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Abstract—In this paper we develop a computational
approach to analyze hemodynamics in the aorta; this may
serve as a useful tool in the development of noninvasive
methods to detect early onset of diseases such as aneurysms
and stenosis in major blood vessels. We introduce a
mathematical model which describes the interaction of blood
flow with the aortic wall; this model is based on the immersed
boundary method. A two-dimensional vessel model is con-
structed, the velocity at the inlet is prescribed based on the
information from the Magnetic Resonance Imaging data
measured in the aorta of a healthy subject, and the velocity at
the outlet is prescribed by driving the pressure level repro-
duced from the literature. The mathematical model is
validated by comparing with well-known solutions of the
viscous incompressible Navier–Stokes equations, i.e., Wo-
mersley flow. The hysteresis behavior in the pressure–
diameter relation is observed when the viscoelastic material
property of the arterial wall is taken into consideration. Five
different shapes of aortic wall are considered for comparison
of the flow patterns inside the aorta: one for the normal
aorta, two for the dilated aorta, and two for the constrictive
aorta.

Keywords—Blood flow, Immersed boundary method, Hys-

teresis, Aneurysm, Stenosis.

INTRODUCTION

The heart as a pump creates the pulsatile flow by
alternating two phases called systole and diastole.
During systole, the left ventricular pressure becomes
higher than the aortic one; the aortic valve opens and
the blood is pumped into the aorta. This phase occu-
pies about one-third of the whole beat. During dias-
tole, the ventricular pressure is balanced by the aortic
pressure, the valve closes, and the ventricular pressure
falls quickly, while the aortic pressure decreases slowly
and the blood flows to the peripheral sites.32,39

The aortic wall consists primarily of elastin, colla-
gen (stiffer than elastin), smooth muscle, and ground
substance. The close association of elastin, collagen,
and smooth muscle in the aortic wall results in visco-
elastic properties that account for many of its
mechanical features.8,45 This wall expands during left
ventricular systole and returns to its previous dimen-
sion during diastole. The motion of the wall is directly
related to the elastic properties of the aortic wall and to
the aortic pressure.1,4,8,9,31

Changes in elastic properties of an arterial wall and
changes in the hemodynamic forces acting on it are
crucial factors in potential cardiovascular dis-
eases.27,30,33 In this paper we present a mathematical
model that describes the interaction between the arte-
rial wall movement and the blood flow. The mathe-
matical model is based on the immersed boundary (IB)
method which was developed to study flow patterns
around heart valves, and is generally a useful method
for treating problems in which elastic materials interact
with an incompressible viscous fluid. In the IB formu-
lation, the fluid equations are written in Eulerian form,
and the fluid variables (velocity and pressure) are stored
on the fixed Cartesian coordinate system. The equa-
tions that describe the immersed boundary are written
in Lagrangian form, and the boundary variables (po-
sition and Lagrangian force density) are stored on the
moving curvilinear coordinate system attached to the
immersed boundary. The Cartesian and curvilinear
coordinates do not coincide, and the data can be
transferred from one system to the other using a Dirac
delta function. This method has been applied success-
fully to problems of blood flow in the heart,34,35–38

wave propagation in the cochlea,6,19 platelet aggrega-
tion during blood clotting,14,15 animal locomo-
tion,10,11,13 and other biofluid problems.3,21,23,26,29,47

We provide a verification that the IB method cor-
rectly models and solves the interaction problem
between the vessel wall and blood flow by comparing
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the numerical solutions with Womersley flow in a two-
dimensional straight rigid channel. Womersley flow46

is a well-known solution for the fluid equations inside a
tube when the pressure gradient is known. The pres-
sure gradient in the longitudinal direction is changing
periodically in time, while the pressure gradients in the
radial and circumferential directions are zero. Since
our model is two-dimensional, we consider only two
components (the radial and longitudinal components).

Hysteresis is a property of physical systems that do
not react immediately to the applied force. The hyster-
esis is observed in the relation between the blood pres-
sure and the vessel diameter.8 The potential parameters
related to the occurrence of the hysteresis are fluid vis-
cosity, vesselwall density, and vessel damping coefficient
(viscosity of the arterial wall). We examine these factors
and show that the damping coefficient is the only factor
that generates the hysteresis loop in the viscoelastic
arterial wall. This has been reported in literature.1,4,9,31

Finally, we extend the model to include cases of
aneurysmal or stenotic aorta. An aneurysm is a
localized bulging of blood vessels. It can occur in
arteries such as the abdominal aorta, thoracic aorta,
brain arteries, and coronary arteries. In contrast to an
aneurysm, a stenosis is narrowing of a vessel, the most
common ill-effect of atherosclerosis.32 In the IB for-
mulation, any deformation of the arterial wall can be
constructed and its effect on the blood flow inside the
artery can be analyzed. We present five different con-
figurations and compare the flow patterns corre-
sponding to them; these configurations are a straight
but tapered artery, a symmetric dilated artery, an
asymmetric dilated artery, a symmetric constrictive
artery, and an asymmetric constrictive artery.

