
A Constitutive Model of Soft Tissue: From Nanoscale Collagen

to Tissue Continuum

HUANG TANG,1 MARKUS J. BUEHLER,2 and BRIAN MORAN
1,3

1Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3109,
USA; 2Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering,

Massachusetts Institute of Technology, 77 Massachusetts Ave., Room 1-235A&B, Cambridge, MA, USA; and 3Present Address:
King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

(Received 9 July 2008; accepted 16 March 2009; published online 8 April 2009)

Abstract—Soft collagenous tissue features many hierarchies
of structure, starting from tropocollagen molecules that form
fibrils, and proceeding to a bundle of fibrils that form fibers.
Here we report the development of an atomistically informed
continuum model of collagenous tissue. Results from full
atomistic and molecular modeling are linked with a contin-
uum theory of a fiber-reinforced composite, handshaking the
fibril scale to the fiber and continuum scale in a hierarchical
multi-scale simulation approach. Our model enables us to
study the continuum-level response of the tissue as a function
of cross-link density, making a link between nanoscale
collagen features and material properties at larger tissue
scales. The results illustrate a strong dependence of the
continuum response as a function of nanoscopic structural
features, providing evidence for the notion that the molecular
basis for protein materials is important in defining their
larger-scale mechanical properties.

Keywords—Multi-scale model, Collagen, Soft tissue, Molec-

ular mechanics, Continuum, Finite element, Deformation,

Failure, Mechanical properties.

INTRODUCTION

Soft tissue has many hierarchies of structure,1,8 start-
ing from tropocollagen molecules that form fibrils, and
proceeding to a bundle of fibrils that formfibers. The soft
tissue is essentially a fiber-reinforced composite,while the
fiber is a fibril-reinforced composite at smaller length
scales. The overall mechanical behavior of the soft tissue
depends on its hierarchically organized structure. A bet-
ter understanding of the structure mechanisms control-
ling the mechanical behavior of soft tissue can play
significant roles in tissue engineering. One of goals of

tissue engineering is to produce functional replacement
tissue for clinical use.19 An example on the application
of tissue engineering is the replacement or repair of an
injured ligament or tendon due to overstretching, which
requires an improved understanding of the structure-
controlled mechanical behavior of soft tissue.

A physically motivated constitutive model is impor-
tant to help better understand the structure-controlled
deformation mechanisms of soft tissues. There exist a
number of constitutive models of soft tissue, most of
which12,15,20,24 account only for the tissue deformation
in an elastic domain on the basis of hyperelasticity. In
Kroon and Holzapfel,16 an anisotropic strain-energy
functionwas used to develop the constitutive relations of
a multiple collagen layers. The deformation behavior of
soft tissue beyond physiological range of loading is
characterized by irreversible deformation or damage. A
complete constitutive model needs to account for the
mechanisms controlling the irreversible deformation of
soft tissue. Inelastic deformation of soft tissues was
included in the modeling of arteries by Tanaka and
Yamada21 andTanaka et al.22 bymeans of a viscoplastic
formulation. A rate-independent elastic–plastic model
was used by Gasser and Holzapfel10 to simulate the
constitutive behavior of fiber-reinforced biological soft
tissue. Other studies focused on the development of a
constitutive model of the posterior cruciate ligament.17

In this study, we propose a multi-scale constitutive
model which takes material properties at different
structural hierarchies of soft tissue into account
through a hierarchical multi-scale coupling scheme.
The model incorporates the deformation mechanisms
of fibrils on the nanoscale into a macroscopic
description of the constitutive behavior of tissue con-
tinuum. Here the irreversible deformation of soft tissue
is mainly attributed to inelastic deformation occurring
in the fibrils. The mechanical behavior of fibrils is
modeled through molecular dynamics simulations
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(MD). The analysis reported here draws on earlier
atomistic and molecular dynamics simulation results
that provide a quantitative description of the mechani-
cal behavior of collagen fibrils.3,4 By means of the
multi-scale constitutive model, the physical mecha-
nisms controlling the elastic–inelastic deformation of
soft tissue are accounted for by means of hierarchical
parameter passing. The major objective of this study is
to shed lights on the correlation of molecular structure
of soft tissue and its macroscopic mechanical behavior.

CONSTITUTIVE RELATIONS OF TISSUE

CONTINUUM

Kinematics of Deformation for Tissue with
Hierarchically Organized Structure

The hierarchical features of soft tissue are illustrated
in Fig. 1. The fibrils are aligned with the fiber axis. The
fibers have a parallel arrangement in the tissue. In the
calculations conducted here, the tissue is treated as a
homogenized continuum. Each material point in the
continuum represents the overall response of a statis-
tically homogeneous representative volume element
(RVE) of the tissue. The deformation gradient is
defined by �F �X; tð Þ ¼ @v �X; tð Þ

�
@ �X;where �X is a material

point defined in the reference configuration X0, and
�x ¼ v �X; tð Þ is the corresponding position in the current
configuration Xt at time t. In Fig. 2, the multiplicative
decomposition of the macroscopic deformation gradi-
ent of the RVE, �F; is described. The macroscopic
deformation gradient �F can be understood as the vol-
ume average of the deformation gradient over the RVE
subjected to homogeneous or periodic boundary con-
ditions. As shown in the figure, the deformation gra-
dient is multiplicatively decomposed as12

