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Abstract—When imaging the heart using MRI, an artefact-
free electrocardiograph (ECG) signal is not only important
for monitoring the patient’s heart activity but also essential
for cardiac gating to reduce noise in MR images induced by
moving organs. The fundamental problem in conventional
ECG is the distortion induced by electromagnetic interfer-
ence. Here, we propose an adaptive algorithm for the
suppression of MR gradient artefacts (MRGAs) in ECG
leads of a cardiac MRI gating system. We have modeled
MRGAs by assuming a source of strong pulses used for
dephasing the MR signal. The modeled MRGAs are rectan-
gular pulse-like signals. We used an event-synchronous
adaptive digital filter whose reference signal is synchronous
to the gradient peaks of MRI. The event detection processor
for the event-synchronous adaptive digital filter was imple-
mented using the phase space method—a sort of topology
mapping method—and least-squares acceleration filter. For
evaluating the efficiency of the proposed method, the filter
was tested using simulation and actual data. The proposed
method requires a simple experimental setup that does not
require extra hardware connections to obtain the reference
signals of adaptive digital filter. The proposed algorithm was
more effective than the multichannel approach.

Keywords—ECG, MR gradient artefacts, Cardiac gating,

Event synchronous, Adaptive digital filter.

INTRODUCTION

Magnetic resonance imaging (MRI) is a clinically
important medical imaging modality, and it provides
biomedical, anatomical, and functional information on
biochemical compounds within any cross section of the
human body.

When imaging the heart using MRI, a clean and
artefact-free electrocardiograph (ECG) signal is not
only important for monitoring the patient’s heart
activity and heart rate but also essential for cardiac
gating. Because conventional MRI images are formed
from a number of sequence repetitions, imaging a
moving organ, such as the heart, requires each sequence
to be triggered at the same part of the cardiac cycle.
Several different triggering techniques can be used,
including finger plethysmography and carotid pulse
tracings, but ECG is the most widely used technique.15

ECG gating using a cardiac cycle can synchronize
MRI sequence acquisition to an ECG R-wave in order
to eliminate image motion artefacts induced by heart
and vessel contractions, as well as pulsatile flow in the
blood vessels. A fundamental problem associated with
using conventional ECG to monitor a subject’s cardiac
activity during performing MRI is ECG distortion in-
duced by electromagnetic interference. ECG signals are
heavily disturbed by static magnetic field interference
and magnetic-gradient-related interference. In addi-
tion, distortion of the ECG trace due to time-varying
gradients can be very large and unpredictable for some
combinations of the patient anatomy, sequence type,
electrode placement, and quality of contact.

Furthermore, all of these examples produce arte-
facts that may vary from one individual to another, as
well as on a beat-to-beat basis within the same indi-
vidual. A possible method for the removal of artefacts
would be suppression using numerical techniques,
because the artefacts are supposedly caused by physi-
ological effects which are caused by time-varying
magnetic fields to acquire MRI images.

One of typical physiological effects is the electric
field induction. In detail, a steady electric field pro-
duces surface charges on conducting objects, including
the human body. Positive charges are accumulated on
the side of conducting body nearest to the negative
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source of the field, and negative charges on the side
nearest to the positive source. If the field is alternating,
the positive and negative charges alternate in position,
resulting in an alternating current within the biological
medium.

In the past, various strategies have been proposed
to enable ECG recording in MR environ-
ments.5,6,12,16–18,21,22 Many published ECG acquisition
schemes are based on reduced bandwidths. Further,
solutions based on vector cardiograms andMR imaging
techniques have beenproposed.8,14Unfortunately, these
solutions are not applicable to patient monitoring.
Other MRI artefact suppression methods have been
developed for processing MRI signals disturbed during
MRI examinations, but most of these methods focus on
the ECG for functional MRI (fMRI) applications and
often use a predefined MR image sequence.3,4,7,10,19

These methods based on fixed filters have certain
drawbacks. When a strong magnetic field is radiated
by gradient coils, the MR gradient artefacts (MRGAs)
induced on the ECG trace depend on the gradient
scenarios. Further, the shape of the artefacts induced
in the ECG depends strongly on the MRI scan
parameters. Therefore, these MRGAs could not be
removed by conventional FIR or IIR filters with fixed
coefficients. In this case, the filters should be able to
adapt to the MRI scan parameters in the ECG trace.
To this end, an adaptive filtering technique can be
used. The use of an adaptive filter can provide both
flexibility and effectiveness. An adaptive filter can be
used in any situation where noise interference is
embedded in the signal of interest, such as that in the
case of field measurements of biological signals.

Recently, combined wavelet sub-band decomposi-
tion and adaptive filtering, which are used for the real-
time suppression of artefacts caused by MR gradients,
have been proposed2 and the method of suppressing
MRGAs using an adaptive noise canceller (ANC) was
suggested.1 The method in Abacherli et al.1 requires
gradient pulse signals (Gx, Gy, and Gz) as the reference
signals, which are obtained from the MR scanner’s
gradient amplifier. It has a disadvantage which
requires extra hardware connections to obtain the
reference signals of adaptive digital filter. The method
in Abi-Abdallah et al.2 used a signal processing algo-
rithm based on an adaptive digital filter and a wavelet-
based filter bank decomposition strategy that allows
the extraction of an efficient reference signal from a
contaminated ECG, mainly for MRI synchronization.
However this method requires off-line filter computa-
tion phase. In the proposed method, the adaptive filter
and event detector are computed on-line.

In the study, we proposed an adaptive algorithm for
the suppression of MRGAs in the ECG leads of a
cardiac MRI gating system. The proposed algorithm

uses an event-synchronous adaptive digital filter whose
reference signal is synchronous to the gradient peaks of
MRI. The main feature of the proposed algorithm is
that it extracts the gradient pulses directly from the
three-lead ECG signal contaminated by the MRGAs.
Therefore, unlike the previous ANC-based method,1 no
external devices are required for acquiring the gradient
pulse signals. Instead, the gradient pulses are generated
based on a combination of three noisy ECG signals.