EQUATIONS OF MOTION

We begin with a mathematical formulation for a
coupled system of two-dimensional viscous incom-
pressible fluid in which an elastic boundary with mass
is immersed:

q
@u

@t
þ u � ru

� �
¼ �rpþ lr2uþ f; ð1Þ

r � u ¼ 0; ð2Þ

F ¼ Fela þ Fmass; ð3Þ

Fmass ¼ �M
@2X

@t2
; ð4Þ

fðx;tÞ ¼
Z

Fðs;tÞdðx� Xðs;tÞÞds; ð5Þ

@X

@t
ðs;tÞ ¼ uðXðs;tÞ; tÞ

¼
Z

uðx;tÞdðx� Xðs;tÞÞdx: ð6Þ

Equations (1) and (2) are the Navier–Stokes equations
for a viscous incompressible fluid. The constant
parameters q and l are the fluid density and viscosity,
respectively. The unknown functions in the fluid
equations are the fluid velocity, u(x,t), the fluid pres-
sure, p(x,t), and the force per unit area applied by the
immersed boundary to the fluid, f(x,t), where x =

(x, y) are fixed Cartesian coordinates, and t is time.
Equations (3) and (4) are the immersed boundary

equations written in Lagrangian form. The unknown
X(s,t), the configuration of the immersed boundary at
any time t, represents the arterial wall and is a one-
dimensional curve in two-dimensional space. In Eq. (3),
F = F(s,t) is the force density applied by the immersed
boundary to the fluid, in the sense that F(s,t)ds is the
force acting on the fluid by a section ds of the immersed
boundary. The elastic contribution Fela to this force
density is given by

Fela ¼ csðZðsÞ � Xðs;tÞÞ � cr
@Xðs;tÞ
@t

� cb
@4Xðs;tÞ
@s4

ð7Þ

where cs, cr, and cb are constants. The curve Z(s)
represents the reference (target) configuration of the
boundary which is prescribed at the beginning of
computations and remains fixed in time. The first term
on the right-hand side of Eq. (7) is the elastic force and
its magnitude depends on the deviation of the im-
mersed boundary X(s,t) from Z(s) and the stiffness
coefficient cs. The second term is the damping term
which represents the viscoelastic property of the arte-
rial wall.9,16 The third term represents the bending
resistance obtained by the variational derivative of the
bending energy Eb as follows:

lim
�!0

d

d�
Eb½Xþ �Y� ¼

Z
@Eb

@X
ðs;tÞ � Yðs;tÞds; ð8Þ

where7

EbðXÞ ¼
cb
2

Z
@2X

@s2

����
����
2

ds; ð9Þ

and, according to the principle of virtual work, the
bending resistance density Fb is given by

Fb ¼ �
@Eb

@X
ðs;tÞ ¼ �cb

@4Xðs;tÞ
@s4

: ð10Þ

The bending resistance term may have a regularizing ef-
fect when there are abrupt variations in the wall motion.

The boundary mass contribution Fmass to the force
density F(s,t) in Eq. (3) is the inertial force (sometimes
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called the D’Alembert force) written out in Eq. (4),
where M = M(s) is the mass density of the immersed
boundary in the sense that M(s)ds is the mass of a
section ds of the boundary. Note that Eqs. (3), (4), and
(7) are combined to yield Newton’s law of motion for
the immersed boundary,

M
@2X

@t2
� csðZðsÞ � Xðs;tÞÞ þ cr

@Xðs;tÞ
@t

þ cb
@4Xðs;tÞ
@s4

¼ �F: ð11Þ

Since Fds is the force applied by the immersed
boundary to the fluid; �Fds is the force applied by the
fluid to the immersed boundary. Although �F could be
expressed in terms of the jump in the fluid stress tensor
across the boundary, we shall have no need to do so.

Equations (5) and (6) involve the two-dimensional
Dirac delta function d(x) = d(x)d(y), which expresses
the local character of the interaction between forces
and velocities along the immersed boundary. Equation
(5) expresses the relation between the two corre-
sponding forces, f(x,t)dx and F(s,t)ds. We can see this
by integrating each side of Eq. (5) over an arbitrary
region. Note that f(x,t) has a one-dimensional delta
function singularity supported on the immersed
boundary. This is so because the two-dimensional
Dirac delta function is a product of two one-dimen-
sional delta functions and the integral in Eq. (5) is one-
dimensional. Thus, formally, f(x,t) is infinite on the
immersed boundary and zero elsewhere, but in such a
manner that its integral over finite volumes is finite.

Equation (6) is the equation of motion of the
immersed elastic boundary. It is the no-slip condition
for a viscous fluid which states that the boundary
moves at the local fluid velocity. This can also be
rewritten in terms of the Dirac delta function as in the
second form of Eq. (6). We do so in order to expose a
certain symmetry with Eq. (5), in which the force gen-
erated by the immersed boundary is re-expressed as
body force acting on the fluid. This symmetry is
important in the construction of our numerical scheme.
Note that the integral in Eq. (6) is a double integral
dxdy, unlike the integral in Eq. (5) which is one-
dimensional. Thus, ¶X/¶t is finite, unlike f which has
singularity of a one-dimensional Dirac delta function.

MATHEMATICAL FORMULATION OF THE

PENALTY IMMERSED BOUNDARY METHOD

AND NUMERICAL IMPLEMENTATION

In this section we describe how to modify Eqs. (1–6)
into the penalty immersed boundary (pIB) method.
The pIB method is an extension of the original IB
method which assumes that the elastic boundary has

no mass. The pIB method was proposed to handle the
case where the mass of the immersed boundary plays
an important role, for example, a flapping elastic
filament in a flowing soap film.22,24,47 The method
described in this section is used to give mass to the
arterial wall.

In the pIB method, we use two Lagrangian com-
ponents to represent the immersed boundary. One
component, denoted by X(s,t) and called a massless
boundary, has no mass, is elastic, and moves at the
local fluid velocity as in the original IB method. The
other component, denoted by Y(s,t) and called a
massive boundary, carries all the mass and is linked to
X(s,t) by a system of stiff springs. Unlike the massless
boundary, the boundary points of the massive
boundary are not coupled to their adjacent points or
do not interact directly with the fluid. The massive
boundary moves according to Newton’s law of motion
in which the only force acting on such mass points is
the force of the stiff springs that link the two bound-
aries, as shown in Fig. 1.

