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Kinetic Theory Based Model for Blood Flow and its Viscosity

Divritr1 Gipaspow and JINnG HUANG

Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA

(Received 7 July 2007; accepted 18 May 2009; published online 29 May 2009)

Abstract—A kinetic theory based two phase flow model for
plasma and red blood cells (RBCs) is shown to explain the
Fahraeus—-Lindqvist effect, the migration of red blood cells
from the wall to the center in narrow tubes. The migration is
caused by shear induced diffusion which in the kinetic theory
based model is computed using a balance of granular
temperature, the random kinetic energy for red blood cells
per unit mass. The computed hematocrit distribution agrees
with experimental measurements using a complete computa-
tional fluid dynamic model and an approximate fully
developed flow solution. The model predicts the momentum
and granular temperature boundary layers. The model
computes the observed blood viscosity dependence on
diameter and hematocrit.

Keywords—Hemodynamics, Computational fluid dynamics,
Multiphase flow.

NOTATIONS

Cp Drag coefficient

D Optical density

d, Diameter of RBC

e Restitution coefficient

ey Wall restitution coefficient

g Gravitational acceleration

go Radial distribution function

Hect Hematocrit

I Unit tensor

k Extinction coefficient of the absorbing
medium

ks Granular conductivity

/ Length of the light passing through

M Molecular weight

n Normal component

P Pressure

P, Solid pressure

R Tube radius

Re,, Reynolds number
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q Flux of random kinetic energy

t Time

U.. Free stream velocity

Up Fluid phase velocity vector

Us Solid phase velocity vector

Vg w RBC velocity in the direction parallel to the
wall

Vs Solid phase velocity in axial direction

U, max Maximum solid phase velocity

Greek letters

p Drag coefficient between particles

Of Fluid density

Os RBC density

& Volume fraction of fluid phase

& Volume fraction of solid phase

& max Maximum solid volume fraction

Tp Stress tensor of fluid phase

T,z The stress in the z direction acting on the

. surface perpendicular to the r direction

Ty Stress tensor of solid phase

0 Granular temperature

Oy Granular temperature at the wall

y Energy dissipation due to inelastic collision
of particles

Vw Energy dissipation due to inelastic collision
between particle and the wall

Ug Fluid viscosity

s Solid viscosity

s Bulk viscosity of solid phase

¢ Specularity coefficient

v Kinematic viscosity

14 Boundary layer thickness

oT Granular temperature boundary layer
thickness

INTRODUCTION

Blood flow through small vessels behaves as a
non-Newtonian fluid. The apparent blood viscosity
depends on the vessel diameter, which is known as the
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Fahraeus—Lindqvist effect. Since Fahraeus and
Lindqvist'" first observed the significant decrease of
apparent blood viscosity as the vessel diameter
decreases, many investigators confirmed this effect
through vitro experiments.>***' Since the invention of
the microscope it was suspected that red blood cells
(RBCs) in small blood vessels migrate away from the
wall. The formation of a cell-free layer near the wall
reduces the apparent blood viscosity and hence the
pressure-drop through the narrow blood vessels.®'®
This multiphase fluid nature of blood is the physical
reason behind the Fahraeus—Lindqvist effect. Pries
et al.*® have presented an empirical correlation for
blood viscosity in terms of tube diameter and hemato-
crit. An objective of this study is to present a theory for
the Fahraeus—Lindqvist effect.

Migration of neutrally buoyant particles in liquids
from the wall toward the center has also been observed
for a long time. It is known as the shear induced dif-
fusion, as explained by Phillips e al.* and others, by
postulating a driving force due to a gradient of shear.
The migration of RBCs away from the wall of the
vessels may also arise due to the deformation of
RBCs."!"' There still exists no comprehensive theory
for this effect. Sharan and Popel®® used a two-phase
model for the blood flow in narrow tubes to investigate
the Fahraeus—Lindqvist effect. They considered a
central core of suspended erythrocytes surrounded by a
cell-free layer.

The kinetic theory of granular flow invented by
Savage’’ and others, as reviewed by Gidaspow,'?
explains the particle migration. The wall-shear-
produced random oscillations of particles cause their
random kinetic energy per unit mass, called granular
temperature, to rise near the wall. This granular tem-
perature is the driving force for migration, like thermal
diffusion in gases.?® In flow of heavy particles in liquids,
however, the particles migrate toward the wall and cre-
atea core-annular flow in vertical pipes, like the particles
suspended in gases.”® Bishop et al.* measured the gran-
ular temperature as the standard deviation of velocity to
explore its effect on RBCs aggregation and shear rate.