�F ¼ �Fs
�Ff; ð1Þ

where �Ff corresponds to a macroscopic uniaxial
deformation along the fiber direction, and �Fs involves
the remaining macroscopic shear deformation and
rigid body rotation. For the case that all components
in the tissue including fibrils, fibers and matrix mate-
rials are incompressible, it is shown that the uniaxial
deformation along the fiber direction is uniform
through the tissue RVE. Thus, we have

Ff ¼ �Ff; ð2Þ

where Ff represents the local uniaxial deformation
gradient. By uniaxial deformation, we mean the
deformation associates with a state of uniaxial stress
with �Ff written as

�Ff ¼ �ka0 � a0 þ �k�1=2 I� a0 � a0ð Þ
with a0 � a0ð ÞIJ ¼ a0I� a0J; ð3Þ

where �k is the macroscopic stretch along the fiber
direction, and a0 is the fiber direction in the reference
configuration (the symbol ˜ stands for the tensor
product).

Due to the structure and deformation mechanisms
of the fibrils, we assume that the plastic flow associ-
ates only with the uniaxial deformation of the fibrils,
and the shear deformation of the fibrils is taken to be
totally elastic. The unaxial deformation gradient Ff

can be further decomposed into elastic and plastic
parts

Ff ¼ F e
f F

p
f ; ð4Þ

where F e
f and F p

f represent the uniaxial elastic and
plastic deformation along the fiber direction in the
fibrils, respectively.

FIGURE 1. Schematic view of the Hierarchical features of
tissue.
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FIGURE 2. Multiplicative decomposition of the macroscopic
deformation gradient of tissue.
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From Eqs. (1), (2), and (4), we have

�F ¼ �F e�F p; ð5Þ

where �F e ¼ �FsF
e
f and �F p ¼ Fp

f : The fiber direction in
the current configuration is given by

a ¼
�Fa0
�k
; ð6Þ

where the macroscopic stretch is defined by �k ¼ffiffiffiffi
�I4

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Fa0 � �Fa0

p
:

Elastic Strain Energy of Fibrils and Plastic Flow Rule

Weobtained the strain energy function of the tissue in
a hierarchical way starting from the fibril response. Here
the fibril is modeled as a generalized Neo-Hookean
material characterized by the strain energy function12

we
fl I

e
1 ; I

e
4

� �
¼

lfl I e4
� �

2
I e1 � 3
� �

; ð7Þ

where Ie1 ¼ tr F eF eT
� �

with F e the elastic part of the
deformation gradient of the fibrils, and lfl ¼ l0f I e4

� �

with

f I e4
� �

¼ tanh a1 I e4 � 1
� �� �

þ a2 exp a3 I e4 � I0
� �� �

; ð8Þ

where a1, a2 and a3 are dimensionless material
parameters, and l0 is the shear modulus of the fibril.
The hyperbolic function in Eq. (8) characterizes the
stiffness evolution of the fibrils embedded in crimped
fibers during tissue stretching. It was experimentally
observed that the collagen fibers in a relaxed tissue
appear to be wavy and crimped.1,6 Thus, they sustain
little load in the initial stage of the stretching of the
tissue. This is reflected by the ‘‘toe’’ region of the
tensile stress–strain curve of the tissue which is char-
acterized by a small tangent modulus. Since the fibrils
are embedded in the fiber being the major loading
components, they should sustain little load before the
crimped fiber is straightened. Furthermore, the mate-
rial parameter I0 in Eq. (8) is a critical value related to
the secondary stiffening of the fibril. The second-
ary stiffening behavior of the fibril was revealed by
Buehler4 through MD simulations. It was shown that
there exists a second elastic regime characterized by an
increased elastic modulus with increased fibril stretch
for large cross-link densities. The fibrils generally fail
prior to reaching the second elastic regime for smaller
cross-link densities.

It is postulated that the plastic velocity gradient of
the fibrils takes the deviatoric form10

_F pF p�1 ¼ _cdev a0 � a0ð Þ; ð9Þ

where _c is the plastic strain rate, and F p ¼ F p
f is the

plastic part of the deformation gradient of the fibrils.

According to the assumption, there exists only uniaxial
plastic deformation along the fibril direction which is
volume-preserved. The plastic strain rate is assumed to
take the power law form

_c ¼ _c0
Reff

g

����

����

1=m

sign Reffð Þ; ð10Þ

where

Reff ¼ R : dev a0 � a0ð Þ; ð11Þ

where R ¼ F eTsF e�T is the Mandel stress, and g is the
flow resistance which evolves with time t in terms of

_g tð Þ ¼ h 1� g tð Þ
gs

� 	
_c ð12Þ

where gs and h are the saturated flow strength and
hardening or softening rate, respectively. Due to fibril
softening associated with the breakage of cross links,
the saturated flow strength, gs, is generally chosen to be
smaller than the initial yield strength of the fibril, g0, in
the calculations here.