The proposed method is independent of the MR
scanner such that the real-time system can be con-
structed with minimum hardware connections.
Another advantage of the proposed system is that due
to the nature of the synthesized gradient pulses, its
adaptation needs to be performed only for the period
of the event pulses, which simplifies the algorithm for
implementation but robust to the strong ECG com-
ponent in the desired channel.

The section ‘‘Methodology’’ provides a detailed
description of the modeling and suppression of
MRGAs using the proposed method. The sec-
tion ‘‘Experimental setup’’ provides the experiment
details and performance metric for the suppression of
MRGAs. The section ‘‘Results’’ provides the simula-
tion examples as well as the results of artefact cancel-
lation in order to further understand the improvement
in the MR image using the proposed cardiac gating
method. Finally, sections ‘‘Discussion’’ and
‘‘Conclusion’’ provide the discussions and conclusions.

METHODOLOGY

Modeling of MRGAs

The origin of interference due to gradient switching
is not yet clear; the acquisition wires and/or the tissues
of the subject can form an inductive loop. Therefore,
we have modeled MRGAs as the source of strong
pulses that were used for dephasing the MR signal.

The voltages induced by the MR gradient produce
artefacts that are added to the electrophysiological
signal. A simplified model of MRGA generation is
shown in Fig. 1.

The MRGAs included in lead j as a result of varying
the MR gradient, denoted by aj(t), are modeled as
follows1:

ajðtÞ ¼ g ~BðtÞ
� �

¼ �
d ~GðtÞ �~rðtÞ
� �

� AðtÞ
� �

dt
ð1Þ

where ~BðtÞ is the magnetic field in the MR bore, ~GðtÞ is
a vector containing three gradient signals Gx(t), Gy(t),
and Gz(t), ~rðtÞ are the coordinates of the MR bore
where induction of ~BðtÞ into the human subject occurs,
and A(t) is the active area where the magnetic flux
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flows through the human tissue, lead wires, and ECG
electrodes. Therefore, if the magnetic field ~BðtÞ is
known, the MRGA in the ECG lead j aj(t) can be
modeled using Eq. (1). However, ~BðtÞ cannot be
detected in practical systems.

From Eq. (1), the MRGA aj(t) can also be expressed
as a function of the gradient vector:

ajðtÞ ¼ fx;jðGxðtÞÞ þ fy;jðGyðtÞÞ þ fz;jðGzðtÞÞ ð2Þ

where Gx(t), Gy(t), and Gz(t) are the components of
~GðtÞ along the x, y, and z axis. fk,j (Æ), k = x, y, z in
Eq. (2) denote the functions mapping the x, y, and z gra-
dient components onto aj(t), and these can be conve-
niently modeled using linear FIR filters. Thus, we have

fk;jðGkðtÞÞ ¼ /k; jðtÞ � GkðtÞ; k ¼ x; y; z; ð3Þ

where /k,j(t) is the impulse response of the path
between the gradient components to the MRGA in the
ECG lead aj(t) and � denotes the convolution opera-
tion.

Using Eq. (3), Eq. (2) can be rewritten as

ajðtÞ ¼ /x; jðtÞ�GxðtÞþ/y; jðtÞ�GyðtÞþ/z; jðtÞ�GzðtÞ
ð4Þ

Therefore, if the gradient components Gx(t), Gy(t),
and Gz(t) are known, it is possible to linearly esti-
mate and reduce the artefacts in aj(t). However, to
conform to this assumption, we have to use extra
channels to detect the x, y, and z gradient compo-
nents of the MR, because these components are not
generally available.

The gradient components Gx(t), Gy(t), and Gz(t) are
dependent on the MR gradient sequence. The MR
gradient sequence along each axis comprise gradient
selection (GXS), gradient reading (GXR), gradient
coding (GXC), and gradient coding static (GXCS).
Further, the sequence of Gx(t), Gy(t), and Gz(t) required
for switching three gradient amplifiers generally com-
prises a rectangular-like pulse. Each sequence of the
three gradient components is synchronized with a very
short time delay. Based on the abovementioned facts,
we can conclude that if the generation of the three
gradient components is caused by the same source r(t),
then the program sequence of the three gradient com-
ponents can be modeled using r(t).

Thus, the process between the program sequence
denoted by r(t) and the gradient components can also
be conveniently modeled using linear FIR filters as
shown by

GkðtÞ ¼ bkðtÞ � rðtÞ; k ¼ x; y; z ð5Þ

where bk(t) is the impulse response of the system
between the gradient source r(t) and the x, y, and z
components of the gradients Gx(t), Gy(t), and Gz(t).
Although the hardware components used in Abacherli
et al.1 included nonlinear components, linear modeling
of the process is sufficient to estimate MRGAs induced
in the ECG lead, which will be confirmed through
experiments.

Now, Eqs. (4) and (5) can be rewritten as

ajðtÞ ¼ /x; jðtÞ � bxðtÞ � rðtÞ þ /y; jðtÞ � byðtÞ � rðtÞ
þ /z; jðtÞ � bzðtÞ � rðtÞ ¼ cjðtÞ � rðtÞ ð6Þ

FIGURE 1. Simplified model for MRGA generation.
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where

cjðtÞ ¼ hx; jðtÞ � bxðtÞ þ hy; jðtÞ � byðtÞ þ hz; jðtÞ � bzðtÞ
ð7Þ

Here, cj(t) denotes a combined impulse response of the
possible paths between the gradient source and the
ECG lead j.