In mathematical terms, we obtain the pIB method
by replacing Eqs. (3) and (4) by the following:

F ¼ Fela þ Fpen; ð12Þ

Fpenðs;tÞ ¼ KðYðs;tÞ � Xðs;tÞÞ; ð13Þ

MðsÞ @
2Yðs;tÞ
@t2

¼ �Fpenðs;tÞ: ð14Þ

Massive boundary

Massless boundary

Spring

FIGURE 1. Massive and massless boundary components are
linked together with a very stiff spring of which the rest length
is zero.
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Equation (12) defines the force density F transmitted
by the massless boundary to the fluid. It includes the
force density Fpen which is generated by the stiff
springs that connect the massive and massless com-
ponents of the immersed boundary, see Eq. (13). The
stiffness parameter K is the penalty parameter of the
method. The larger it is, the greater the energy penalty
that must be paid to separate the two boundary com-
ponents by any given amount. The limit K fi ¥ will
be discussed below. Finally Eq. (14) is the equation of
motion of the massive boundary, which carries the
mass density M(s) and has its motion described by the
function Y(s,t). Note that the only force density in
Eq. (14) is the penalty force density.

Consider the case in which K in Eq. (13) goes to
infinity. Then the massless component X(s,t) and
the massive component Y(s,t) coincide, and Fpen in
Eq. (13) approaches Fmass in Eq. (4). In computations,
K cannot be infinite but we can keep X(s,t) and Y(s,t)
as close as we like by choosing K sufficiently large.
In practice there is a stability restriction on K that
depends on the time step Dt. It is empirically of the
form K (Dt)2 < constant. Thus, in a convergence
study, the parameter K can be allowed to approach
infinity as Dt approaches zero. The situation is quite
favorable in that K can be multiplied by 4 every time Dt
is reduced by a factor of 2. For more details of the
numerical implementation of the pIB method and its
convergence study, see references 22, 24.

One of the main issues in the present work is to find
the crucial factors that cause hysteresis phenomena,
the mass of the arterial wall being one of the candidate
parameters. It turns out that the effect of this vessel
mass is negligible.

What has been stated so far is the mathematical
formulation of the pIB method. For its numerical
implementation, we use a ‘formally’ second-order IB
method which is described in Peskin and McQueen38

and is generalized to take into account the massive
boundary that is linked to the immersed elastic
boundary by stiff springs.22,24 In this method, each
time step proceeds in two substeps, which are called the
preliminary and final substeps. In the preliminary
substep, we get data at time level nþ 1

2 from data at
time level n by a first-order accurate method. Then the
final substep starts again at time level n and proceeds
to time level n + 1 by a second-order accurate meth-
od. This Runge–Kutta framework allows the second-
order accuracy of the final substep to be the overall
accuracy of the scheme. The step-by-step procedure of
the numerical implementation can be summarized as
the followings:

(A) Update the position of the massless boundary
at time level nþ 1

2 : This is done by the

discretization of Eq. (6). At the same time,
the position of the massive boundary should
evolve in the same fashion according to the
velocity of the massive boundary.

(B) Using these new positions, calculate the
Lagrangian force density which is the sum of
two parts: one is elastic force and the other is
from the spring linked between massless and
massive boundaries; see Eqs. (7), (12), and
(13).

(C) Change this elastic force density defined on
Lagrangian grid points into the force at
Eulerian spatial grid points to be applied in
the Navier–Stokes equations. This is done by
a discretization of Eq. (5).

(D) Given the Eulerian force density, we are
ready to solve the discretized version of the
fluid equations (1) and (2) at time level nþ 1

2 :
The velocity of the massive boundary is also
calculated in the same fashion; see Eq. (14).

(E) Update the positions of massless and massive
boundaries at time level n + 1 in the same
manner as in (A).

(F) Update the fluid velocity data by solving the
fluid equation and the velocity of the massive
boundary at time level n + 1. This completes
the time step.

In solving the fluid equations in both (D) and (F),
we use the discrete Fourier transform (implemented by
the FFT algorithm) together with the assumption of
periodic boundary conditions. Note, however, that
there is no fundamental requirement of using a peri-
odic domain in conjunction with the pIB method. Any
uniform grid fluid solver based on finite element or
finite difference methods can be used, with whatever
boundary conditions that solver can accommodate.
We have emphasized the periodic case because of the
efficiency that follows from the use of the FFT algo-
rithm for solving the linear systems that arise in our
numerical scheme.

TWO-DIMENSIONAL VESSEL MODEL

In this section we introduce a two-dimensional
model of blood flow in a compliant vessel. We present
the initial setting of our model, treatment of boundary
conditions at the inlet and outlet, and physical and
computational parameters used in the numerical
experiments.

Consider a rectangle [�2,2] 9 [0,16] (cm 9 cm) fil-
led with an incompressible fluid in which a compliant
vessel is immersed, see the left panel of Fig. 2 which
shows the initial configuration of the model. In the IB
computation, the fluid exists not only inside the vessel

KIM et al.930



but also outside the vessel. Although the outside of the
vessel is occupied by tissues or other organs, we assume
that the fluid is everywhere.

In the computational domain there are two sepa-
rate immersed boundaries (two one-dimensional
curves in the longitudinal direction) which represent
the wall of the aorta, and each boundary curve is
composed of five parts: one arterial wall (solid line) in
the middle, two artificial walls (dotted line) at the top
and bottom, and two rigid bridges (thick line) con-
necting the arterial wall and the artificial wall; see the
left panel of Fig. 2. Note that we focus on the motion
of the arterial wall (solid line) which is symmetric and
tapered. The artery has the radius Rup at the upstream
section and the radius Rdw ð<RupÞ at the downstream
section. The region surrounded by the artificial wall
works as a reservoir. The pulsatile motion of the
arterial wall, which is induced by the inflow and the
outflow of the artery, can change the volume of
the region surrounded by the arterial wall. This vol-
ume change is compensated by the opposite change of
the volume of the region surrounded by the artificial
wall. Note that the rigid bridge which connects the
arterial wall to the artificial wall is also a part of the
immersed boundary.

