ X1 ) DW1 ¼ 2kðT�DÞX1

@D

@W2
¼ X2 ) DW2 ¼ 2kðT�DÞX2

@D

@W3
¼ 1) DW3 ¼ 2kðT�DÞ

2
666666666666666666664

3
777777777777777777775

ð9Þ

In these derivations, k represents the learning rate
that is assumed during the training phase of the algo-
rithm. A set of weights was evaluated and recalculated
throughout the weights optimization process. As a
compromise between faster convergence rates and
maintaining high accuracy in the classification results,
k was empirically chosen as 0.1.

With all the weights determined, the decision
functions expressed through Eq. (3) can now be
established. Since the training files constitute a relative
small percentage of the total number of data files,
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training was set to stop when classification accuracy
of all patterns no longer improved with subsequent
iterations.

The different steps of the procedure that were
followed each time a specific file is processed are as
displayed in Fig. 4. It is noted that there are essentially
two conditions that need to be satisfied for a file to be
declared properly as containing a seizure: (a) crossing
the set statistical threshold, which is the main critical
condition that needs to be met first, and (b) yielding a
positive value for the nonlinear decision function.

Testing Results

Once the detector is trained, the remaining data
were consequently used to test the accuracy of the
classification process using the same decision function

generated in the training phase. Figure 5 shows plots
of the decision functions and the training and testing
points used to create and test the detector, respectively.
In these figures, each point represents a file that meets
the first requirement needed for a file to contain a
seizure. The x-axis represents the first measurement
(duration or X1 of the generalized Eq. 3); and the
y-axis represents the second measurement (maximum
of Sl or X2 of the generalized Eq. 3). In the training
set, the x-axis (duration) was normalized from zero to

Compute the average signal 

µS across all electrodes. 

Count the number of consecutive seconds 
in the part of the signal that crossed the 
statistical threshold and find the maximum 
of µS  in the interval where the condition 

above is met and then use both as inputs of 

the decision function )(XD

Yes

No

Read EEG data

Extract gamma power from all 
electrodes

0)( >XD

No

Yes

Does µS  cross the 

statistical threshold   

σµ +S ?

Seizure detected Seizure not detected

FIGURE 4. Flowchart of the procedural steps followed for
each file.

FIGURE 5. Positive (ictal files) and negative (interictal files)
points used for training and testing and plot of the decision
function. The x-axis represents the duration, whereas the
y-axis represents the maximum value of the inter-electrode
gamma power. (a) training data (r 5 3), (b) testing data (r 5 3).

Comparative Study of Intracranial EEG Files 195



one and in the testing set the duration axis was nor-
malized with respect to the training set. However, since
the normalization was done with respect to the training
set, normalized values of the testing set with respect to
the training set could exceed the values of 1. The 1.2
value in the testing plot Fig. 5b represents the maxi-
mum value of the testing set already normalized with
respect to the training data (Fig. 5a).

The plots show a remarkable separation of seizure
and nonseizure data files with their unique dispersion
and clustering characteristics.

The confusion matrices that were obtained are dis-
played in Table 3 with their corresponding accuracy,
specificity, and sensitivity values. As it can be observed
from Table 3, the total amount of false detections (FN
and FP) is small, and the TP value is rather high. Also
accuracy is above 96%. Notice that patients 12 and 14
show the lowest sensitivity. Interestingly, these two
patients were not included in the training phase and
they are the youngest from that group. They both have
complex partial seizures.

Based on the inter-patient nature of this procedure,
the results can be considered as highly significant.

Comparative Analysis of Nonlinear Classifiers Under
Different Frequency Bands

In order to demonstrate the superiority of the
gamma frequency power, other frequency bands were
also analyzed and compared in terms of their classifi-
cation performance. From Table 4, it can be observed
that as an overall, the best results were obtained under
the gamma frequency. At this juncture, it is noted that
the data are assumed without normalization and that
the degree of nonlinearity is set to 2 (quadratic) for
all frequency bands as we seek uniformity in this

comparative study. Through similar experimental
evaluations, the same conclusion is drawn for higher
values of (r).

Classification Results: Nonlinear Decision Functions vs.
Support Vector Machines

As the gamma frequency is firmly established as the
band most revealing in terms of seizure detection, the
gamma power is thus computed for all the data files,
and the classification process can now proceed.
Through the gamma frequency band, the input data
files were thus classified using the determined nonlinear
decision functions and the results obtained were com-
pared to the results produced using the SVM method
under different degrees of nonlinearity. Table 5 sum-
marizes these results. As noted earlier, the training
dataset which is used as input for generating the
weights of the nonlinear decision functions were nor-
malized to accelerate the convergence rate. The testing
data were also normalized but with respect to the
training set. Figure 6 depicts a 2D decision plane
showing the spread of the training dataset through the
gamma frequency band using normalized plane and
also shows a zooming view of the normalized plane for
better visualization of the overlapped ‘‘-’’points.

TABLE 3. Results obtained after testing on the 122 files
across all patients.

Patient TN FP FN TP Accuracy Sensitivity Specificity

1 N/A N/A 0 2 N/A 1.0 N/A

2 N/A N/A 0 1 N/A 1.0 N/A

3 N/A N/A 1 0 N/A 0.0 N/A

4 N/A N/A 0 1 N/A 1.0 N/A

5 12 0 0 2 1.0 1.0 1.0

6 10 0 0 1 1.0 1.0 1.0

7 5 0 0 1 1.0 1.0 1.0

8 29 1 0 3 0.9697 1.0 0.9667

9 9 0 0 5 1.0 1.0 1.0

10 15 0 0 2 1.0 1.0 1.0

11 3 1 0 2 0.8333 1.0 0.7500

12 5 0 1 2 0.8750 0.6667 1.0

13 1 0 0 1 1.0 1.0 1.0

14 4 0 1 1 0.8333 0.5000 1.0

Total 93 2 3 24 0.9590 0.8889 0.9789

TABLE 4. Performance metric of the classifier for different
frequency bands using nonnormalized input data.