If the MRGA is extended to the three-lead ECG
system, the artefacts induced in Leads I, II, and III
(aI(t), aII(t), and aIII(t)) can be expressed as

ajðtÞ ffi cjðtÞ � rðtÞ; j ¼ I; II; III ð8Þ

Thus, given a gradient source r(t), cj(t) can be esti-
mated using the model in Eq. (8). However, a priori
information about r(t) is generally not available unless
r(t) is directly detected from the MRI hardware sys-
tem. Therefore, we have to develop a method of esti-
mating the gradient source signal. To this end, we
utilize the ‘‘three-lead vector system’’ within the ECG
because it is necessary to acquire the artefact-only
signal induced by the MR gradients.

Suppression of MRGAs

The contaminated ECG signal contains both the
ECG signal and MRGAs. The output of the ECG lead
j can be expressed as

ljðnÞ ¼ cjðnÞ þ ajðnÞ; j ¼ I; II; III ð9Þ

where cj(n) and aj(n) are the sampled versions of the
pure ECG signal and the MRGA in the ECG lead j. To
estimate the MRGA in the ECG leads, the minimum
mean-square error (MMSE) criterion can be applied to
the models in Eqs. (4) and (6). Figures 2 and 3 show
the schematic diagrams of the models described in Eqs.
(4) and (6).

Equation (4) and Fig. 2 indicate that given the
gradient components, the MRGA in the ECG lead can

be linearly modeled using a multichannel filter. Thus,
the MRGA in the ECG lead j is estimated as follows11:

âjðnÞ ¼WT
j GðnÞ ð10Þ

where

Wj ¼ wT
x;j w

T
y;j w

T
z;j

h iT
;

GðnÞ ¼ gTx ðnÞ gTy ðnÞ gTz ðnÞ
h iT ð11Þ

and wx,j, wy,j, and wz,j are the (N 9 1) weight vectors
being applied to the x, y, and z gradient inputs con-
tained in the vectors gx(n), gy(n), and gz(n), respec-
tively. The estimation error is formulated as

ejðnÞ ¼ ljðnÞ � âjðnÞ: ð12Þ

The optimum weight vectors are obtained by using the
MMSE criterion where the mean-square error (MSE)

function is defined as nj ¼ E ejðnÞ
�� ��2n o

: The optimum

weight vector is then given by

Wo
j ¼ R�1pj ð13Þ

where R = E{G(n)GT(n)} and pj = E{lj(n)G(n)} denote
the (3N 9 3N) autocorrelation matrix and (3N 9 1)
cross-correlation vector, respectively.

Abacherli et al.1 proposed a method of estimating
the MRGAs using an adaptive digital filter. They
used three additional analog gradient signals acquired
from the gradient coil of the MRI system. This
method has some drawbacks, e.g., an additional
hardware interface circuit is necessarily required for
acquiring the three-axis gradient signals and the
system can become complex because the system is
dependent on MRI.

On the other hand, using Eq. (6) and Fig. 3, the
MRGA in the ECG lead j can also be modeled as

âjðnÞ ¼ hTj sðnÞ ð14Þ

FIGURE 2. Schematic diagram of model to estimate MRGA using three-channel gradient signals. Gx (n), Gy (n), and Gz (n) are
analog gradient signals acquired from the gradient coil of the MRI system in the x, y, and z axis. Hx,j, Hy,j, and Hz,j are weight vectors
being applied to the x, y, and z gradient input signals. aj (n) is the estimated artefact signal in the each three channels.
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where hj and s(n) are the (M 9 1) weight vector [hj,0,
hj,0,…,hj,M–1]

T and the reference input vector [s(n),
s(n � 1), …, s(n � M + 1)]T containing samples of the
gradient source signal r(t). Now, the MRGA is mod-
eled using a single-channel filter whose weight vector is
determined according to the MMSE criterion as

hoj ¼ U�1hj ð15Þ

where U ¼ E{s(n)sT(n)} and hj ¼ E{lj(n)s(n)} denote
the (M 9 M) autocorrelation matrix and (M 9 1)
cross-correlation vector, respectively.

The main difference between the two approaches in
Eqs. (10) and (14) is the input signal to the filters. In
the former approach, three gradient signals gx(n),
gy(n), and gz(n) are used as the reference inputs to the
multichannel filter, which are obtained from the
hardware interface, and the sampling rate should be
sufficiently high to accurately acquire the gradient
shapes; further, greater computational complexity is
required for real-time implementation. However, in the
latter approach, a single-reference channel is used
instead of three reference channels. Thus, the filter
required in the second approach has a simpler and
more efficient structure than that required in the first
approach, only if the gradient source signal s(n) is
available. Like the gradient components, however, the
gradient source signal is not available in general. Thus,
either an extra hardware interface or a signal pro-
cessing technique is required for estimating s(n) from
the available signals.

In this paper, we propose a method for synthesizing
the reference signal and estimating the gradient source
signal from the vector sum of the three contaminated
ECG leads. The synthesized reference signal models
the MR gradient source signal using unit square pulses
which are generated at the positions of the detected
peaks to yield the gradient source signal r(t) or s(n).
Thereafter, the generated square pulses are then
applied to the estimation filter as the reference input.
As a consequence, the proposed algorithm does
not require extra hardware connections to obtain the

reference signals. Furthermore, the adaptive algorithm
for the single-channel model in Eq. (14) becomes much
simpler due to the special structure of the reference
signal, which will be discussed below.

Synthesis of Gradient Source for Reference Input

The gradient source signal used as the reference
signal for the filter shown in Fig. 3 is not available in
general.

In the contaminated ECG measurements, a vector
sum defined by ‘‘Lead I � Lead II + Lead III’’ yields
a characteristic function with a zero value. However,
the MRGAs in the three ECG leads are not cancelled
by the vector sum. Therefore, the vector sum will
include only the artefacts induced by the MR gradi-
ents. The remaining artefacts after the vector sum can
be considered as signals with arbitrary direction
vectors, which are different from the original directions
of Leads I, II, and III.