The reference configuration represented by Z(s) in
Eq. (7) is the target position of the immersed boundary
and is chosen as an initial configuration. The immersed
boundary X(s,t) in Eq. (7) moves in time close to the
reference position Z(s). How much X(s,t) can deviate
from Z(s) depends inversely on the stiffness coefficient
cs in Eq. (7). For a normal vessel we consider a tapered
and straight boundary as a reference configuration of
the arterial wall (solid line); see Fig. 2. We shall later
change the reference configuration into a curve to take
into account bulging and constrictive arterial walls.

The two shaded regions Xup and Xdw inside the rigid
bridges in the middle panel of Fig. 2 are used to pre-
scribe the desired velocity in the following way. Let X0

be the union of the two shaded regions; one region at
the top is denoted by Xup and the other region at the
bottom is denoted by Xdw: The way of driving a flow in
X0 is to apply an external force per unit area equal to

f0ðx;tÞ ¼
aðu0ðx;tÞ � uðx;tÞÞ; x 2 X0 ¼ Xup [ Xdw

0; otherwise;

�

ð15Þ

where u0(x,t) = (u0(x,t),v0(x,t)) is the desired velocity
with the radial and longitudinal components and a is a
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FIGURE 2. The left panel shows the initial configuration of a computational model. The two one-dimensional curves in the vertical
direction are the immersed boundary in a fluid. Each curve consists of five segments: the arterial wall (solid line) in the middle, two
artificial walls (dotted line) connected by two rigid bridges (thick line) to both ends of the arterial wall. The desired velocity is
prescribed in the shaded regions Xup and Xdw; see the middle panel. The open rectangles Xin and Xex inside and outside the artery
are chosen to measure the pressure level, see section ‘‘Two-dimensional Vessel Model’’. The right-top panel shows the spatial
profile of the desired velocity along the horizontal cross section of the shaded regions. The right-middle panel shows the mea-
sured velocity at the center point of the shaded region Xup; and the right-bottom panel is the desired pressure data over one
cardiac cycle.
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constant. This force will be added to the right-hand
side of Eq. (1). When a is large, the fluid velocity u is
driven rapidly towards u0 within X0.

The radial component u0(x,t) of the velocity u0(x,t)
is actually very small and is therefore assumed to be
zero in both Xup and Xdw: This implies that there is no
transversal flow in the inlet and outlet. The longitudi-
nal velocity v0(x,t) in Xup (Xdw) is defined by

v0ðx; tÞ ¼ vcenterðtÞ � gðxÞ ð16Þ

where x is the fixed Cartesian coordinates of the hor-
izontal cross section in Xup (Xdw), vcenterðtÞ is the
velocity at the center of that cross section, which
usually reaches the maximum magnitude of the longi-
tudinal velocity at the upstream (downstream), and
g(x) is the spatial profile along the horizontal cross
section of Xup (Xdw) which is parabolic; see the right-
top panel of Fig. 2. The time-dependent velocity
vcenterðtÞ in Xup is the measured MR data over a cardiac
cycle (right-middle panel of Fig. 2), while the velocity
vcenterðtÞ in Xdw is the computed value which will be
described below to satisfy the pressure condition
(right-bottom panel of Fig. 2).

A human aorta is a shape of a Christmas candy
cane, and the scanned cross sections are where the
aorta runs approximately straight. Velocity and radius
are measured at the two cross sections which are
spaced at 10 cm apart; see Fig. 3. The MRI scan was
performed in the aorta of one of the authors at the
hospital at Ohio State University. The methodological
detail of the MR data acquisition technique is as fol-
lows: velocity-encoded imaging was obtained using a

retrospectively electrocardiographically gated, breath-
hold gradient-echo, phase-contrast sequence with a
velocity sensitivity of 150 cm/s prescribed at proximal
and distal cross-sections of a relatively straight seg-
ment of the descending thoracic aorta. The following
scan parameters were typically used: matrix 132 9 192
pixels, field of view 275 9 400 mm, slice thickness
6 mm, bandwidth 355 kHz/pixel, temporal resolution
based on heart rate, TE 2.0 ms, and flip angle 25�.

Now we describe the method to compute the
velocity at the center in Xdw: Whereas the velocity at
the center in Xup comes from the MR data, the velocity
at the center in Xdw is computed so that the pressure
across the wall of the blood vessel matches the desired
pressure reproduced from Nichols and O’Rourke32 as
shown in the right-bottom panel of Fig. 2. The desired
pressure data is chosen to be around 50% of the data
of Nichols and O’Rourke32 in order to avoid numerical
instabilities. The way of computing the axial velocity
v0(x,t) in Xdw is the following: choose an interior region
of the artery Xin and exterior regions of the artery Xex;
see the open rectangles inside and outside the artery in
the middle panel of Fig. 2. Then the average pressure
pin in Xin can be computed by

pin ¼
1

AreaðXinÞ

Z
Xin

pðx; tÞdx; ð17Þ

where p(x,t) is the fluid pressure and AreaðXinÞ repre-
sents the area of Xin: The average pressure pex in the
external region Xex is defined in the same fashion.

Just as the real blood pressure is the pressure inside
the artery relative to the reference atmospheric pres-
sure, so we use the pressure pex as a reference pressure
and define the computational pressure level as
pin � pex: It is desirable to keep pin � pex close to the
measured blood pressure. In order to enforce this
condition, we use the following feedback mechanism:

ðQup �QdwÞ ¼ bð~pðtÞ � ðpin � pexÞÞ; ð18Þ

where ~pðtÞ is the desired blood pressure and b is a
positive constant. The quantities Qup and Qdw are the
flow rates (fluxes) of blood coming in Xup and leaving
out Xdw; respectively. The flow rate Qup is obtained by
integrating the desired velocity from the MR data over
a horizontal line in the region Xup: Since the blood
pressure level ~pðtÞ is also given and the pressure dif-
ference ðpin � pexÞ can be computed in each time iter-
ation, we can get Qdw using the relation (18). With this
computed flux Qdw and the given spacial profile gðxÞ in
Xdw; we can obtain the longitudinal velocity at the
center in Xdw which is then used to construct the
desired velocity v0ðx; tÞ in Xdw:

Note that ðQup �QdwÞ represents the rate of change
of the blood volume inside the artery. Equation (18)

FIGURE 3. A human aorta. Redrawn after Boudoulas et al.8

We model the region between the two arrows where the MR
data (velocity and radius) are measured.
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implies that, when the computational blood pressure
ðpin � pexÞ is lower than the target pressure ~p; the value
Qdw decreases so that more blood flows in than flows
out. This results in increased volume of the artery and
increased pressure. On the contrary, the computational
pressure ðpin � pexÞ larger than the desired pressure ~p
leads to the increase of Qdw and the decrease of both
the internal blood volume and the pressure. This
feedback mechanism allows us to keep the computed
pressure level close to the target blood pressure.

Table 1 lists physical and computational parame-
ters. The fluid density and viscosity are those of the
typical blood in major arteries. The dimensions of the
vessel such as arterial radius and length are chosen
from the MR data. Note that the artery has a larger
radius at the upstream than at the downstream. The
arterial wall density M and stiffness coefficient cs are
close to the value observed in literature.8,9,16,32 In
references 9, 16, the authors calculated the stiffness
coefficient cs by the following formula:

cs ¼
EYh

ð1� r2ÞR2
ðdyn/cm2Þ; ð19Þ

where EY is Young’s modulus of elasticity and r is the
Poisson ratio, h is the wall thickness, and R is the
radius of the vessel. Canic et al.9 used the values from
9.3 9 104 to 7.4 9 106 (dyn/cm2) and Formaggia
et al.16 used 6 9 105 (dyn/cm2). The bending coeffi-
cient cb is chosen to guarantee that an undesirable saw-
toothed motion of the wall is removed. It is natural to
observe a shape of the tiny saw-toothed wall without
bending resistance, and this undesirable shape even-
tually leads to computational instability. We prevent
from the saw-toothed motion of the wall by adding a
small bending resistance. We observed, however, that
when the bending coefficient cb varied from 20 dyn/
cm2 to about 100 dyn/cm2, the overall motion of the
wall with different bending resistances was almost the
same. This is so because the force from the stiffness of
the wall dominates other forces including the bending

resistance. The damping coefficient cr representing the
viscoelastic property of the arterial wall varies and is
an important parameter which, in our simulation,
enables the blood flow in the compliant artery to have
the hysteresis phenomena. The high dependence of the
hysteresis on the viscoelastic material property was
claimed by Canic et al.9 For comparison of the values
for viscoelastic coefficient, Canic et al.9 derived the
viscous modulus cr to be 1.6 9 104 (dyn s/cm2) for the
human femoral artery. This value is of the same order
of magnitude as the measurements corresponding to
the dogs aorta reported in Armentano et al.1,2 For
numerical simulations, they used larger values for
aorta ranging from 1 9 104 to 8 9 104 (dyn s/cm2).

Once we have constructed the initial configuration
of the vessel model and set the physical parameters, we
solve Eqs. (1)–(2), (5)–(7), and (12)–(14) using the
numerical procedure described in section ‘‘Mathemat-
ical Formulation of the Penalty Immersed Boundary
Method and Numerical Implementation’’. The mesh-
width of the computational domain is taken to be
Dx = Dy = 4/256 (uniform and fixed in time), and the
time duration is taken to be Dt = 5 9 10�6 s.

VALIDATION OF THE MATHEMATICAL

MODEL

In this section we validate the robustness of our
mathematical model by comparing the results with a
well-known analytical solution of the Navier–Stokes
equations. Womersley flow46 is a solution of the fluid
equations in a cylindrical pipe when the pressure gra-
dient is periodic. Since we consider a fluid in a 2D
straight rigid channel instead of a cylindrical pipe, we
first derive the exact form of the analytical solution
which is slightly different from the original Womersley
flow.

Given equations for an incompressible viscous fluid
in 2D:

q
@u

@t
þ u � ru

� �
¼ �rpþ lr2u; ð20Þ

r � u ¼ 0: ð21Þ

The pressure gradient is also given: @p
@y ¼ Aeixt

(y-directional pressure gradient); @p@x ¼ 0 (x-directional
pressure gradient). Since there is no flow in the x
direction, i.e., u = 0, the fluid equations can be re-
duced to qvt + Aeixt = lvxx. Letting v = Veixt, we
then obtain ixqV + A = lVxx. Now let x = Rz and
~Vðz; yÞ ¼ Vðx; yÞ where R is the radius of the 2D

channel and �1 £ z £ 1. Then ~Vzz � ia2 ~V ¼ AR2

l where

a ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffi
qx=l

p
is Womersley number. The solution of

TABLE 1. Physical parameters.

Parameters Magnitude

Fluid density, q 1.05 g/cm3

Viscosity, l 0.04 g/(cm s)

Arterial wall density, M 1.06 g/cm3

Arterial length 10.0 cm

Arterial radius, Rup 0.925 cm

Arterial radius, Rdw 0.78 cm

Stiffness coefficient, cs 7 9 105 dyn/cm2

Bending coefficient, cb 40 dyn cm2

Artery damping, cr 0–8000 (dyn s/cm2)

Computational domain 4 9 16 cm2

Computational grid size 256 9 1024
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the latter equation with the boundary conditions
~Vð�1; yÞ ¼ 0 is given by

~V ¼ iAR2

la2
1� ea

ffi
i
p
þ e�a

ffi
i
p� ��1

ea
ffi
i
p

z þ e�a
ffi
i
p

z
� �� �

:

ð22Þ

Thus the longitudinal velocity in 2D Womersley flow is

vðx;y; tÞ

¼ iAR2

la2
1� ea

ffi
i
p

zþ e�a
ffi
i
p

z
� ��

ea
ffi
i
p
þ e�a

ffi
i
p� �� �

eixt

¼ iA

qx
1� ea

ffi
i
p

x=Rþ e�a
ffi
i
p

x=R
� ��

ea
ffi
i
p
þ e�a

ffi
i
p� �� �

eixt:

ð23Þ

If we were to take the real part of the longitudinal
pressure gradient Aeixt, the corresponding flow would
be the real part of Eq. (23).