Buehler4 first introduced a parameter b describing
the increase of adhesion at the ends of each TC mol-
ecule to reflect the variation of the cross-link densities.
Experimental analyses of the molecular geometry
suggests that intermolecular aldol cross-links between
lysine or hydroxylysine residues, effectively leading to
an increased adhesion between neighboring tropocol-
lagen molecules at the location of cross-links, which
primarily develop at the ends of tropocollagen mole-
cules. The aldol cross-link is a C–C bond that forms
between side chains of residues of two tropocollagen
molecules. The parameter b describes the relative
strength of the intermolecular adhesion, compared
with a reference value that relates to non-covalent
intermolecular interactions (e.g. H-bonds, vdW,
Coulomb forces, etc.) that are present without cross-
links. For a choice of b = 12.5, the additional shear
force exerted at the end of the molecule corresponds to
�4.2 nN, which is on the order of the bond strength of
covalent cross-link bonds. The parameter b = 12.5
therefore corresponds to the case when approximately
one cross link is present at each end of a tropocollagen
molecule, leading to a cross-link density of 2.2 9 1024/
m3 (the cross-link density is defined as the number of
cross-links per unit volume). Similarly, doubling the
value b = 25 corresponds to two covalent cross-links.

Through MD simulations,4 it was shown that the
initial yield strength of the fibril, g0, strongly depends
on b. In Fig. 3, the relationship of cross link
parameter, b, and the initial yield strength of the fibril
is illustrated. A function describing the variation of
the initial yield strength with b is taken to have the
form

A Constitutive Model of Soft Tissue 1119



g0 bð Þ ¼ gi þ cb2; ð13Þ

where gi is the yield strength of the fibril without cross-
link, and c is a material constant. This relationship
between yield strength and cross-link parameter b
serves as the basis for the multi-scale coupling via
parameter passing.

Elastic Strain Energy Function of Fiber

Here the fiber is considered as a composite rein-
forced by continuous fibrils as described in Fig. 4. The

matrix material of the fiber is modeled as an incom-
pressible Neo-Hookean material characterized by the
strain energy function

we
fm I1ð Þ ¼

lfm

2
I1 � 3ð Þ; ð14Þ

where lfm is the shear modulus of the fiber matrix
material. The elastic strain energy density of the fiber
under extension is given by

we
f I4; I

e
4

� �
¼ vflwe

fl I1 F e
f

� �
; I e4

� �
þ vfmwe

fm I1 Ffð Þð Þ; ð15Þ

where I1 F e
f

� �
¼ I e4 þ 2 I e4

� ��1=2
; I1 Ffð Þ ¼ I4 þ 2I

�1=2
4 ; vfl

is the fibril volume fraction of the fiber, and vfm =

1 � vfl is the volume fraction of the matrix material of
the fiber. It is noted that I4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ffa0 � Ffa0
p

¼ �I4:
The elastic strain energy function for the fiber under

shear is given by

we
s

�I fb1 ; I4; I
e
4

� �
¼ lfb

eff

2
�I fb1 � I1 Ffð Þ
� �

; ð16Þ

where2,12

lfb
eff ¼ lfm 1þ vfl

� �
f I e4
� �
þ 1� vfl
� �

1� vflð Þf I e4
� �
þ 1þ vflð Þ

; ð17Þ

and �I fb1 ¼ tr �FT
fiber

�Ffiber

� �
with �Ffiber the macroscopic

deformation gradient of the fiber which is essentially
a fibril-reinforced composite. The effective shear
modulus as defined in Eq. (17) involves the effects of
shear interactions at the interface of the fibril and
matrix. The interaction at the interface of the matrix
and fibers was also accounted for in the transversely
isotropic hyperelastic model developed by Peng
et al.20 for the human annulus fibrosus. The total
elastic strain energy density of the fiber includes the
individual contributions due to the extension along
the fibril direction and the remaining shear deforma-
tion. The strain energy function of the fiber is there-
fore written as

we
fb

�I fb1 ; I4; I
e
4

� �
¼ we

f I4; I
e
4

� �
þ we

s
�I fb1 ; I4; I

e
4

� �
: ð18Þ
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FIGURE 3. Initial yield strength of the fibril as a function of
the cross-link parameter. Subplot (a) shows the original
molecular dynamics results of the stress–strain behavior as a
function of the cross-link parameter b,4 and Subplot (b)
depicts the analysis of the fibril yield strength as a function of
the cross-link parameter b. The parameter b 5 12.5 corre-
sponds to the case when approximately one cross link is
present at each end of a tropocollagen molecule, leading to a
cross-link density of 2.2 3 1024/m3.

FIGURE 4. A representative volume element of the fiber.
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Elastic Strain Energy of Tissue and Macroscopic
Constitutive Descriptions

In Fig. 5, a representative cylindrical element of
tissue is described. The tissue is treated as a fiber-
reinforced composite. The elastic strain energy func-
tion of the matrix material of the tissue is taken to have
the form

we
m I1ð Þ ¼

lm

2
I1 � 3ð Þ; ð19Þ

where lm is the shear modulus of the tissue matrix
material. The elastic strain energy density of the tissue
under extension is given by

�we
f

�I4; �I
e
4

� �
¼ vfwe

f
�I4; �I e4
� �

þ vmwe
m

�I1 Ffð Þð Þ; ð20Þ

where vf is the fiber volume fraction of the tissue, and
vm = 1 � vf is the volume fraction of the matrix of the
tissue.