The vector sum produces

gðnÞ ¼ lIðnÞ � lIIðnÞ þ lIIIðnÞ
¼ aIðtÞ � aIIðtÞ þ aIIIðtÞ þ eðnÞ ð16Þ

where g(n) is the vector sum of the three leads and e(n)
is the residue of the ECG component after the vector
sum, which is much smaller than the remaining
MRGAs, namely, aI(n) � aII(n) + aIII(n).

It should be noted that the vector sum signal can be
used as the reference input of the adaptive filter
because it mainly comprises the MRGA components.
However, the vector sum contains noise only within
the periods between the MR gradient pulses. Fur-
thermore, the gradient pulses are generally sparse.
Thus, a large portion of the vector sum is filled with
noise that is independent of the gradient pulses, which
in turn degrades the modeling accuracy of the MRGA
in the ECG lead. Further, due to the morphological
similarity between the MRGA and ECG signals, the
ECG components in the desired channel function as
interference to the modeling system. In order to avoid

FIGURE 3. Schematic diagram of model to estimate MRGAs using gradient source r(t).
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the negative effects of the ECG components, the
desired signal should be recorded when the ECG is
absent, which is, however, impractical.

The period between the gradient pulses are filled
with zeros. Due to these zeros, we can alleviate the
abovementioned problems associated with the vector-
sum reference signal.

To model the gradient source signal, we first detect
the peaks of the MRGA in the vector sum. Later, the
unit square pulses are generated synchronously with
the detected peaks. The peaks of the MR gradient
pulses are detected using an event detection processor.
A block diagram of the event detection processor is
shown in Fig. 4. This processor was implemented using
the phase space method (PSM), which is a sort of a
topology mapping method, and a least-squares accel-
eration filter (LSAF). The PSM is a topology mapping
algorithm that can detect points from a characteristic
form of the signal occurring in real time.20 The
PSM—a topology mapping method for peak detec-
tion—is advantageous in saving computational cost,
which is important for real-time processing. Further,
the LSA filter, a family of finite impulse response
(FIR) filters, has been proposed to estimate the
derivative or acceleration of a digitized signal.9 LSAF
is a simple mathematical algorithm used to detect the
most morphologically distinct sharpness.9

Since the order of the LSA filter corresponds to the
number of data points per window to be used in the
sharpness estimates, we can simply adjust the order to

make the window length equal to the typical duration
of the waveform whose sharpness is to be measured.
The output of a pth-order LSA filter, x̂ðnÞ; is defined as

x̂ðnÞ ¼
Xp�1

i¼0
ligðn� iÞ ð17Þ

where g(n) is the vector sum signal used as the input of
the LSA filter and li, 0 £ i £ p � 1, are the weights of
the LSA filter. This approach is (1) computationally
simple, (2) can be performed in real time, and (3) is
robust in the presence of noise. Furthermore, the
design method is extended to derive FIR filters for
estimating the derivatives of an arbitrary order in
digital signals of biological or other origins.

In the course of the event detection process, the
vector sum signal g(n) is applied to the LSAF. After
the LSA filtering, a topology mapping method is used
to extract the peak points from the LSAF output.
Finally, square pulses with a width W are generated
synchronously to the detected peaks. The main steps
in the synthesis of the reference input signal are as
follows:

Step 1: A gradient-only signal can be synthesized
through a vector sum (Eq. 16).

Step 2: To emphasize the peak of the MR gradient-
only signal, the vector sum signal is applied
to the LSAF (Eq. 17).

Step 3: A simple peak detection method based on
the threshold and PSM is used to detect the
peaks.

Step 4: Square pulses are synchronously generated
to the detected peaks.

A synthesis example of impulse-like square pulses
using an event detection processor is shown in Fig. 5.
Figure 5a shows the three-lead ECG signals (Leads I,
II, and III) corrupted by the gradient source in the
MRI hardware amplifiers. Figure 5b shows the gradi-
ent-only signal g(n) obtained by the vector sum, and
Fig. 5c shows the output of the 5th-order LSA filter.
The trajectories of the LSAF output signal are shown
in Fig. 5e. The synthesized gradient-only signal and the
LSAF output are mapped onto a two-dimensional
phase space with respect to the delay of one sample
corresponding to 1 ms. The region of the peak is sha-
ded in the figures. In the phase space plot (Fig. 5e),
peaks in the LSAF output signal of the vector sum
signal appear in the third quadrant. Finally, synchro-
nous impulse-like square pulses applied to the refer-
ence channel of the event-synchronous adaptive digital
filter are generated. Figure 5f shows the synthesized
impulse-like square pulses.FIGURE 4. Block diagram of event detection processor.
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Adaptive Estimation and Suppression of MRGAs

To address the time-varying feature of MRGAs in
ECG leads, the adaptive estimation of MRGAs is
necessary. For the updating process, the filter weights
the adaptive algorithms. In this paper, we use a com-
putationally efficient adaptive algorithm based on the
least mean square (LMS) adaptive filter.