Now we shall drive Womersley flow numerically by
our model, and compare its result with the exact
solution given in Eq. (23). To do that, we choose the
two radii of the artery, Rup and Rdw; to be the same
R = 0.925 cm so that the artery becomes a 2D channel
immersed in a fluid, and set the coefficient cs in Eq. (7)
to be very large. Note that a large coefficient cs pre-
vents the arterial wall from moving, so that the arterial
wall can be considered as a fixed boundary. In order to
generate Womersley flow in the channel we use two
different approaches: one approach is to apply sinu-
soidal force as an external force in the right-hand side
of Eq. (1), and the other approach is to prescribe the
exact solution of Womersley flow only in the shaded
regions (Fig. 2) in the way described in section ‘‘Two-
dimensional Vessel Model’’; see Eq. (15).

In the first approach, we apply an external sinusoi-
dal force A cosðxtÞe2 to the fluid equation (momentum
equation), where e2 is the unit vector in the upward
direction. We use x = 2p which makes the Womersley
number R

ffiffiffiffiffiffiffiffiffiffiffiffi
qx=l

p
be around 4.7. Since the applied

sinusoidal force acts as a pressure gradient inside the
channel, it should generate Womersley flow. Note,
however, that the body force is applied to the whole
domain as well as to the inside of the channel. The left
panel of Fig. 4 shows the longitudinal velocity v(x,t) at
different times. These times are chosen in the 4th cycle
in order to remove the effect of initial values. The left
panel in Fig. 4 shows excellent match of our simulation
of Womersley flow to the exact solution. Moreover,
even though we apply the sinusoidal force to the whole
domain, the flow inside the channel is almost the same
as Womersley flow. This result also shows that the
fixed channel created by a large coefficient cs in Eq. (7)
prevents the flow outside the channel from affecting
the dynamics inside the channel.

In the second approach, we apply the body force of
the form in Eq. (15) to the fluid equation in which X0 is
the shaded regions in Fig. 2 and the desired velocity
v0(x,t) is the solution of Womersley flow. That is, the
inlet and outlet boundary conditions of the vessel are
time-dependent solution of Womersley flow. Since the
fluid equations (1) and (2) with given initial and
boundary conditions have a unique solution, and the
flow at the inlet and outlet of the channel are given as
Womersley flow, the fluid equations should result in
Womersley flow in the whole channel. The right panel
of Fig. 4 compares the numerical results with the exact
solutions of Womersley flow at different times. Here
again, the exact solution and the numerical solution
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almost coincide. Note that, since Womersley flow is
generated inside a pipe of which the boundary is fixed
without moving, it is not necessary to consider a larger
computational domain than the cylindrical pipe.
However, in order to consider a moving compliant
vessel, we need more space for the channel boundary
to be able to move, and our method can handle this
case too, as will be shown in the next section.

RESULTS

We first discuss the method to achieve desired flows
in both Xup and Xdw: The method described in section
‘‘Two-dimensional Vessel Model’’ is to add Eq. (15) as
an external body force term on the right hand side of
the Navier–Stokes (momentum) equation. When a in
Eq. (15) is large, the velocity at the fixed Cartesian
coordinate is driven rapidly towards u0(x,t) within Xup

(Xdw). In particular, the approach of u(x,t) to u0(x,t)
within Xup (Xdw) will occur approximately exponen-
tially with a time constant equal to q/a. Thus, in order
for the Navier–Stokes equations to produce inflow/
outflow velocity close to the desired inflow/outflow, the
constant a should be large enough, but not too large,
for a very large a can be a source of numerical insta-
bility. We can resolve this dichotomy by reducing the
time step Dt.

Figure 5 shows the velocities at the center in the
upper region Xup (left) and the lower region Xdw

(right). The dashed lines represent the desired velocities
in time and the solid lines represent the computed
velocities in time. The computed velocity is at most
15% off the desired velocity during systole. We con-
sider these computational results quite satisfactory,
and we shall therefore rely on the boundary conditions
in the inlet and outlet regions which were used to
derive the numerical results of Fig. 5.

The interior pressure of the artery relative to the
exterior pressure of the artery follows the compliance
relation which says that the relative pressure depends

proportionally on the volume of the blood inside the
artery. We control the outflow in Xdw and, thus, the
volume inside the artery, in order to keep the com-
puted pressure close to the target pressure data; see
Eq. (18). Just like a in Eq. (15), the computed pressure
can be driven rapidly towards the pressure data by
choosing the constant b large enough. We chose a
moderate value of b in order not to introduce a
numerical instability.

The left panel of Fig. 6 illustrates the change of
the blood pressure in time: the dashed line represents
the desired pressure and the solid line represents the
computed pressure. The latter reaches 82% of the
former at the systolic phase. The right panel of Fig. 6
shows the diameter of the artery as a function of time
calculated at the center of the artery over two cardiac
cycles. Time is chosen after one cardiac cycle in order
to remove the transient time. The diameter changes by
about 5.2% from its diastolic minimum to its systolic
maximum, which is similar to the MR and other
data.32 The patterns in the two panels look very similar
and indicate pulsatile dynamics.