The elastic strain energy function of the tissue under
shear is given by

�we
s

�I1; �I4; �I
e
4

� �
¼ leff

2
�I1 � �I1 Ffð Þ½ �; ð21Þ

where �I1 ¼ tr �FT�F
� �

and

leff ¼ lm 1þ vf
� �

lfb
eff þ 1� vf

� �
lm

1� vfð Þlfb
eff þ 1þ vfð Þlm

: ð22Þ

The total elastic strain energy function of the tissue is
defined by

�we �I1; �I4; �I
e
4

� �
¼ �we

f
�I4; �I

e
4

� �
þ �we

s
�I1; �I4; �I

e
4

� �
: ð23Þ

A noticeable feature of the strain-energy function is
that it depends on not only the elastic stretch but also
the total deformation. This arises from the assumption
made in developing the composite model that the plas-
tic deformation only occurs in the fibril while the matrix
materials always remain elastic. In the sense, the
model is therefore quite different from the conventional

hyperelasto-plastic model used for metallic crystalline
materials. We can further write the strain-energy
function of the tissue as

�we �I1; �I4; �I e4
� �

¼ 1

2
�lm �I4 þ 2�I

�1=2
4 � 3


 �

þ 1

2
�lfl �I e4 þ 2�I

e�1=2
4 � 3


 �

þ leff

2
�I1 � �I1 Ffð Þ½ �; ð24Þ

where �lm ¼ vfvfmlfm þ vmlm; and �lfl ¼ vfvfllfl:
For an isothermal process, the Clausius–Duhem

dissipation inequality at the macroscopic continuum
level takes the form

�s : �d� _�w
e �I1; �I e1 ;

�I e4
� �

� 0; ð25Þ

where �s is the macroscopic Kirchhoff stress of the
tissue continuum and �d is the macroscopic rate of
deformation. Equation (25) is further written as

�s� 2
@�we

@�I1
�bþ 2�I4

@�we

@�I4
a� aþ 2�Ie4

@�we

@�Ie4
ae � ae

� 	� 
:

�dþ 2�I e4
@�we

@�Ie4
ae � ae : �d p � 0; ð26Þ

where �dp ¼ sym �F e _�F
p
�F p�1�F e�1


 �
: Due to the material

incompressibility of soft tissue, we have �J ¼ det �C ¼ 1
throughout the deformation. Thus, the required con-
straint on _�C is

_�J ¼ �J�C�1 : _�C ¼ 0: ð27Þ

To satisfy both the inequality (26) and the constraint
condition (27), we have

�s ¼ 2
@�we

@�I1
bþ 2�I4

@�we

@�I4
a� aþ 2Ie4

@�we

@�I e4
ae � ae � pI;

ð28Þ

and

2�I e4
@�we

@�I e4
ae � ae : �dp � 0: ð29Þ

Equation (29) is further written as

�F eT 2�I e4
@�we

@�I e4
ae � ae

� 	
�F e�T : _cdev a0 � a0ð Þ � 0: ð30Þ

We can show that the inequality is equivalent to

�F eT 2�I e4
@we

fl

@�I e4
ae � ae

� 	
�F e�T : _cdev a0 � a0ð Þ � 0: ð31Þ

Note that the strain energy under shear, �we
s ; is also

functionally dependent on �I e4 through the effective
shear modulus. However, its contribution to the plasticFIGURE 5. A representative volume element of the tissue.
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dissipation is neglected here. Macroscopically, the
evolution of plastic strain in the fibril can be written as

_c ¼ _c0
�Reff

g

����

����

1=m

sign �Reffð Þ ð32Þ

where

�Reff ¼ �R : dev a0 � a0ð Þ; ð33Þ

and where

�R ¼ �F eT 2�I e4
@we

fl

@�I e4
ae � ae

� 	
�F e�T ð34Þ

is the macroscopic Mandel stress driving the plastic
flow in the fibrils. Combining Eqs. (33) and (34), it is
readily shown that the effective stress takes the form

�Reff ¼
4

3
�I e4
@we

fl

@�I e4
: ð35Þ

In order to avoid numerical complications in the
finite element implementation of an incompressible
material model, we decouple the material response of
the tissue into deviatoric and dilatational parts.24 The
reader is referred to Appendices A and B for an explicit
derivation of the constitutive equations associated with
the decoupled material response and the numerical
integration procedure, respectively.

RESULTS AND DISCUSSIONS

Unless otherwise specified, the values of the material
parameters used to characterize the continuum tissue
model are summarized in Table 1. The shear modulus
for the fibril, l0, the critical stretch Icr, and m were
obtained by fitting the continuum fibril response to
those predicted from MD simulations. The shear
modulus for matrix material takes a much smaller
value of 1.0 MPa which is on the order of magnitude
used in Guo et al.12 A low volume fraction is used for
both fibril and fiber which is consistent with the typical
volume fraction of collagen in tissue.

Material Response in Biaxial Stress

We first investigate the predictive capability of the
present model under biaxial loading conditions as

illustrated in Fig. 6. It is assumed that the specimen
has an arbitrary in-plane fiber direction a = cos ae1 +
sin ae2 where ei (i = 1, 3) is the Cartesian basis vectors,
and a is the angle between the fiber direction and e1.
The deformation is driven by

F tð Þ ¼ k tð Þe1 � e1 þ xk tð Þe2 � e2 þ
1

xk2 tð Þ
e3 � e3;

ð36Þ

where x is a constant defining the stretch ratio of the
x1 and x2 directions. Noting that the pressure p can be
determined from the condition that r3 = 0, the stresses
in the x1 and x2 directions are expressed as

r1 ¼ 2
@�we

@�I1
k2 � 1

x2k4

� 	
þ 2

@�we

@�I4
k2 cos2 a

þ 2
@�we

@�I e4
k2e cos

2 a

r2 ¼ 2
@�we

@�I1
x2k2 � 1

x2k4

� 	
þ 2

@�we

@�I4
x2k2 sin2 a

þ 2
@�we

@�I e4
k2e sin

2 a:

ð37Þ

For a rate-independent limit m = 0, the yielding
condition can be expressed as

�Reff
�Ie4
� �
¼ g0; ð38Þ

where the effective stress, Reff, is defined by Eq. (35).
By solving Eq. (35), a critical value Icr can be deter-
mined such that the yielding occurs when �I4 ¼ Icr.