Laguna et al.13 have proposed an ANC for the
deterministic component of event-related signals that
are time-locked to a stimulus, wherein a pulse related
to the stimulus was used as a reference input. In this
method, the deterministic component of the signal is
estimated and the noise uncorrelated with the stimulus
is removed, even if this noise is colored such as that in
the case of evoked potentials; further, transient chan-
ges in the deterministic signal are better reflected than
those obtained from an ensemble average method.13

The adaptive algorithm used in this study is a gen-
eralized form of a previous one described in Laguna

et al.13 In this study, the adaptive filter uses contami-
nated ECG signals lj(n) as the primary input. The
reference signal ŝðnÞ is a synthesized one comprising a
sequence of unit square pulses with width W, instead
of impulses. The square pulses are synchronized to the
peaks of the MR artefacts in the ECG leads. As pre-
viously mentioned, the synthesized reference signal is
used to model the MR gradient source signal s(n). By
setting the inputs between the square pulses to zero,
filter adaptation needs to be performed only during the
period corresponding to the width of the square pulses.
Thus, since the adaptation is synchronous to the
detected events of the MRGAs, we will refer to this
algorithm as the event-synchronous adaptive interfer-
ence canceller (ES-AIC).

A schematic diagram of the proposed system is
shown in Fig. 6. The weight vector of the adaptive
filter is updated using the LMS algorithm. However,
due to the special structure of the reference input, the

FIGURE 5. Synthesis of ES-AIC reference signal using vector sum of three-lead ECG and phase space plot of LSA-filtered output:
(a) Three-lead ECG signal with MRGAs, (b) vector sum signal of three-lead ECG, (c) LSAF output of vector sum, (d) enlarged plot of
grayed area, (e) phase space plot of (d), and (f) synthesized reference signal for ES-AIC.
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adaptive algorithm is reduced into a much simpler
form than that in the conventional LMS algorithm.
The reference input consists of unit square pulses of
width W given by

ŝðnÞ ¼ 1; qm � n � qm þW� 1
0; otherwise

�
ð18Þ

where qm is the location of the mth peak of the MR
gradient.

Assume that the width of the square pulse W is
much smaller than the filter order M. Since the refer-
ence input can have a value of either zero or one, the
filter output y(n) is computed as

yjðnÞ ¼
[

qm2½n�Mþ1;n�W�

Xn�qm
i¼n�qm�W

hj;iðnÞ
 !

ð19Þ

Now, the LMS algorithm for the weight update is
summarized as

where l is the convergence parameter.
The proposed algorithm updates the weight vector

only during the period corresponding to the width of
the square pulses. Since the square pulses in the ref-
erence input are sparse, the filtering and update pro-
cesses are performed over only a small portion of the
input signal.

The advantages of this scheme are two-fold. First,
we can minimize the effect of relatively strong inter-
ference, i.e., the ECG component, in the desired
channel. In general, the weight vector can deviate from
the optimal one if a strong interference is present in
the desired channel.11 Morphologically, the ECG

component and MRGA are similar to each other.1,7

Thus, it is desirable to minimize the amount of weight
adjustment when the ECG component appears in the
desired channel. Because of the zeros between the
square pulses, the adaptive filter attempts to estimate
only the components synchronized to the square pul-
ses. In this way, the adaptive filter can minimize the
effects of ECG components in the desired channel. In
addition, the zeros minimize the effects of noise
between the MR gradient pulses.

The second advantage of the proposed scheme is
its computational simplicity. The filtering process
described inEq. (19) requiresW 9 K additions, whereK
is the number of peaksofMRGAswithin the timeperiod
covered by the M-sample reference input. The LMS
update procedure described in Eq. (20) also requires
W 9 K multiply-and-accumulate (MAC) operations.

The proposed algorithm requires an on-line event
detector and adaptive filter working on a sample-by-

sample basis and it does not introduce any algorithmic
bulk-delay. One possible delay is the one caused by
input-output buffering of the real-time system. The
essential adaptation time, which is feature of early state
at application of adaptive filter, is appeared as another
delay unit which needs a few periods of ECG. There is
a data I/O unit with FIFO (First Input First Output)
structure which is used as input-out buffering in data
acquisition system. However, the delay of the real-time
I/O depends on the hardware, which is beyond the
scope of this paper. The real-time I/O implemented on
the test system is designed by the embedded system
with a ADC and DSP (Digital Signal Processor).

FIGURE 6. Schematic diagram of proposed system.

wiðnþ 1Þ ¼ wiðnÞ þ leðnÞ; n� qm �W � i � n� qm; for all qm 2 ½n�Nþ 1; n�W�
wiðnÞ; otherwise

�
ð20Þ
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EXPERIMENTAL SETUP

Experimental Details

The experiments were conducted on a 0.35 T MRI
system. The ECG data were collated using preampli-
fiers and analog band-pass filters with four carbon
electrodes and a sampling rate of 10 kHz. The pre-
amplifier gain was 1000 (60 dB), and the bandwidth of
the analog filter was 0.1–500 Hz. The data acquisition
system was located in a shielded box. The carbon
electrode leads (coax cables, 1 mm thick, and 200 cm
long) were bundled together and firmly fixed. Precau-
tion was taken not to put any loops in the leads. Next,
the leads were attached to the inputs of the ECG
preamplifier just outside the magnet’s bore. The
amplified signal was then carried through a current
loop drive to the PC. A block diagram of the mea-
surement system is shown in Fig. 7. Simultaneous ECG/
MRI acquisition was performed using normal subjects,
and the tested arrangement of the electrode position is
shown in Fig. 8. Various imaging sequences, such as
spin echo (SE), fast spin echo (FSE), gradient echo (GE),
and fast gradient echo (FGE) were applied with various
echoes (TE), repetition times (TR), andnumber of image
slices. The recording for each sequence was performed
for 2–5 min.

Performance Metric for MRGA Suppression

In this section, the efficiency and accuracy of the
method were demonstrated by post-processing a large
number of ECG signals from a widely different set of
MR pulse sequences and also by performing real-time
tests on adult subjects under standard MRI scanning
conditions.

FIGURE 7. Block diagram of measurement system: (a, b) ECG measurement system; (c, d) gating controller (digital control box).