Even though in real arteries the pressure inside the
artery and the diameter of the artery have the same
qualitative behavior as in Fig. 6, their detailed
behavior is different. The arterial wall does not
instantly follow the pressure applied to the wall, but it
reacts slowly, and hysteresis occurs. In order to detect
the hysteresis, we varied some parameters of our
model and investigated the relationship between the
pressure and the diameter. The variable parameters
were the arterial mass density M, the fluid viscosity l,
and a damping coefficient cr that represents the vis-
coelastic property of the arterial wall. When the wall
density ranged from 0.106 to 106.0 (g/cm3), or when
fluid viscosity varied from 0.004 to 4.0 (g/cm s),
we did not observe the hysteresis. However, hys-
teresis appeared when the damping coefficient was
changed.

Figure 7 shows the relationship between the
pressure (x-axis) and the wall diameter (y-axis) with
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FIGURE 5. A comparison of the measured velocity and the computed velocity over two cardiac cycles in the lower region Xdw

(left) and the upper region Xup (right). The velocities are taken at the center of the regions Xdw and Xup: The computed velocity
(solid line) stays close to the measured velocity (dash-dot line) in both regions.
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different damping coefficients. When the damping
coefficient cr is small up to 500 (dyn s/cm2), the arterial
wall responds immediately to the pressure, and thus
the relation between the diameter and the pressure is
almost linear. As this damping coefficient increases,
however, this relation becomes nonlinear, and a hys-
teresis loop appears. In the hysteresis loop the change
of the pressure precedes that of the diameter. The
amount of time delay in the motion of the artery
compared to the pressure change depends propor-
tionally on the magnitude of the damping coefficient;
compare the size of the closed regions in the figure.

Note that the loops in the figure are drawn in the
counterclockwise direction in time.

We now extend our model to simulate and study the
blood flow in aneurysmal or stenotic arteries. Aneu-
rysm is a dilatation of a blood vessel; a portion of the
arterial wall weakens and bulges outward. Stenosis is a
narrowing of a blood vessel. The most common ill-
effect of atherosclerosis is stenosis, resulting in a
reduction in blood flow to the tissues. The exact
pathogenesis of these diseases is not known. However,
studies suggest that the cause of the diseases is the
interaction between the changes in the hemodynamics
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solid line represents the computed pressure. The right panel shows the diameter of the artery over two cardiac cycles which is
measured at the center of the vessel. The two figures indicate the pulsatile dynamics of the arterial vessel. The diameter changes
by about 5.2% from its diastolic minimum to its systolic maximum.
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on the arterial wall and the biological processes in the
blood vessel.5,8,12,17,18,20,25,27,28,32,41,42,44

Since the IB method for the fluid–structure inter-
action can handle almost arbitrary shape of the
immersed structure regardless of its flexibility, we can
construct the configuration of a vessel related to a
pathological deformation and use the IB method to
investigate the blood–vessel interaction. Here, we take
into account arterial walls in five different shapes:
normal, symmetric dilated, asymmetric dilated, sym-
metric constrictive, and asymmetric constrictive (see
Figs. 9–13). The dilated or constrictive height in the
radial direction is 0.35 cm (41% of the normal vessel
radius) for both symmetric and asymmetric cases. For
all these simulations, we use the same data (velocity
and pressure) and the physical and computational
parameters as used earlier in the normal case.

Figure 8 illustrates the comparison of the longitu-
dinal velocity (left panel) and the radial displacement
of the vessel wall (right panel) with three different
shapes: normal (solid line), symmetric dilated (dashed
line), and symmetric constrictive (dotted line) arteries.
The radial displacement is measured at the middle
cross section of the vessel, and the longitudinal velocity
is taken at the mid-point of that cross section. Whereas
the flow speed in the bulging artery is close to that of
the normal artery in systolic phase, the flow speed in
the stenotic artery is much faster in systole and varies
more than those in the former two cases. This means
that the blood moves faster as an artery gets narrower.
The qualitative behaviors of the wall movement in the
three cases are almost the same, see the right panel of
Fig. 8. However, the displacement of the artery in the
normal case is larger than those in the abnormal cases.
This is because we chose a smaller b in Eq. (18) for the

abnormal cases in order to avoid a numerical insta-
bility.

Figures 9–11 show vorticity contours (top) and
pressure contours (bottom) in the three different
shapes of arteries at some fixed times. Vorticity is
related to the amount of ‘‘circulation’’ or ‘‘rotation’’ in
a fluid and is defined as � 9 u where u is the fluid
velocity. The six different instants are chosen during
one cardiac cycle and are marked with the circles ‘s’ in
the right panel of Fig. 8. The first instant is chosen
when the artery has the smallest diameter.

In case of the normal artery, see Fig. 9, the blood
flows down with small vortex sheddings in the systolic
phase (second and third columns) and then as a result
of vortex multiplication, large symmetric vortices are
generated from the original vortex in the diastolic
phase (fourth to sixth columns) after 1.30 s (this is
when the heart starts to relax after contraction or after
the artery maximizes its diameter). The blood pressure
during systole is approximately linear along the arte-
rial wall from the inlet to the outlet (see the 2nd and
3rd pressure contours) and the pressure during diastole
shows the large vortical pressure difference. There is
not much difference in the pressure distribution during
deceleration, which is also true for the dilated and
constricted arteries, see Figs. 10 and 11. However, the
pressure difference between the top and the bottom
during systole is higher in the constrictive artery
than in the normal artery or in the bulging artery
(see 3rd pressure contours in Figs. 9–11). Note that the
blood pressure at each time does not change much,
spatially, inside the artery. The change of the pressure
becomes more distinct in the temporal direction; see
the difference of colors in the panels of the pressure
contours.
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FIGURE 8. Comparison of the longitudinal velocity (left panel) and the radial displacement of the vessel wall (right panel) with
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radial displacement is measured at the middle cross section of the vessel, and the longitudinal velocity is taken at the mid-point of
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FIGURE 9. Normal artery. Vorticity contours (top) and pressure contours (bottom) are shown at some fixed times. The chosen
times over one cardiac cycle are marked with circles ‘s’ in the right panel of Fig. 8. The unit of vorticity is in s21 and that of
pressure is in mmHg.