The successful use of kinetic theory based multiphase
model in the blood flow through narrow vessels will
provide a basis for the medical applications, such as
atherosclerosis. Shear-dependent mass transfer plays an
important role in atherosclerosis.'®** Computational
fluid dynamic (CFD) models for blood flow have gen-
erally considered blood to be a single phase fluid with a
viscosity of about three centipoises.'®*!*3342 Only in
the last few years has blood flow been modeled using a
two-phase flow hydrodynamic model with a shear
dependent viscosity as an input.”®*” In the present study
the blood viscosity is not an empirical input into the
model. It is computed from the theoretical expressions

obtained from the kinetic theory of granular flow. The
theory used here for one particle size (RBCs) has been
extended to multi-size mixtures.’**' Benyahia® has
written a computer code for mixtures of particles.
Huang has shown how to compute the transport of low
density lipoprotein (LDL), high density lipoprotein
(HDL), and platelets in blood flow using this theory in
her 2009 PhD thesis.

The new model matches the experimental data for
red blood cell concentrations in narrow tubes by
Taylor** and computes the observed blood viscosity. A
CFD solution and a simplified model for Poiseuille
flow both produce the Fahraeus—Lindqvist effect in
agreement with experiments.

METHODS

Geometry

The geometry for the 2-D model of RBCs suspen-
sion flowing in a narrow tube was constructed
according to the experimental setup by Taylor.*
Table 1 gives the relevant dimensions. The diameter of
the tube was 0.19 mm. The total length of the tube was
14.4 cm. The RBCs flowed through the straight nar-
row tube with plasma. A mesh was generated using
GAMBIT software (from FLUENT Inc.) for our
multiphase 2-D simulation. The total number of cells
generated was 10,000. The convergence criteria was set
to be 1077 for mass and momentum balances.

Multiphase Navier—Stokes Equations

The two-phase model consists of the continuous
plasma phase and the dispersed red blood cell phase
which is treated as a continuum. The basic balances are
the conservation of mass and momentum for each
phase. The surface stresses are assumed to be a func-
tion of the symmetrical gradient of velocity for each
phase, giving rise to two Navier—Stokes equations,
coupled through the drag. This two-phase model gives
rise to a new dependent variable, the volume fraction

TABLE 1. Simulation conditions and system properties.

Tube diameter 0.19 mm
Tube length 14.4 cm
Plasma density 1020 kg m~3

Plasma viscosity 0.0012kgm~'s™'

RBC size 8 um

RBC density 1092 kg m~3
Restitution coefficient (e) 0.95

Wall restitution coefficient (e,) 0.60

Specularity coefficient (¢) 0.60

Pressure head 80 mmHg

Grid number 10(radial) x 1000(axial)
Time step 1x10°°
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of the red blood cells, not found in single phase
Navier—Stokes equations. This model was used by Jung
et al**?" to compute flow in a right coronary artery
and in other geometries. In their studies the viscosity
was an input into the model. In the kinetic theory
model presented here the red blood cell viscosity is
computed using an equation for the random kinetic
energy of the red blood cells, called granular temper-
ature. The basic derivations based on the kinetic theory
of granular flow are given in the texts by Gidaspow'?
and Jackson®® and earlier in a review paper by
Savage.’” The basic two-phase flow equations have
been programmed into FLUENT, a commercial CFD
code. Gidaspow et al." reviewed the fluidization lit-
erature using kinetic theory of granular flow. The
experiments have shown that the particulate viscosity
expression obtained from the kinetic theory gives the
same values as that measured by classical methods.
The CFD simulations by several groups throughout
the world have shown the success of predicting tran-
sient and time averaged behavior of gas—solid flow.

The basic mass and momentum balances for the
plasma and the red blood cells are as follows
(f = plasma, s = RBCs).

Fluid mass balance:

O(pre .
(gf ! + V- (peertr) = 0 (1)
t
Solid mass balance:
ALE) 49 () =0 @

where p is density, ¢ is volume fraction, 7 is time, U is
velocity vector with the subscript indicating the phase.

