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Abstract—In this paper we numerically simulate flow in a
helical tube for physiological conditions using a co-ordinate
mapping of the Navier–Stokes equations. Helical geometries
have been proposed for use as bypass grafts, arterial stents
and as an idealized model for the out-of-plane curvature of
arteries. Small amplitude helical tubes are also currently
being investigated for possible application as A–V shunts,
where preliminary in vivo tests suggest a possibly lower risk
of thrombotic occlusion. In-plane mixing induced by the
geometry is hypothesized to be an important mechanism. In
this work, we focus mainly on a Reynolds number of 250 and
investigate both the flow structure and the in-plane mixing in
helical geometries with fixed pitch of 6 tube diameters (D),
and centerline helical radius ranging from 0.1D to 0.5D.
High-order particle tracking, and an information entropy
measure is used to analyze the in-plane mixing. A combina-
tion of translational and rotational reference frames are
shown to explain the apparent discrepancy between flow field
and particle trajectories, whereby particle paths display a
pattern characteristic of a double vortex, though the flow
field reveals only a single dominant vortex. A radius of 0.25D
is found to provide the best trade-off between mixing and
pressure loss, with little increase in mixing above R = 0.25D,
whereas pressure continues to increase linearly.

Keywords—Laminar, Spectral/hp, Graft, Shunt, Stent, Pipe,

Thrombosis, Co-ordinate mapping, Advection.

INTRODUCTION

Almost 30,000 coronary artery bypass graft proce-
dures are performed each year in the UK according to
the British Heart Foundation, however over 50% of
CABG fail within 10 years due to the development of
neo-intimal hyperplasia.1 Similarly, arterio-venous
shunts constructed from ePTFE are prone to occlusion
by thrombosis and intimal hyperplasia. In the United
States alone there are 175,000 ePTFE grafts used for
permanent vascular access, with the 1 and 2-year

primary patency rates currently at 50 and 25%
respectively. Consequently, much research has been
conducted in the past few decades to design grafts that
will remain patent for far longer, ideally longer than
the life-span of the patient.

A promising avenue of this research, initiated by
Caro and co-authors,4,25 is to use out-of-plane geom-
etries that induce fully three-dimensional, physiologi-
cally realistic swirling flows, and produce more
uniform wall shear stress distributions. However, in a
clinical environment, such geometries cannot be guar-
anteed to be preserved after wound closure. Greater
control of geometry is possible with vascular prosthe-
ses, with small amplitude helical tubes being pro-
posed.3 The helical geometry induces the necessary
swirling flow, whilst also being mechanically robust,
and has undergone preliminary in vivo trials, and
subsequently a preliminary clinical study by Huijbregts
et al.13 Caro et al. hypothesized that the in-plane
mixing induced by the helical geometry and the more
uniform WSS distribution are responsible for pre-
venting graft occlusion from thrombosis and neo-
intimal hyperplasia. Likewise a new design of arterial
stent has been proposed, which when inserted into the
host artery and expanded, enforces a helical tube
boundary at the artery wall. This is an alternative
procedure to the helical bypass graft, but the operating
conditions, e.g. Reynolds number, will be comparable
to those of a bypass graft.

It is to be emphasized that the benefits of helical
geometry in vascular conduits have yet to be firmly
established, although they appear promising. The range
of possible configurations is large, and how the hemo-
dynamics responds to changes in geometric parameters
has not been studied in detail. Systematic investigation
of the effects of helical geometry on the hemodynamics
are needed, not only to inform potential designs of
prostheses and surgical vascular reconstructions, but to
improve our understanding of the normal vasculature.
As pointed out by Zabielski andMestel,32 a helical pipe
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serves as an idealization of many arterial geometries.
The mechanisms governing mixing in such geometries
may provide insight into cardiovascular diseases such
as atherosclerosis, which are thought to be linked to
wall shear stress and wall transport. These consider-
ations provide the motivation for the work described
below, in which a range of small amplitude helical
geometries, representative of possible prosthetic vas-
cular configurations or native tortuous arteries are the
subject of studies of flow structure and mixing.