FIGURE 8. Tested electrode position.
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We analyzed the MR interference induced during
various gradient scenarios. Further, we evaluated the
performance of the proposed method using various
types of simulated and real data sets. The proposed
method was compared with a multichannel ANC,
which was previously proposed in Abacherli et al.1

where a more general method in adaptive estimation
was employed. In order to determine the performance,
we measured the signal-to-noise ratio (SNR)
improvement defined as

SNRd ¼
E½c2k�
E½a2k�

¼ E½c2k�
E½ðlk � ykÞ2�

: ð21Þ

where E[ck
2] and E[ak

2] are the expected values of ck and
ak at a discrete time k and yk is the filter output. In our
setup, ck denotes the ECG; ak, MRGA; and lk, the sum
of the ECG and artefact. In our setup, SNR implies the
power ratio of the ECG and MRGA. The objective of
the performance metric is to determine SNR
enhancement between the input signal lk and filter
output signal yk, which is correlated with ck.

When the algorithm has converged to the steady
state, the SNR was calculated using ck, ak, and yk.
Further, we repeated the simulation using different
noise sequences and the same ECG signal. In this
study, we used the LMS algorithm to adjust the
weights in our adaptive process. The order of the filter
was 180, and a learning rate was experimentally set to
0.1.

RESULTS

ECG–MRGA Shape Analysis and Synthesis
of Reference Signal

When a strong magnetic field was radiated by the
gradient coil, MRGAs induced on the ECG trace
considerably depended on the gradient scenarios. In
this section, the MRGAs on the ECG signals for the
various scenarios were analyzed. Figure 9 shows an
analysis of the MRGAs on ECG signals during specific
gradient scenarios, namely, SE with a TR value of
200 ms.

The first panel of Fig. 9 shows the gradient wave-
forms in three diffusion directions (x, y, and z). The
second panel shows Leads I, II, and III of the ECG.
The third panel shows the signal synthesized as the
vector sum of the three ECG leads, which was used to
formulate the reference signal of the ES-AIC. The last
panel shows the time-frequency analysis of the syn-
thesized signal (the third panel). In the ECG, the vec-
tor sum defined as ‘‘Lead I � Lead II + Lead III’’
leads to a characteristic function with a zero value. To
analyze this characteristic feature, we used the time-
frequency analysis: when considering a signal that is a
mixture of ECG and MRGAs, this method is a very
effective way to determine the spectral density of each
signal. In particular, it is a much more effective method
in examining the energy distribution of a signal,
including a heavy peak, for a specific time. As can be

FIGURE 9. MR interference analysis during SE scenarios of gradient. The first panel shows the gradient waveforms in three
diffusion directions (x, y, and z). The second panel shows Leads I, II, and III of the contaminated ECG. The third panel shows the
signal synthesized as the vector sum of the contaminated three ECG leads. The last panel shows the time-frequency analysis of the
synthesized signal which is shown in the third panel.
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seen from the time-frequency analyses (the last panel),
the synthesized reference signal obtained from the
vector sum does not contain the ECG components, as
shown in Fig. 9. Therefore, the synthesized reference
signal can be efficiently used to develop the reference
signal of the ES-AIC, as shown in Fig. 5.

Simulation Study

A simulation study was carried out to test the per-
formance of the proposed method. To quantitatively
evaluate if the proposed filter sufficiently eliminates
MRGAs induced in the ECG, both the ECG and the
artefact signal applied to the input node of the pro-
posed filter should be necessarily known. Further, the
performance of the proposed filter can be estimated
more objectively by using the simulated data than the
actual patient data. Pure MRGA and a pure ECG

signal is necessary to accurately evaluate the perfor-
mance. Therefore, we used an artificial experiment to
simulate our setup. To generate various simulation
data sets according to the MR gradient scenarios, we
used various simulation setups.

A test signal was synthesized as a sequence of
records dk. Each one consisted of a pure ECG signal
(ck), taken from a real ECG signal, and additive
MRGA (ak). Attaching ECG electrodes to the lower
right arm enabled the acquisition of pure MRGA be-
cause ECG could not be measured in this position.
Further, a pure ECG signal could be measured easily
in the gradient-off condition. Through the linear
summation of pure MRGAs and pure ECG signal, the
simulation signals (lk) were formulated.

Figure 10 shows the time courses of the simulation
data for a SNR value of �3 dB in the case of SE, FSE,
GE, DW-EPI scenarios, which are the various simu-
lation data.
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FIGURE 10. Simulated data set through linear summation of pure MRGAs and pure ECG signal: (a) SE, (b) FSE, (c) GE, and
(d) DW-EPI scenarios.
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At the top, we can see pure ECG signals (Leads I, II,
and III), which are present in each lead. The second
row displays three-lead MRGAs induced in the human
body. The third row shows the output signals of the
three gradient amplifiers (Gx, Gy, and Gz) in the MRI
hardware system. Next, the three-lead ECG signals
with MRGAs, which were used as the input of the
ES-AIC, are shown in the last three rows after a linear
summation of the ECG and artefacts. The signal res-
olution was 16 bit, and it was sampled at 1 kHz.

We analyzed various simulation data which are
shown in Fig. 10. Further, the proposed ES-AIC and
ANC with a multichannel reference were compared.
Both the above mentioned filters were applied to the
simulation signal dk. Moreover, a reference signal for
the proposed ES-AIC was synthesized as an impulse-
like pulse at the beginning of an incoming gradient and
three reference signals (Gx, Gy, and Gz) for the ANC
with a multichannel reference were acquired in the
gradient amplifier of MRI.

In addition, the various SNR values were studied by
changing the power of the ECG signal because the
performance of the filter can be different according to
the relative power of the artefact and ECG signal.
Further, many different gradients in various scenarios
were applied. For each scenario, the signals with a SNR
value of 30 dB are generated by increasing the SNR
value from �20 dB to 10 dB for an increment rate
of 1 dB. After applying the simulation data to the

proposed method, the mean square error (MSE) of the
estimated ECG and SNR improvement were calcu-
lated. Figure 11 shows several results obtained using
the proposed ES-AIC and multichannel ANC accord-
ing to the simulation data with different SNR values.