The mass balances differ from those in transport
phenomena texts® by the presence of the volume frac-
tions of solids and fluid. The volume fraction variation
may introduce cohesion-like hydrodynamic forces
which give rise to the phenomena, such as clustering.
Such clustering phenomena have been computed using
the equations given in this study.*

Fluid momentum balance:

ot
—epg—eVP+ V- T+ T —0)  (3)

+ V- (prectiste)

Solid momentum balance:
8()038865)
ot

=&pg—&VP—VP+ V. T+ Uk —0,) (4)

+ V- (ps&sUsts)

where P is fluid pressure, P is granular pressure, g

is gravity acceleration, 7 is stress tensor, and f is
the interface momentum exchange coefficient. The

momentum balances are those found in the commer-
cial code FLUENT. These normally ill-posed equa-
tions are stabilized by means of the gradient of solids
pressure and viscosity, as discussed by Gidaspow.'?

The volume fractions for each phase are summed to
be one:

erte =1 (5)

The random kinetic energy equation for RBCs is
expressed as:

3[0(psest =
[P+ 9 - (st
_ (_ps T+ %;):vas LV (kV0) — (6)

Accmulation + Net outflow = Production

+ Conduction — Dissipation

where 0 is granular temperature which is defined as the
mean of the squares of particle velocity fluctuation, kg
is granular conductivity, and y is the collisional energy
dissipation. The granular temperature is a measure of
the random particle kinetic energy per unit mass. It is
produced due to “viscous type dissipation” and con-
sumed due to inelastic collisions.

Several constitutive equations are required to close
the set of Egs. (1)-(5).

The stress tensor for each phase is given by a
Newtonian type viscous approximation, as:

. 2 =
T = Sf,uf(Vl_)} + Vl_ffT) — gaf,ufv <vp I (7)

2 - ~ 2 S 3
Ts = U (Vvs + VU;[) + <§s - g,lls> V- Ug 1 (8)

RBC pressure, P, shear viscosity, s, and bulk vis-
cosity, &, are expressed as a function of granular
temperature based on the kinetic theory model'?

Py = esp0 + 2p (1 + e)SngH 9)
4 0\'/?

Hs = gggpsdng(l + 6) (‘II)

5

n IOdepss\/%[

4 2
96(1 + 020 1 +—goes(1 + e)] (10)

4, 0\ '/
és = gsspsdpgo(l + e) ; (11)

where d, is the diameter of RBC, g, is the radial
distribution function, and e is the restitution coeffi-
cient, which is a measure of the elasticity of the
particle collisions. It is defined as the ratio of rebound
velocity of particle to its velocity before impact.
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The radial distribution function expressing the
statistics of the spatial arrangement of the particles is
given by a geometric approximation, the Bagnold’s

equation, as
-1
NS
g =|1- (12)
€5, max

The granular conductivity, kg, consists of the kinetic
part from dilute kinetic theory of gases’ and the col-
lisional part due to inelastic collision of particles, as
reviewed by Gidaspow.'?

150pdpes/On[ 6 :
f = e P o Zag (1
3841+ o)y | T sl )

0
+ 2pgesdy(1 + e)go\/; (13)

The energy dissipation due to inelastic collision of
particles, first evaluated by Savage and his colleagues,
is given by

C12(1—¢?)go
AV

In our analysis, it is assumed that the interaction
force between plasma and RBCs is only due to drag.
The interphase momentum exchange coefficient is
given by the Wen and Yu*® model for the dilute flow
and by the Ergun equation for dense flow, as reviewed
by Gidaspow.'?

Psﬁf 0°* (14)

(1 — & 5. — T
g = 150t L=k | st =0 g
Sfdé dp
(15)

; L
p= 3ol T 26 pores08 (16)
4 dy

with the drag coefficient, Cp, given by

24 0.687
Cp = [1 0.15(eR } 17
b e Rep + (6f ep) (17)
where
Rep _ pldp|0s - Df' (18)
g

Simulation Conditions

The simulation conditions are for the experiment in
a narrow tube by Taylor.** Table 1 gives the simula-
tion conditions. RBCs were assumed to be rigid
spherical particles. The effect of RBCs deformation
associated with the kinetic energy dissipation is

considered in the restitution coefficient, e, in the model
in the FLUENT simulation. Initially, the whole tube
was full of the mixture of plasma and RBCs with
uniform RBC volume fractions of 24% and 57% and
RBC granular temperature of 0.0001 m? s 2. The axial
velocities of plasma and RBCs were set to be
0.01 m s~ and radial velocities of both phases were
zero for our initial condition. Pressures were prescribed
at inlet and outlet to simulate the pressure driven flow
in the narrow tube.