FIGURE 10. Symmetric bulge in the artery. The top panels show the vorticity contours and the bottom panels show the pressure
contours at different times over one cardiac cycle. The unit of vorticity is in s21 and that of pressure is in mmHg.
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FIGURE 11. Symmetric constriction in the artery. The top panels show the vorticity contours and the bottom panels show the
pressure contours at different times over one cardiac cycle. The unit of vorticity is in s21 and that of pressure is in mmHg.

FIGURE 12. Velocity vector fields over one cardiac cycle in different shapes of blood vessel: (top) normal artery, (middle)
aneurysmal artery, and (bottom) stenotic artery.

Blood Flow in Arteries by the Immersed Boundary Method 939



In the dilated and constrictive arteries, the vortex
structure and the pressure difference are similar to those
of the normal artery, see Figs. 10 and 11. The vortices
during systole are small, and the vortices during dias-
tole are large and clear. The pressure inside the artery
during systole is distributed almost linearly along the
vessel wall both in the constrictive and dilated arteries.
In the stenotic artery the flow accelerates through
stenosis and recirculates at the downstream.

Figure 12 shows velocity vector fields over one
cardiac cycle. Three different configurations of blood
vessel are considered. First row corresponds to the
velocity vector field in the normal artery, middle row
corresponds to the velocity field in the aneurysmal
artery, and bottom row corresponds to the velocity
field in the stenotic artery. As expected, blood flows
rapidly from the top to the bottom in systole in all
cases. During diastole we can see the backflow as
observed in the experimental data.

Figure 13 shows vorticity contours in the asym-
metric dilated artery (top) and in the asymmetric
constrictive artery (bottom). The figure shows the
asymmetric vortex structure unlike the symmetric
abnormal cases.

DISCUSSION

The two-dimensional mathematical model devel-
oped in this work describes the interaction between
blood flow and the arterial wall. It is important to
consider a coupled system of fluid–structure interac-
tion, because the pulsatile flow will affect the aortic
wall movement, and this movement in turn will influ-
ence the flow pattern. We used the IB method to
describe the motion of the arterial wall and analyze the
flow pattern inside the vessel, and the mathematical
model was validated by comparison with Womersley
flow which is the well-known solutions of Navier–
Stokes equations in a pipe when the pressure gradient
is known.

In the computer simulations we prescribed the
upstream velocity using the MR data and the down-
stream velocity using the transmural pressure repro-
duced from the literature. The method we use
computes only the pressure gradient, not the pressure
level. Thus, the blood pressure based on the experi-
mental data has to be prescribed either at the inlet or at
the outlet in order to obtain the pressure distribution
inside the vessel. In this way, we can simulate the

FIGURE 13. Asymmetric arteries. The vorticity contours at different times over one cardiac cycle are shown for the asymmetric
bulge (top) and the asymmetric constriction (bottom) in the arteries. The unit of vorticity is in s21 and that of pressure is in mmHg.
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interaction between blood and a vessel wall using the
realistic blood velocity and pressure value inside a
large artery.

As mentioned in section ‘‘Two-dimensional Vessel
Model’’, we have assumed that the same fluid fills the
computational domain, i.e., both inside and outside the
vessel. This assumption might result in a limitation for
some applications such as a blood vessel in a bone, in the
lung, or near the skin. However, this assumption is
reasonable for the problems of blood flow in major
arteries because the density of the tissues outside a large
blood vessel is about the same as that of blood.Thus, our
mathematical model includes the inertial and viscous
loads provided by the external tissues by having same
densities inside and outside of the blood vessel.

Theremayalsobe someways todealwith forces acting
on thewall due to the external tissuesororgans.First, one
can replace those forces by prescribing pressure condi-
tionalong thewall, as is commonlydone.9,16,40,43 Second,
one can place elastic fibers or layers outside the vessel so
that forces by the external medium can be represented by
the elastic forces of the fibers.

In our computations, hysteresis is captured in the
relation between the blood pressure and the diameter
of the artery. We can only observe the hysteresis
behavior when the viscoelastic property of the arterial
wall is taken into consideration in the model, as
reported in literature. The mass of the vessel wall and
the viscosity of the fluid do not effect this hysteresis.

We considered five different initial configurations: a
straight but tapered artery, a symmetric dilated artery,
an asymmetric dilated artery, a symmetric constrictive
artery, and an asymmetric constrictive artery, and
compare the flow patterns inside the vessel for these
configurations. Generally large vortices are generated
during deceleration after systole, and these vortices
move down slowly with blood and stay longer in dia-
stolic artery.

The goal of this research is to apply a computational
model to real patients who have aneurysms or stenosis.
The precise cause of aneurysms and stenosis is still
unknown; however, the common belief is that they
result from the interplay between the dynamics of
blood flow on the arterial wall and biological processes
in the wall. Therefore, computational simulations of
blood flow dynamics coupled with the arterial wall
may provide physical insight into the hemodynamics in
both normal and abnormal arteries.

Generally, the IB method is easy and simple to
implement and the computation time does not take
long, since the FFT is used as a fluid solver for a sys-
tem of discretized Navier–Stokes equations. Another
advantage of the IB method is that one can create any
shape or structure using elastic fibers in the three-
dimensional space. These fibers could be made rigid or

flexible. It is known that the arterial wall consists of
fibers such as elastin fibers, collagen fibers (much stiffer
than elastin), and smooth muscle fibers. These fibers
run in different directions, for example, some fibers are
arranged in circumferential or helical directions. Thus,
it is necessary to extend our 2D model to a three-
dimensional model of blood flow in a compliant vessel
in order to describe the full dynamics of the arterial
wall. In addition, the wall thickness can also be rep-
resented by several layers and each layer is composed
of elastic fibers. The IB method enables us to construct
an arterial wall based on the actual structure and to
interpret properly the material properties of the wall.
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