TABLE 1. Parameters characterizing the tissue model.

vfl v f
lfm

(MPa)

lm

(MPa)

l0

(MPa) _c0 ðs�1Þ m I0

0.2 0.15 1.0 1.0 2000 0.01 0.05 2.4

α

x1

x2

σ1 

σ2

FIGURE 6. A tissue element subjected to biaxial stretches in
the x1 and x2 directions. The fiber is oriented at a about the x1.
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Note that Icr is a material constant independent of the
loading conditions and fiber orientations. For the
biaxial loading condition, we have

�I4 ¼ k2 cos2 aþ x2k2 sin2 a: ð39Þ

It is readily shown that the critical stretch at which the
yielding occurs is defined by

kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Icr

cos2 aþ x2 sin2 a

s

: ð40Þ

The critical stretch kc is not a material constant
and its dependence on both the fiber orientation and
x is illustrated in Fig. 7. It is, however, noted that
the critical stretch kc ¼

ffiffiffiffiffi
Icr
p

which is independent of
the fiber orientations for equal-biaxial loading
x = 1.0.

We now proceed to investigate the stress–strain
responses depending on both the fiber orientations and
x. In these calculations, the hardening rate is taken to
be zero. In Fig. 8, we compare the stress–strain curves
for different values of x. The initial fiber direction is
fixed at 45� about the x1 axis. As we can see, the crit-
ical strain at which the yielding occurs increases
with decreasing x. This is consistent with Eq. (40).
For x = 2.0, the fibers tend to be aligned with x2
axis leading to the softening in the x1 direction. In
Figs. 9a–9c, the stress–strain curves for different fiber
orientations are compared. The proportion constant x
takes a value of 0.5, 1.0, and 2.0 in Figs. 9a–9c,
respectively. As shown in these figures, the material
response in the x1 direction becomes harder with
decreasing a, while the critical strain at which the
yielding occurs also depends on x.

Tissue Response Dominated by the Fibril Behavior

According to the proposed tissue model, the
inelastic deformation occurs only in the fibrils. The
fibril composed of collagen molecules connected by
cross-links is stiff and strong. The MD simulations
reveal that the fibril has both the yield strength and
stiffness on the order of 1–10 GPa. For the biological
tissue, both the strength and stiffness are at least one
order of magnitude smaller than those for the fibril.
For example, the ultimate tensile strength for both
ligament and tendon ranges from 50 to 100 MPa. The
vast difference between the tissue and fibril strengths is
due, in part, to the volume fraction of collagens and
the composite structure of the tissue. The multi-scale
modeling proposed in the present study is intended to
help gain a better understanding of the structure-
related mechanical behavior of soft tissue. This can
play a significant role in tissue engineering for the
creation of synthetic tissue to replace or repair portions
of load-carrying soft tissue.

In Figs. 10–12, the tensile stress–strain behaviors of
the fibril, fiber and tissue at different fibril yield strengths
are displayed. This gives us a clear view on how the
mechanical behavior of the tissue is dependant on the
behavior of the fibril and fiber. The fibril yield strength
typically increases with increasing density of the inter-
molecular cross links. InFig. 10, the tensile stress–strain
curves of the fibril for three cases g0 = 1200, 1800, and
3000 MPa are compared. Unless otherwise specified,
the ratios g0/gs = 6.0 and g0/h = 1.0 are held fixed. By
using these parameters, we assume that the resistance to
the deformation of the fibril decreases with increasing
inelastic deformation. This can be due to the breakage of

ω

λ c/I
cr0.
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FIGURE 7. Critical stretch at which yielding occurs as a
function of x at varying fiber orientations.
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intermolecular cross-links. As shown in Fig. 10, signif-
icant load drops are exhibited due to a large softening
rate in the calculations.

The fibers in the unloaded soft tissues were observed
to display a crimped morphology. As a result, the
fibers can be extended significantly with little load until
they are straightened. This explains the ‘‘toe’’ region as
exhibited in the typical tensile stress–strain behavior of
tissue. By using the hyperbolic function as described in
Eq. (8), the typical mechanical behavior of the crimped
fibers can be well simulated. In Fig. 11, we show the
predicted tensile stress–strain curves for the crimped
fibers at different fibril yield strengths. As shown in
this figure, three regions before fiber failure can be well
identified in the tensile stress–strain curves. The toe
region is characterized by a small tangent modulus. At
the end of the toe region there is a gradual transition
into the linear region of the stress–strain curve. Failure
occurs near the end of the linear region.