No slip boundary conditions were used for plasma
phase at the wall and Johnson and Jackson®® boundary
condition was used for RBCs. The boundary condition
for the RBCs velocity at the wall was derived by
equating the limit of the shear stress in RBCs phase
when approaching the wall to the transfer rate of
momentum to the wall by RBCs when colliding with
the wall.

6:us85.,max aUs,w

Vs =
T V3ngpegov/0 O

The boundary condition for the random kinetic
energy flux at the wall was obtained by equating the
flux of particles at the wall to its dissipation.*’

(19)

gy = 0 00 | V3Pl (20)
W Vw on 68s,max7)w
where
3n(1 — €2)esp,gol’
ywzfn( e ) EsPsg0 21

4gs,max

and v gip 1s the slip velocity parallel to the wall, n is the
normal component to the wall, vy ,, is the RBC velocity
in the direction parallel to the wall, y,, is the energy
dissipation due to inelastic collisions between particles
and the wall, e, is the wall restitution coefficient, 60, is
the granular temperature at the wall, and ¢ is the
specularity coefficient.

Poiseuille Flow Approximation

Poiseuille flow has been traditionally used as a first
approximation for blood flow. For the blood flow
experiment of Taylor,** it is a good approximation,
since the flow is steady and the tube is long. Due to the
large drag between the red blood cells and the plasma,
the flow is nearly homogeneous. Since the maximum
velocity is about 0.2 m s, homogeneous flow can be
used as a first approximation.

The velocity is given by

Dsz = Uz max {1 - (;)2] (22)
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The random kinetic energy equation for fully
developed flow, Eq. (6) becomes as follows:

+9=0 (23)
X
Conduction + Production of Oscillations

— Dissipation = 0

i.e.,
2\ 12p,g0(1 — )20/
n dvs; _’_i Ksﬁ - png( € )8s -0 (24)
dx dx\ “dx dy/m

Production of Oscillations + Conduction

— Dissipation = 0
where x, = /0'/?and

;L ISOﬁpsesdp{

o 2e§psdp(l +e)go
S 384(1+e)go

NG
(25)

6 2
1 +§(1 +e)goss] +

For constant «/,, Eq. (24) takes the form

s 2+ 1 (do 2+ 0 12pg0(1—€)0
K \ dx 20\ dx dx? Kldy\/T B

(26)

Using the parabolic axial RBCs velocity distribution
of Eq. (22), Eq. (26) in dimensionless form becomes as

follows
201 (d0\?
W) wo=r @
_2)2R2 ]
Where a= lzpsgigtllpﬁ)saR ’ 6, = 4%Ug_|11ax7 = %‘

The parameter “a” measures the dissipation due to
inelastic collision with the restitution coefficient, e.
Because of the deformability of RBCs in the blood flow,
the restitution coefficient will change with the elasticity
of RBCs themselves and the deformation degree of
RBCs. Hence the effect of deformation of RBCs was
included in the empirical restitution coefficient, e. The
scale factor for granular temperature is the square of the
maximum velocity times the ratio of the granular vis-
cosity to conductivity for granular temperature. The
radius of the tube is the natural scale factor for length.

The boundary condition of granular temperature at
the wall is given as

00
HW = _Bl_
on|yan
_e2 b 03/2
where B = %}and Yo = W ie..
o0
Oy =—Bi5- (28)
" or wall

/ __ B
where B = 7.

The dimensionless parameter B is an inverse mea-
sure of the dissipation at the wall. For elastic particles,
B is infinite and the gradient of granular temperature
is zero. For zero B, the granular temperature at the
wall is zero.

The ordinary differential Eq. (27) can be solved with
the boundary condition listed in Eq. (28) using a
boundary value solver, such as found in MATLAB.

In developed flow the solid pressure, P, is not a
function of radial position. Using the particle equation
of state, Eq. (9), the RBC volume fraction for fully
developed flow can be calculated.

Concentrations from Taylor’s Data

In Taylor’s** experiments, the light intensity at a
succession of points across the tube was read. It indi-
cated the variation of holdup across the tube. In order
to compare the simulation results with Taylor’s*
experimental data, light intensity readings were con-
verted into concentration values. In the conversion, we
assume the illumination is parallel and the refraction is
neglected. The optical density is given by the Lambert—
Beer formula:

D= / 2455 (29)
M;
where D is the optical density, k is the extinction
coefficient of the absorbing medium, / is the length of
light passing through the tube, M is the molecular
weight of RBC, and ¢ is the volume fraction of RBCs.