In this analysis, the proposed ES-AIC and multi-
channel ANC yielded comparable results; therefore, we
can verify the filter performance under the simulation
conditions. The top row shows a pure ECG signal, and
the second, third, fourth, and fifth rows list the results
using two filtering methods according to the data with
different SNR values. Here, we can see that the ES-
AIC performs as effectively as the multichannel ANC,
but the results in Fig. 11 are not sufficiently distin-
guishable to quantitatively evaluate the performance.

Therefore, we quantitatively analyzed the perfor-
mance using a MSE curve according to the SNR value.
Figure 12 shows the MSE according to the variation in
the SNR values of the simulated data. Figure 12 shows
a comparison of the performance for different noise
levels. The parameters of all the scenarios are the same
as those above. Here, the learning rate of the two
methods is set to 0.01.

Cancellation of MRGAs Using Real Data

Based on the abovementioned results, the perfor-
mance of the filter using real data was evaluated.
Figure 13 shows the results for three types of real data

FIGURE 11. Simulation results according to data obtained using various SNR values: (a) SE, (b) FSE, (c) GE, and (d) DW-EPI
scenarios.
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measured from the subjects. Three types of real data
are GE, DW-EPI and SE scenarios. Especially the real
data of the SE scenario was measured using high-
power gradient source for the experiment with the
worse SNR. The first row of Fig. 13 shows the ECG
signal disturbed by the MRGAs. The second row
shows the output signal obtained after filtering by the
proposed method, and the bottom row shows the
finally generated gating-pulse signal. Through these
examples shown in Fig. 13, the MRGAs induced in the
ECG lead were successfully estimated and cancelled at
the output of the ES-AIC. Further, similar results were
obtained for the sets of scenarios with different gra-
dients. The initial adaptation time, which is an essen-
tial measurement for the evaluation of the adaptive
filter, is represented in the shaded area shown in
Fig. 13. However, a little convergence time is not
important for the cardiac gating application because
additional time for a dummy scan can exist in the case
of image scanning. In the figures, the locations of the
QRS complexes are evident. It can be seen that even
though MRGAs are still visible, an accurate genera-
tion of the MR gating pulse by using the proposed
method was possible.

Improvements in MR Image Using Proposed Cardiac
Gating Method

The global evaluation of the algorithm was done in
terms of image quality. The image, acquired with
synchronization, revealed a very clear enhancement as
compared to the cardiac MRI taken without cardiac
gating. This result is shown in Fig. 14. Further, we
performed the cardiac phase imaging according to a
trigger delay using MR gating pulses. Figure 15 shows
the result of such cardiac phase imaging. From the
abovementioned results, clearer structures could be
observed in the image close to the heart when the
cardiac gating technique was employed. Furthermore,
we observed a better contrast in the entire image, and
the structures were more emphasized.

DISCUSSION

The adaptive digital filter has been considered to be
an effective method for reducing MRGAs. In a previ-
ous method that used adaptive digital filters,1 the three
gradient currents were required to be determined either
by a direct connection with the MR system or by using

FIGURE 12. MSE obtained by the variation in SNR of simulated data: (a) SE, (b) FSE, (c) GE, and (d) DW-EPI scenarios.
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FIGURE 13. Results for real data according to various MR imaging scenarios: (a) GE, (b) DW-EPI, and (c) SE scenarios.
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three-dimensional pick-up coils. The linearity of the
four signals used (ECG, Gx, Gy, and Gz) is essential for
the assessment of the system response and the resto-
ration process, and the sampling rate should be suffi-
ciently high to accurately acquire the gradient shapes.

Therefore, we used a new adaptive ES-AIC based
on an impulse-like reference signal that is synthesized
synchronously to the MRI gradient signal induced in
the ECG leads: here, impulse-like pulse signals were
used as a reference signal to the ES-AIC. By using the
proposed ES-AIC, we could reduce the computational

complexity in real-time processing. Furthermore, the
extracted reference signal is independent of the MRI
machine. Therefore the proposed method can be
implemented without additional hardware. Further,
unlike ‘‘combined wavelet sub-band decomposition
and adaptive filtering,’’2 the proposed filter does not
require a training MRI scan and accompanying ECG
signal acquisition to compute an estimate of the
impulse response matrix.

Our goal was a development of cardiac gating sys-
tem for conventional 0.35 T permanent type MRI.

FIGURE 14. Cardiac image enhancement with cardiac gating: (a) No ECG gating; (b) ECG gating; (1) right ventricle, (2) inter-
ventricular septum, (3) left ventricle, (4) papillary muscle, and (5) descending aorta.

FIGURE 15. Cardiac phase images according to trigger delay: Trigger delays of (a) 150 ms, (b) 200 ms, (c) 250 ms, (d) 300 ms,
(e) 400 ms, and (f) 500 ms.
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Recently in general clinical environment an over 1.5 T
super conduct MRI is being used. However the
experiments in this paper have been conducted on the
limited condition, a 0.35 T permanent type MRI, not
an over 1.5 T super conduct type MRI. The higher is
the field intensity, the more serious is the artefacts.
Moreover, MRGAs are due to the temporal variations
of the magnetic field gradients. We can generally say
that the corresponding induced voltages are influenced
mainly by switching of magnetic field gradient, rather
than static magnetic field. Therefore, we can think that
the morphology pattern of the MRGAs in the high
field intensity is similar to that in the low field intensity.
Also the proposed methodology in a clinical environ-
ment is thought to be used well.

In our proposed ES-AIC, the following detailed
remarks can be discussed.