The tensile behavior of tissues such as ligaments and
tendons is dominated by the fibril behavior, since
the fibrils are the major load-carrying components of
the tissue under tension. In Fig. 12b, we show that the
predicted macroscopic stress–strain curves of the tissue
are similar to those for the fibers as described in
Fig. 11. This is mainly attributed to the loading
direction which is aligned with the fiber direction.
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The simulations were conducted on a single block
element as described in Fig. 12a. The stress–strain
behaviors described in Fig. 12b therefore represent the
mechanical response of a material point of the tissue or
local response. It is noted that the overall tensile
response of a tissue specimen can be very different
from the local response especially in the presence of
deformation localization associated with material
instability. A comparison of the tissue response and
fiber response clearly reveal that the macroscopic flow
strength of the tissue is much smaller than that for the
fiber, while the critical strain at which the failure
occurs is almost the same as that for the fiber.

The significant load drop shown in the tensile
stress–strain curves of the tissue is due to the decrease
of the fibril strength with increasing inelastic defor-
mation. In Fig. 13, the evolution of the fibril strength
with tissue stretching is described. The initial yield
strength of the fibril is 1200 MPa. The fibril resistance
to the deformation starts decreasing as the effective
stress in the fibril reaches a critical value with
increasing tissue stretching. It is noted that the matrix
materials of the tissue always remain elastic. Therefore,
the resistance of the matrix materials keeps increasing
with the deformation of the tissue. However, the
overall response of the tissue exhibits significant soft-
ening as shown in Fig. 13, since its behavior is domi-
nated by the mechanical behavior of the fibril.

Anisotropic Mechanical Behavior of Tissue

Here we investigate the anisotropic mechanical
behavior of the tissue by means of a simple model
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problem. A single cube reinforced by one family of
fibers is considered. The cube is simulated by a single
brick element as indicated in the inset of Fig. 14. The
loading direction is fixed in the x1 direction, while the
fiber directions vary. The boundary conditions are
employed such that the uniaxlal tension is uncon-
strained. Four different fiber directions, 0�, 30�, 45�,
and 90� about the x1 direction are considered. In
Fig. 14, the dependence of the tensile stress–strain
response on the loading direction with respect to the
fiber direction is revealed. As shown in this figure, for
all fiber directions except the 90o direction (transverse
loading), the material yielding followed by load drop
occurs with increasing loading. With increasing angle
between the fiber and loading directions, the critical
strain for the occurrence of yielding increases. This
is expected because the load sustained by the fibril
decreases with increasing angle between the fiber and
loading directions. During deformation, the fibers tend
to be aligned with the loading direction for all these
cases except the transverse loading case (90�). In the
transverse loading case, the applied load is mainly
sustained by the matrix material, and the fibers are not
stretched. As a result, no material yielding is observed
and the toe region is absent from the stress–strain
curve. The stress level in this case is also significantly
lower than that in the other cases.

Dependence of the Tissue Strength
on the Cross-Link Parameter

The cross-link density of the fibril plays a significant
role on its yield strength. The cross-link density can be

characterized by the cross-link parameter, b, which
describes the increase of adhesion at the ends of each
TC molecule. In Fig. 3, we illustrate the relationship
between the cross-link parameter and the fibril yield
strength. By means of the proposed composite model,
it is easy to determine the relationship between the
tissue tensile strength and the cross-link parameter.
The tensile strengths of the tissue as a function of the
cross-link parameter b are described in Fig. 15. Here
the tensile strength corresponds to the peak value
in the tensile stress–strain curve of the tissue. As
expected, the tissue strengths increase with increased
value of b, following the same trend as that for the
fibril.

The present model shows the potential of studying
the effects of aging on the mechanical behavior of
tissue. As we know, the cross-link densities generally
increase with aging, thereby increasing the strength
of fibrils.23 The increase of the fibril strength may
decrease the toughness of the fibril. From the present
model, the tissue behavior can be obtained with known
fibril properties. Therefore, we can know how the
aging will influence the tissue behavior if the aging
effects on the fibril behavior are known.

Localized Tensile Deformation in Large-Scale
Tissue Continuum

The macroscopic response of a large-scale soft-tissue
specimen under uniaxial tension is investigated in this
section. The soft-tissue specimen submitted to uniaxial
tension in the fiber direction (x1 axis) is assumed to
have plane-stress conditions. Due to the symmetries
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about the middle planes, only one quadrant of the
specimen is modeled. The initial length of the specimen
is 2L, and the width is 2W = 2L/3. The finite element
mesh of the model is described in Fig. 16.

Here we investigate the localization phenomenon
induced by a small material inhomogeneity. In the
calculations, the hardening rate is taken to be zero with
g0 = gs = 750 MPa. The initial material inhomogene-
ity is imposed in a single element as indicated in Fig. 16
by taking a slightly smaller value of flow strength
g0 = 748.5 MPa. A material instability is expected to
be initiated from this element. Three cases with the rate
sensitivity m = 0.005, 0.025, and 0.05 are considered.

In Figs. 17a–17c, the contours of Cauchy stress r11

for the case m = 0.005 are described showing the
development of plastic localization in the soft-tissue
specimen. As shown in Fig. 17a, the localization of
plastic deformation is initiated from the element with
slightly smaller flow strength in the presence of a
material instability. Once the material instability starts,
the localized plastic deformation develops into a tensile
band inside which the tensile stain is extremely large.