The data of Taylor** were converted into concen-
trations by solving Eq. (29). The unknown parameter,
kﬁ”:, was determined by equating the average RBCs
volume fraction to the hematocrit value.

RESULTS

The computed time averaged RBCs volume fraction
radial distributions are shown in Fig. 1, the hematocrit
values being, respectively, 24 and 57 p.c. Both the
computational results using FLUENT and the
Poiseuille flow approximation for developed flow show
that the RBCs have the highest volume fraction at the
center. Near the walls of the blood vessel, the RBCs
volume fractions are smaller as measured by Taylor**
and others.® There is a small increase of the RBCs
volume fraction near the wall, due to the use of the
Johnson—Jackson boundary condition which accounts
for the inelasticity of the wall. Figure 1 confirms the
Fahraeus—Lindqvist effect, the migration of RBCs
from the wall to the center.

Figure | shows a quantitative agreement of the
computational RBC volume fraction profiles with the
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FIGURE 1. The Fahraeus-Linqvist effect: migration of RBCs
from the wall to the center. A comparison of RBCs volume
fractions simulated using the multiphase kinetic theory model
in FLUENT (Simulation Result), developed flow described in
the section of Poiseuille flow approximation (Developed
Flow), and the experiment of Taylor** for (a) Hct = 0.24,
(b) Hct = 0.57. Experimental data are from light intensity
measurements.

experimental data. The two phase kinetic theory model
predicts the low RBC volume fractions near the wall
and the high values at the center. Near the wall, there is
a small disagreement between the experiment and the
theories due to the use of an inaccurate wall boundary
condition for the partially flexible tube and the
unknown restitution coefficient.

The computed time averaged RBC axial velocities
have a parabolic distribution shown in Fig. 2. The
axial velocities have the maximum values at the center.
The velocity profile with hematocrit of 57% was more
blunt than that with hematocrit of 24%. This result is
consistent with Lyon and Leal’s® observation, in
which an increase in bulk particle concentration
resulted in a more pronounced blunting of velocity
profile.

The granular temperature, similar to the thermo-
dynamics temperature for gases, was defined as a
measure of the fluctuating energy of velocity of parti-
cles. Figure 3 shows the time averaged radial profile
of granular temperature. Simulated granular temper-
atures near the wall, where the RBCs are more dilute,
are larger than those in the denser center area. Also
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FIGURE 2. Parabolic RBC axial velocities for hematocrits of
0.24 and 0.57 computed in FLUENT using the multiphase
kinetic theory model described in the section of multiphase
Navier—Stokes equations.
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FIGURE 3. Granular temperatures for hematocrits of 0.24
and 0.57 computed in FLUENT using the multiphase kinetic
theory model listed in the section of multiphase Navier—
Stokes equations. Granular temperature behavior of RBCs:
high near the wall due to production by shear and low at the
center due to dissipation. Note that the high granular tem-
perature near the walls causes the dip in the RBC volume
fractions in Fig. 1.

there is an increase of the near-wall maximum with
decreasing RBCs volume fraction. The granular tem-
perature with a higher hematocrit was smaller than
that with the smaller hematocrit due to the smaller
mean free path in the denser region.

Figure 4 shows the RBC viscosity distribution, with
s calculated from the computed granular temperature
by the kinetic theory model in Eq. (10). The core of the
tube with rich RBCs has a higher local viscosity than
near the wall, which is accordance with the results of
Damiano et al.,’ Long et al.,29 and Sharan and
Popel.* The higher viscosity at the center is due to the
higher RBCs concentration, in agreement with the
Pries et al.*® correlation for viscosity. The increasing
viscosity towards the center area produced more
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FIGURE 4. RBCs viscosities for hematocrits of 0.24 and 0.57
computed in FLUENT using the multiphase kinetic theory
model described in the section of multiphase Navier-Stokes
equations.
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FIGURE 5. A comparison of granular temperatures for
fully developed flow computed using the Poiseuille flow
approximation with FLUENT multiphase kinetic theory
model described in the section on multiphase Navier-Stokes
equations, for hematocrit Hct = 0.57.