Synthesis of Reference Input Signal in Proposed
ES-AIC

The ES-AIC uses a square event-pulse signal, which
is synchronous to the gradient pulses of the MRI, as a
reference signal event. The square pulses that are
synchronously generated in the event detection process
were applied to the reference channel of the ES-AIC.

The direct extraction of the reference signal from the
three-lead ECG signal contaminated by MRGAs was
very important. As shown in Fig. 5, our proposed
method of generating the reference signal showed a
good performance and worked perfectly.

Instead of the proposed event detection process, an
event-detector-based ‘‘combined wavelet sub-band
decomposition’’ used in Abi-Abdallah et al.2 can be
considered.

In the proposed event detection process, the syn-
thesis course of the event pulses was very simplistic for
implementation because the LSAF and PSM used in
the event detection process shown in Fig. 4 were simple
mathematical algorithms. Furthermore, an additional
advantage of our method was that no external devices
for acquiring the gradient pulse signals were required.

The origin of the abovementioned advantages is as
follows: a vector sum defined by ‘‘Lead I � Lead
II + Lead III’’ leads to a characteristic function with a
zero value in the ECG signal, but the MRGAs in the
three leads are not cancelled by the vector sum. The
vector sum only includes the artefacts induced by the
MR gradients.

Proposed ES-AIC for Minimizing MRGAs

In the adaptive filter theory, it is known that the
interference in the desired channel can affect the per-
formance of the adaptive filter. Since the ECG signal

component in the desired signal can be relatively
strong in terms of the SNR, the adaptive filter is likely
to be interfered by the presence of the ECG signal
component in the desired input. Moreover, the ECG
signal is highly correlated with the gradient signal in
the reference channel; in order to obtain accurate
estimates, the ADF order should be sufficiently large to
include the period of the MRI gradient signal. For
example, a 200-ms MRI scan will generate MRGAs
with a period of 200 samples when the signals are
sampled at 1 kHz. In this case, the desirable ADF
order would be 200, which may be computationally
too complex for real-time processing.

By using a new adaptive ES-AIC based on an
impulse-like reference signal that is synchronously
synthesized to the MR gradient signal induced in the
ECG leads, we have reduced the computational com-
plexity. In order to optimally estimate the MRGA
response, the operation of the ES-AIC was based on a
scaling reference signal. When applying variations only
to the amplitude of the MRGA, a scaling of the refer-
ence signal is needed to generate a perfect match of the
present frame. If a cross-correlation exists between the
ECG of the present frame and the MRGA of the ref-
erence signal, the adaptive filtersmight also adapt to this
correlation. In this case, the filter will attempt to not
only eliminate the MRGA but also parts of ECG where
the correlation exits. To avoid this effect, the ECG and
MRGA of the frames under consideration should be
mutually uncorrelated. The component correlated with
the ECG will be shown as a remainder artefact. In our
case, the ECG within a frame can be a correlated signal.
In a practical system, this effect must be considered
because it causes a reduction in the ECG power.

In short, by considering a small calculation power,
the ES-AIC algorithm can be applied to the real-time
removal of MRGAs.

Comparisons of Multichannel ANC
and Proposed ES-AIC

Comparing the results in Fig. 12, the similarity in
the performances of the ES-AIC and multichannel
ANC is evident. However, it is found that the con-
vergence rates of the multichannel ANC are generally
better. However, the convergence rate of the ANC is
significantly influenced by the noise level. In Fig. 12, it
can be clearly seen that multichannel ANC has a better
performance in the low-SNR region (below �10 dB),
but the ES-AIC has a better performance for SNR
values above �10 dB. In this process, we used the
LMS algorithm to update the coefficients for the pro-
posed ES-AIC, but we used the normalized least mean
square (NLMS) algorithm to update the coefficients of
the multichannel ANC.
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On the basis of the data obtained from the subjects,
the proposed ES-AIC showed a very promising per-
formance. This method was capable of effectively
eliminating most of the MRGAs with only occasional
artefacts remaining in the output signal. Even though
the MRGAs can be considerably reduced in the ECG
signal by the use of the proposed method, very trivial
distortion still appears in the ECG signal.

Nevertheless, reliable gating can reduce false-posi-
tive triggers and increase image quality. The proposed
method reduces the filter delay for calculating the
system response.

From the abovementioned results, we found that
the multichannel ANC is slightly superior to the
ES-AIC. However, the ES-AIC had a better calcula-
tion performance than the multichannel ANC.

CONCLUSION

We have proposed an ‘‘event-synchronous adaptive
interference canceller (ES-AIC),’’ a gradient-wise
reduction filter, which is simple but effective. The
filter restores the ECG signals contaminated by
MRGAs acquired during MR sequences. The LMS
algorithm was used for updating the ES-AIC coeffi-
cients. In particular, the proposed ES-AIC does not
require reference signals from an MR scanner. The
reference signals of the ES-AIC used in this study
were obtained using a combination of noisy three-
lead ECG signals.

The ES-AIC performance was measured off-line,
and a gating pulse was generated using point-by-point
operations. The quality of the filtered ECG was so
reliable that the QRS detector could be used to correct
the triggering/gating of the MR machine. Our results
conclusively show that the ES-AIC is applicable even
when the scenario of the MR sequence in the magnet
bore is changed.

In particular, the proposed method was based on a
simple experimental setup and did not require any
physical connections from the gradient amplifiers of
the MRI machine. The proposed method can also be
used in MR imaging with the application of real-time
implementation because it is very efficient in calcula-
tion. In order to finally determine the efficiency of the
proposed method, the filter should be tested on a larger
population of individuals.

As applications of the proposed system, reliable
cardiac monitoring information can be provided to
the physician and the ES-AIC in the MR gating
method using other physiological signals can be made
possible.
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