The tensile band propagates rapidly through the cross-
section of the tissue sheet once initiated. As described
in Figs. 17b and 17c, the propagation of the tensile
band is similar to that of a crack tip. Elastic unloading
in the surrounding material of the tensile band is
associated with its propagation. Figure 17 clearly dis-
play the expansion of the unloading region with the
propagation of the tensile band. The released elastic
energy due to the elastic unloading is mostly dissipated
by the plastic deformation in the tensile band, thereby,
facilitating its propagation. The force–displacement
curve displayed in Fig. 18 shows that a sudden load
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FIGURE 16. Finite element mesh of a soft-tissue specimen
under uniaxial tension along the fiber direction.
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FIGURE 17. Distributions of tensile stress at (a) initiation of plastic localization, (b) early stage of the propagation of plastic
localization and (c) final stage of plastic localization.
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drop is associated with the propagation of the localized
deformation. We note that the onset of material
instabilities is not immediately associated with the load
drop following the point of peak load. The small
inhomogeneity initially grows slowly with plastic
deformation until the onset of the material instability.
As revealed in this figure, the onset of the material
instability is significantly delayed for a large value of
m, corresponding to strong material rate dependence.
It is well known that material rate sensitivity plays a
significant role in the development of shear bands in an
elasto-viscoplastic material, for example, a ductile
single crystal (Peirce et al., 1983). An increase in
material rate sensitivity can significantly retard the
localization of plastic flow into an intensive deforma-
tion band, thereby, increasing the ductility of the
material. This is consistent with our observations in
Fig. 18.

Experimentally, it was shown that the tensile fail-
ure of soft tissue was typically associated with a steep
load drop displayed in the measured load-displace-
ment curve.25 This is in good accord with the simu-
lation results shown in Fig. 18. The present study
shows that plastic localization can be an important
mechanism leading to the failure of soft tissue. This is
similar to shear localization occurring in metallic
materials under tension which is the dominant failure
mechanism. We believe that the present multi-scale
constitutive model provides a powerful tool for
helping better understand the failure and deformation
mechanisms of soft tissue.

CONCLUDING REMARKS

In this study, a multi-scale constitutive model for
soft tissue is developed. The deformation behavior of
fibril on the nanoscale was obtained from MD simu-
lations. The proposed constitutive model incorporates
the deformation features of fibrils including both
softening and secondary stiffening into a macroscopic
constitutive description of the tissue continuum. The
simulation results show that the model can capture the
typical deformation behaviors of a soft tissue such as
toe region displayed in the typical stress–strain curves,
material anisotropy and softening beyond the physio-
logical loading range. The multi-scale constitutive
model takes into account the structure and deforma-
tion mechanisms of soft tissue. By means of this model,
the macroscopic response of soft tissue can be directly
linked to the cross link densities of fibrils. This can help
understand the effects of aging on the human tissue
behavior. A quantitative comparison between simula-
tion and experimental measurements however needs to

be performed to further validate the proposed model.
This will be conducted in future studies. An improved
understanding of failure of biological tissues at multi-
ple scales could enable tissue engineering approaches,
the design of new biomaterials, and may also provide
mechanistic insight into disease mechanisms.5

APPENDIX A: DECOUPLED

VOLUMETRIC–DEVIATORIC RESPONSES

We write7

~F ¼ �J�1=3�F ¼ �J�1=3�F e�Fp; ð41Þ

where �J ¼ det �F and ~F are associated with the volume-
preserving macroscopic deformation. The plastic
deformation is isochoric and the elastic part of ~F is
written as

~F e ¼ �J e�1=3�F e; ð42Þ

where �Je ¼ �J: The right Cauchy-Green tensor associ-
ated with the deviatoric response is written as

~C ¼ ~FT~F; ~C e ¼ ~F eT~F e: ð43Þ

The corresponding invariants are defined as
~I1 ¼ tr ~C

� �
; ~I4 ¼ ~C : a0 � a0ð Þ and ~I e4 ¼ ~C e : a0 � a0ð Þ:

The total elastic strain energy function of the tissue
is postulated to take the decoupled form

W �C; �C e; a0 � a0
� �

¼ �we
iso

~I1; ~I4; ~I e4
� �

þ �we
vol

�Jð Þ; ð44Þ

where �we
iso and �we

vol are the isochoric and volumetric
contributions to the material response of the tissue,
respectively. The volumetric part of the total elastic
strain energy is taken to be a convex function of �J with
the form

�we
vol ¼

j
2

�J� 1ð Þ2: ð45Þ

The isochoric part of the total elastic strain energy
takes the form

�we
iso

~I1; ~I4; ~I
e
4

� �
¼ �we

f
~I4; ~I e4
� �

þ �we
s

~I1; ~I4; ~I
e
4

� �
; ð46Þ

where, using Eqs. (15) and (20),

�we
f

~I4; ~I
e
4

� �
¼ vfvflwe

fl
~I1 ~F e

f

� �
; ~I e4

� �
þ vfvfmwe

fm
~I1 ~Ff

� �� �

þ vmwe
m

~I1 ~Ff

� �� �
; ð47Þ

and

�we
s

~I1; ~I4; ~I e4
� �

¼
~leff

~I e4
� �

2
~I1 � ~I1 ~Ff

� �� �
; ð48Þ

where ~I1 ~Ff

� �
¼ ~I4 þ 2 ~I4

� ��1=2
:
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The second Piola–Kirchhoff stress is split into a
purely volumetric contribution and a purely isochoric
contribution with the form �S ¼ �Svol þ �Siso: We have

�Siso ¼ 2
@�we

iso
~I1; ~I4; ~I

e
4

� �

@ �C
þ 2�Fp�1 @

�we
iso

~I1; ~I4; ~I
e
4

� �

@ �C e
�F p�T;

ð49Þ

noting the pull back of the stress from the intermediate
configuration to the reference configuration in the
third term of the equation. Equation (49) is further
written as

�Siso ¼ �J�2=3P : 2
@�we

iso
~I1; ~I4; ~I e4
� �

@ ~C

 !