resistance to the flow in the center area than near the
wall, which arises due to the decreased RBCs flow rate
in the center area in real parabolic flow. The axial
velocity profile was shown in Fig. 2. The difference
between the maximum value and the minimum value
of RBCs viscosity for the case of hematocrit
Hct = 0.57 was about 40 times larger than for the case
of hematocrit Hct = 0.24, which gives rise to the
greater resistance discrepancy between the center area
and near the wall area and the phenomena of more
blunt axial velocity distribution for the dense case.
For the case of hematocrit Het = 0.57, Fig. 5 shows
the comparison of granular temperature using the
Poiscuille flow approximation for fully developed flow
with the computed granular temperature using the
complete two-phase kinetic theory model. Figure 6
shows the corresponding comparison of RBC viscosity
for fully developed flow to the FLUENT model. For
Poiscuille flow approximation, the variations of RBCs
volume fraction, viscosity, and granular temperature
from the center area to the near wall maximum and
minimum values were smaller than the simulation

2.6
24+ R . = = = Computation result
221 . N Developed flow

2k
1.8
1.6
1.4
1.2 F

1k
0.8
0.6 : : :

RBCs viscosity (cp)

Radial Position r/R

FIGURE 6. A comparison of computed RBCs viscosities
using Poiseuille flow approximation with the computation
using complete two-phase kinetic theory model listed in the
section of multiphase Navier-Stokes equations for hematocrit
Hct = 0.57.

results using the complete two-phase kinetic theory
model. The position for the minimum and maximum
values of RBCs volume fraction, viscosity and granular
temperature near the wall were closer to the wall for the
Poiscuille flow approximation than the simulation
results using complete two-phase kinetic theory model.
The shear contributes to the momentum balance for
RBC phase by a second order differential of the velocity.
The assumption of parabolic axial velocity distribution
used in the Poiseuille flow approximation gives a con-
stant shear contribution to the momentum. The aggre-
gation effect arising from the uneven resistance to the
flow by viscosity distribution produced lower values in
the center area and higher values near the wall. The
overestimated shear production in the center area and
the underestimated shear production near the wall in the
Poiscuille flow approximation is the reason for the dis-
crepancy between the FLUENT simulation results and
the Poiseuille flow approximation.

DISCUSSION

Boundary Layer Development

Figure 7 shows the computed boundary layer
development of the RBC volume fractions and gran-
ular temperatures using FLUENT. Due to the long
length of the tube, the boundary layers have developed
quickly. Figure 7 shows that RBC volume fraction has
a constant high value at the center in the second half
of the tube. The granular temperature reached the
developed value in a much shorter length. Qualita-
tively, the boundary layers behave similarly to single
phase flow.*® The granular temperature boundary
layer is analogous to the thermal boundary layer with
viscous heat generation. For an adiabatic wall, there
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FIGURE 7. Computed boundary layer development of RBCs
concentration and granular temperature using the FLUENT
multiphase kinetic theory model listed in the section on mul-
tiphase Navier-Stokes equations.

exists an approximate analytical solutions, but not for
the boundary condition used in this study.

For RBCs phase in a steady state, the pressure drop
equals the weight of the bed and buoyancy is balanced
by the drag. For the case of blood flow, the RBCs
volume fraction did not change much, as can be seen
from Fig. 1. For a simplified analysis, assuming con-
stant RBCs volume fraction, the boundary layer
equations for RBCs phase are:

ou Ov

a—i-a—y:O (30)
00_'_0@_‘)@ (31)
“ox dy  0ox2

v} 2
a0 00 kg 070 Uy (80) (32)

“ox T Vor T Tpees 0 T 1.5p.es \Ox

The similarity solutions for the velocity field was
derived by Schlichting®™ and other researchers. The

ordinary differential equation for the random kinetic
energy is obtained, employing the similarity variables,
as:

U 1/ 0 — 0y
=)\ — = O=— 33
n=wn/~o NG 7 (33)
where 1/ is the stream function of the RBCs flow:
u= %, and v= —g—li (34)

Then the random kinetic energy Eq. (32) reduces to
an ordinary differential equation:

+£O PrdO &21\*
2 L opr —0 35
ar "2 at (dn/> (33)

where Pr =3 == is the Prandtl number for RBCs phase.
For the partlcular case of an adiabatic wall, the
boundary conditions are:

90(0)

BO(c0) =0 o

=0 (36)
Then the wall granular temperature under adiabatic
wall conditions is as follows:

T [ exp(Jp Befdn) 2Pr(r")
@w_/ [0 T 2] A (37)