Nonlinear decision functions (n = 2, r = 2)

BAND TN FP FN TP Accuracy % Sensitivity % Specificity %

Delta 93 2 14 13 86.89 48.15 97.89

Theta 95 0 11 16 90.98 59.26 100.00

Alpha 94 1 14 13 87.70 48.15 98.95

Beta I 95 0 10 17 91.80 62.96 100.00

Beta II 92 3 6 21 92.62 77.78 96.84

Gamma 93 2 3 24 95.90 88.89 97.89

TABLE 5. Performance evaluation of the nonlinear decision
functions (NDF) vs. SVM method using gamma power with
22% of the normalized data used for training and 78% of the

data used for testing.

Accuracy % Sensitivity % Specificity %

SVM

Polynomial (r = 2) 95.08 88.89 96.84

Polynomial (r = 3) 95.08 96.3 94.74

Polynomial (r = 4) 94.26 92.59 94.74

NDF

Polynomial (r = 2) 92.62 77.78 96.84

Polynomial (r = 3) 96.72 96.30 96.84

Polynomial (r = 4) 96.72 92.59 97.89

The results shown are those obtained for the testing data only with

the same decision function established in the training phase.
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To ensure the validity of such a normalization
process, observe in Fig. 6 that the spread of the data
remains the same for both nonnormalized and nor-
malized datasets.

It can be concluded that the nonlinear decision
function implemented with r = 3 performed better

across the board in terms of accuracy, sensitivity, and
specificity over SVM. For the data considered, exper-
imental results reveal that a higher degree in the non-
linearity (r> 3) does not necessarily improve the
classification results, but that an increase in processing
time is experienced as anticipated: for r = 2 it took
about 6 min and for r = 3 it took about 7 min), since it
takes more time to generate more weight elements. But
it is important to be able to change this degree of
nonlinearity if other more data is to be taken into
consideration in the future, as more subjects consent to
be part of this study. Furthermore, unlike the gradient
descent methods, the computational complexity of
SVM does not depend on the dimensionality of the
input space, which is a powerful characteristic of SVM.
However, with the rescaling (normalization) of the
data, the NDF method performed at a much faster
rate. It is important to emphasize again that once the
decision function is generated in the training phase, the
same decision function is used in the testing phase.
More importantly, with the use of NDF, the process of
transforming the input data to a new feature space as
required in SVM prior to the classification process is
no longer necessary for the case of NDF.

CONCLUSIONS

Our study demonstrated the feasibility of detecting
seizures on iEEG using an automated detection algo-
rithm based on the gamma frequency range and
embedding nonlinear decision functions for classifica-
tion purposes in a 2D decisional space. We have shown
that the power measurement in the gamma range from
36 to 44 Hz contains the necessary information to
discriminate seizures with a sensitivity of 96.3%, a
specificity of 96.8%, and an accuracy of 96.7%. These
results were obtained with a nonlinearity degree of
3 (these are polynomials of the third order), and
where the two most discriminating features that con-
stituted the 2D decisional space were determined to be:
(1) the time duration (the number of consecutive
points) where the value of each given point in the inter-
electrode mean signal Sl exceeded the set statistical
threshold T ¼ Sl þ r; and (2) The maximum value of
Sl in that specific interval.

Of particular value is the generalized nature of the
algorithm, and its feasibility in the absence of patient-
specific training data. This feature is demonstrated
most clearly by the test characteristics in patients who
were not part of the training data. In general, it is
worth mentioning that although only 22% of the
files were used randomly for creating the detector,
high measures in sensitivity, specificity, and accuracy
were achieved. It is also interesting to note that no

FIGURE 6. 2D decision plane showing the spread of the
training dataset through the gamma frequency band using (a)
normalized plane displayed for convenience, and (b) a
zooming view of the normalized plane in (a) for better visu-
alization of the overlapped ‘‘-’’ points. The x-axis represents
the duration (x 3 1000 s), whereas the y-axis represents the
maximum value of the inter-electrode gamma power.
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cross-validation was performed during the training
phase of the detector (decision function); yet, good
testing results were obtained.

The computational requirements for creating the
nonlinear decision functions during the training phase
and the ensuing results during the testing phase reveal
additional findings that are quite interesting: the data
clusters of seizure files seem more spread out than
those data clusters of files not leading to seizures,
which clearly prove that seizures which are atypical
events obviously vary greatly among subjects, and that
such nonlinear decision functions are most capable of
delineating such wide-ranging behaviors.

The study has so far included 14 patients who
underwent two-stage epilepsy surgery with subdural
recording, and whose iEEG data were obtained
sequentially. We anticipate gaining more insight into
the findings reported in this study as more patients in
the future will consent to be included in this study. It is
expected that as more data are collected, the more
understanding will be gained into the clustering
characteristics of epileptogenic data. Our future efforts
will also be directed toward extending this approach
by using the principal component analysis17,25,28 to
establish other discriminating dimensions in order to
increase the domain of analysis from 2D to 3D or even
higher dimensions for more elaborate decision planes.
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