þ �F p�1 �J e�2=3Pe : 2
@�we

iso
~I1; ~I4; ~I e4
� �

@ ~C e

 !
�F p�T

¼ �J�2=3P :

 

2
@�we

iso
~I1; ~I4; ~I e4
� �

@~I1
I

þ 2
@�we

iso
~I1; ~I4; ~I

e
4

� �

@~I4
a0 � a0

!

þ �F p�1 �J e�2=3Pe :

2
@�we

iso
~I1; ~I4; ~I e4
� �

@~I e4
a0 � a0

 !
�F p�T; ð50Þ

where

P ¼ I� 1

3
�C�1 � �C and Pe ¼ I� 1

3
�C e�1 � �C e; ð51Þ

with I the fourth order identity tensor. The volumetric
part of the second Piola–Kirchhoff stress takes the
form

�Svol ¼ �Jp�C�1 ¼ �Jj �J� 1ð Þ�C�1: ð52Þ

Combining Eqs. (50) and (52), the Kirchhoff stress is
shown to have the form

�s ¼ �F�S�T
T ¼ 2

@�we
iso

~I1; ~I4; ~I e4
� �

@~I1
dev ~b

þ 2~I4
@�we

iso
~I1; ~I4; ~I e4
� �

@~I4
dev a� að Þ

þ 2~I e4
@�we

iso
~I1; ~I4; ~I

e
4

� �

@~I e4
dev ae � aeð Þ þ j�J �J� 1ð ÞI:

ð53Þ

APPENDIX B: TIME-INTEGRATION

PROCEDURE

Given �F tnþ1ð Þ at time tnþ1 ¼ tn þ Dt; we need to find
�F e tnþ1ð Þ to determine the stress sustained by the fibril

in the current configuration. Based on the multiplica-
tive decomposition, the elastic part of the deformation
gradient is determined by

�F e
nþ1 ¼ �Fnþ1�F

p�1

nþ1: ð54Þ

With the assumption �J ¼ �Je and �Jp ¼ 1; we have

~F e
nþ1 ¼ ~Fnþ1�F

p�1

nþ1: ð55Þ

By integrating Eq. (9), the plastic part of the defor-
mation gradient at time tnþ1 takes the form

�F p
nþ1 ¼ exp Dt _cnþ1dev a0 � a0ð Þ

� �
�F p
n : ð56Þ

In the calculations here, we use the approximate
form

�F p
nþ1 _¼ Iþ Dt _cnþ1dev a0 � a0ð Þ

� �
�F p
n ; ð57Þ

which arises from a first order Taylor-series expansion
of the exponential function as shown in Eq. (56). A
simpler method is also used in the calculations con-
ducted here. We write the plastic deformation gradient
as

�F p ¼ kpa0 � a0 þ kp�1=2 I� a0 � a0ð Þ; ð58Þ

where kp is the plastic stretch along the fiber direction.
Equation (58) reflects the incompressibility of plastic
deformation and the nature of uniaxial plastic flow
along the fiber direction. Combining Eqs. (58) and (9),
we have

_kp

kp
¼ 2

3
_c: ð59Þ

Integrating Eq. (59), we have

kp ¼ exp
2

3

Z
_cdt

� 	
: ð60Þ

The plastic stretch at current time is updated as

kptþDt ¼ kpt exp
2

3
DctþDt

� 	
; ð61Þ

where DctþDt ¼ _ctþDtDt: Unless otherwise specified, the
variables without subscript represent the values at time
tnþ1 ¼ tn þ Dt in the following.

Now we need to find the plastic strain increment
Dc ¼ Dt _c to determine the plastic part of the defor-
mation gradient. This is realized by updating both
the flow strength and the resolved Mandel stress along
the fiber direction. According to a backward discreti-
zation of Eq. (12), the flow strength at current time is
updated as

g ¼ hDcþ gt
1þ hDc=gs

: ð62Þ
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Here we define two coupled residual functions as

R1
~Reff; g
� �

¼ ~Reff �
4

3
~I e4
@we

fl

@~I e4

R2
~Reff; g
� �

¼ g�
hDc ~Reff; g

� �
þ gt

1þ hDc ~Reff; g
� ��

gs

8
>>><

>>>:

: ð63Þ

A general Newton–Raphson method is used to solve
the coupled equations

R1
~Reff; g
� �

¼ 0

R2
~Reff; g
� �

¼ 0

(

: ð64Þ

We have

~Rkþ1
eff

gkþ1

� �
¼

~Rk
eff

gk

� �
� ðGkÞ�1 � Rk

1

Rk
2

� �
; ð65Þ

where

Gk ¼
@R1

@~Reff

@R1

@g
@R2

@~Reff

@R2

@g

" #k

ð66Þ

with k the iteration number.
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