Equation (37) can be readily integrated numerically,
employing f(n) from Schlichting.*® For the case of
hematocrit of 57%, the surface dimensionless granular
temperature was calculated to be 0.5904. The main
stream velocity is U. ~ 0.16 m s~', and the granular
temperature at the center is 6y &~ 0.000127 m” s 2.
Then the wall granular temperature 6, =~ 0.00516
m? s 2. This is larger than the simulated wall granular
temperature using FLUENT of ~ 0.000372 m? s~ 2.
Such a larger value is expected due to additional dis-
sipation at the wall in the Johnson-Jackson boundary
condition. The FLUENT computations in Fig. 7 and
the approximate boundary layer analysis allow us to
estimate the entrance length. Figure 7 shows that this
entrance length is short. Beyond the entrance length
the approximate Poiseuille flow solution is valid.

Effect of Restitution Coefficients

In the two-phase kinetic theory model, the restitu-
tion coeflicient between RBC particles, e, and the res-
titution coefficient between the RBC particle and the
wall are the only empirical inputs in the model.

From equations of (27) and boundary condition
(28), we can see that the granular temperature for fully
developed flow is a function of dimensionless groups
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FIGURE 8. Effect of inelastic dissipation on fully developed
flow granular temperatures. “a” is a measure of inelasticity of
particles. As the RBCs become more inelastic, the dimen-
sionless group of “a” increases and the granular tempera-
tures decrease. The dimensionless granular temperatures
were computed using the Poiseuille flow approximation.

“a” and B). The dimensionless group of “a” is the
ratio of dissipation over the diffusive flux of random
kinetic energy. Calculated granular temperature radial
distributions for different numbers of “‘a”” were shown
in Fig. 8. With the increase of “a”, granular temper-
atures decrease because the dissipation of random
kinetic energy becomes more dominant. For the case of
a = 0, there is no random kinetic energy dissipation
and the production of kinetic energy by shear was
completely balanced by diffusive flux. For elastic par-
ticle collisions, Eq. (24) reduces itself to*

al dvg.\?
Kga = Hs ( dx) (38)

Using the parabolic axial RBCs velocity Eq. (22)
and conversion to dimensionless form gives

20
W = —1’2 (39)
Oy
. (40)

As already shown by Tartan and Gidaspow,*
Eq. (39) gives a fourth-power dependence of granular
temperature on radial position.

1
0' =0, =15(1 - (41)

A comparison of the analytical solution for the
elastic case and the more general developed flow
approximation is shown in Fig. 9. The granular tem-
peratures at the center are higher than those near the
wall.

The dimensionless group, B| = ;‘j%, in the boundary
condition quantifies the importance of random kinetic

0.10
0081
- 0.06
s 4
5= ‘ °
N 4 N
C 004}
0.02 - Analytical solution - - - - Developed flow
0.00 : : ‘
-1 -0.5 0 0.5 1

Radial Position r/R

FIGURE 9. A comparison of granular temperature distribu-
tions for developed flow computed using the Poiseuille flow
approximation with the analytical solution for elastic particles
with prescribed wall temperature computed using Eq. (41).
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—B1'=0.5083 —— B1'=0.1509 - - - =-BI'=0.1150

FIGURE 10. Effect of wall inelasticity on the granular tem-
peratures. B; is an inverse measure of wall inelasticity. As
the dimensionless group B; decreases, the granular tem-
peratures near the wall decrease. The dimensionless gran-
ular temperatures were computed using the Poiseuille flow
approximation.

energy diffusive flux and dissipation by inelastic colli-
sion between RBCs and wall. Calculated granular
temperature radial distributions for different values of
B\ were shown in Fig. 10. The values of B} have much
more effects on the granular temperature near the wall
than that at the center. With B increasing, the diffu-
sive flux of random kinetic energy becomes more
important than inelastic dissipation.

Order of Magnitude Estimate
of Fahraeus—Lindgvist Effect

An understanding of the change of the blood vis-
cosity flowing in tubes of diameter between 10 to 1000
micrometers can be obtained by making some rea-
sonable crude approximations. The general granular
temperature equation can be simplified by neglecting
conduction and assuming constant shear. Then a bal-
ance between production of oscillations due to shear
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and dissipation due to inelasticity of particles gives the
approximate expression.'?

sy ’ (42)
A\ ox ™
Granular temperature = 0

= (shear gradient x particle diameter)’

Then for constant shear the granular temperature
can be approximated as follows:

2
0 <—”"=m;xdp) (43)

Granular temperature

= (max. fluid velocity x particle diameter/2

x tube diameter)?

For developed flow there is no radial flow. Hence
the particle pressure gradient is constant. Using an
ideal equation of state as a crude approximation,

Py = gp 0 (44)

an expression for the blood solids volume fraction,
hematocrit is then as follows.

R 2
Het=c| ——— 4
=« (dp Uanax) ( 5)

Hematocrit = (tube diameter/red blood cell diameter)®/
(max .fluid velocity)? x constants

The above equation approximately gives the
hematocrit observed dependence on tube diameter,
fluid velocity, and the particle size. The relative blood
viscosity can then be given by the semi-theoretical
expression below.

n=1+0.127Hct'/3g)8 (46)

for 20 micrometer tube diameter in agreement with the
empirical equation of Pries er al.*® shown in Fig. 11,
where Hct is the hematocrit and g is radial distribu-
tion function at contact using the Bagnold equation in
Eq. (12). The one-third dependence is obtained from
the following approximation:

In the dilute regime the mixture density is propor-
tional to the 3/2 power of granular temperature. Hence
the viscosity which varies with the square root of the
granular temperature is proportional to the one-third
power of the volume fraction. The radial distribution
function corrects for the dense region. For uniform
packing limit of RBCs, computed relative apparent
viscosities have a sharp increase when hematocrit is
near 0.55, which is the result of RBCs deformation in
dense region. The greater deviation from the spherical

7.00

6.00 -

5.00

Relative apparent viscosity

1.00

0.00 . . . . . . . . .
0.00 0.20 0.40 0.60 0.80 1.00

Hematocrit

Pries' (1992) empirical equation
Semi-theoretical expression (38)
- = =+ Semi-theoretical expression with packing limit correction

FIGURE 11. A comparison of the computed relative apparent
viscosity of blood for 20 um tube diameter using expression
(46) and the kinetic theory model with a packing limit corre-
lation for RBCs to the empirical correlation of Pries et al.>® as
a function of hematocrit.

' Het=0.24 (Pries 1992 empirical equation)
6.50 v = - - -Hct=0.57 (Pries 1992 empirical equation)
' = Computed for Het=0.24

2 X Computed for Het=0.57
‘g 5.50 Error bar for Het=0.24
S Error bar for Het=0.57
2 A Developed flow approximation for Het=0.24
3 & Developed flow approximation for Het=0.57
> 450 oL
: -~
2. 3.50
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[}
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FIGURE 12. A comparison of the computed relative apparent
viscosity of blood using the multiphase kinetic theory model
in FLUENT (e =0.95, e, = 0.6) and the Poiseulle flow
approximation model to the empirical equation by Pries
et al.,%® with error bars, for two values of hematocrit.

shape of RBCs, the denser is the packing. We assume
that the packing limit of RBCs has a linear relationship
with hematocrit to take account of the RBCs defor-
mation in the dense regime:

&smax = 0.6086Hct + 0.3084 for Hct > 0.55 (47)

Figure 12 shows a comparison of the FLUENT
calculation of the relative apparent viscosity depen-
dence on the tube diameter and hematocrit, with the
empirical equation given by Pries er al.*°

CONCLUSIONS

1. A complete and an approximate kinetic theory
based two-phase flow models were used to
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explain the Fahraeus—Lindqvist effect,'® the
migration of red blood cells from the wall to
the center in narrow tubes. This type of
migration is known to be due to shear induced
diffusion in the two-phase flow literature. Here
it is explained using a kinetic theory based
model already found in FLUENT, a commer-
cial code. This migration is caused by a
decrease of granular temperature at the center
of the tube due to inelastic collisions. The
granular temperature is the driving force for
migration. The magnitude of the inelasticity is
the only significant empirical parameter in the
model. The dip in the granular temperature at
the center gives rise to the increased red blood
cell concentration.

2. The kinetic theory model computes the red
blood cell viscosity, similar to the computation
of particle viscosity in gas fluidization.'?

The computed viscosity agrees with the measure-
ments of blood viscosity.*® In this computation the ra-
dial distribution function of statistical mechanics was
approximated by a geometric type approximation,
called the Bagnold equation, long used in the estimation
of liquid—solid viscosities.*” For a better estimate, direct
measurements are needed, as was done for gas-particle
systems using a particle image velocity technique.'*
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