METHODS

Parameters of Study

A helix is a three-dimensional space curve that can
be described by the equations:

x ¼ R cosðz=cÞ; y ¼ R sinðz=cÞ

where R is the radius or amplitude of the helix and c is
a constant parameter, such that the wavelength or one
pitch of the helix equals 2pc. For a helical tube the
internal radius is an additional parameter D/2, as
illustrated in Fig. 1. The Frenet triad, which consists of
the normal, N, binormal, B, and tangent T, vectors, is
often used to define a co-ordinate system along a
curve. A feature of helical flows is that the velocity field
is self-similar along the axis, and therefore the entire
field can be represented by a single cross-section nor-
mal to the centerline, which rotates with the Frenet
triad along the curve. This property is illustrated in
Fig. 2, for a helical geometry with R = 0.25 and pitch
length 6D. Contour plots of the axial velocity, w, are
shown at 1/4, 1/2 and 3/4 of the pitch, and demonstrate
both the self-similarity and rotation of the flow field.
The location of the axis origin (x = 0 = y) is marked
by a cross on each contour plot.

A Reynolds number of 250, defined as wD
m is used for

the majority of the flow studies to match representative
physiological conditions in a bypass graft, as used in
other studies,25 and is also appropriate for stent
applications and as a model for flow in larger arteries.
For the case of an A–V shunt, the Reynolds number is
several times larger, in the range 900–1800.19 To provide

some indication of the flow dynamics and mixing
behavior at these Reynolds numbers, some computa-
tions were also performed in the range 500–700.

Caro et al. coin the term, small amplitude helical
technology (SMAHT), to describe the geometries used
for clinical applications, which have small helical ra-
dius, but large pitch length. The upper limit of the
helical pitch length that can be used for SMAHT is set
by the physical space constraints of the clinical appli-
cation, with the lower limit determined by the necessity
to preserve the general morphology of the SMAHT.
Within these limits it is expected that the flow field will
undergo only small changes with respect to varying
pitch, relative to those induced by varying the radius.
Therefore in this study, and taking the geometries used
by Caro et al. as a guide, all the helical geometries will
have a pitch of six tube diameters, 6D, with the helical
radius varying from 0.1D to 0.5D in increments of
0.05D.

In the following work we assume blood to be a
Newtonian fluid, which is a reasonable approximation
for flow in the larger blood vessels.11 Only steady flow
is examined at present, which for modeling A–V shunt
flow is acceptable, as relatively low pulsatility has been
found in renal dialysis access shunt flow.3 For flow in
artery bypass grafts and stents, it is a poorer approx-
imation, but a significant portion of the pulsatile flow
cycle is quasi-steady, so that the vortical flow struc-
tures may be similar, though as recognized by Doorly,8

unsteadiness can play a large role in vascular mixing.

Numerical Scheme

Various approaches to solving the flow in a helical
tube have been taken in the literature, starting with
Wang’s non-orthogonal co-ordinate system,26 which
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FIGURE 1. Geometric parameters of a helix.
FIGURE 2. Helical tube geometry and self-similar velocity
field.
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used the Frenet triad as the co-ordinate axes. This was
followed by Germano’s12 orthogonal refinement of
Wang’s system, to the more recent and computation-
ally efficient helically symmetric co-ordinate system
introduced by Zabielski and Mestel.32 The current
body of research into helical tube flows can be crudely
summarized by remarking that, at the relatively mod-
est Reynolds numbers we consider, curvature creates a
two-vortex solution, in the manner of a Dean flow,
with an asymmetric axial velocity profile. The effect of
torsion is to rotate this flow profile along the center-
line, as shown in Fig. 2, and to distort the vortical
structure. This leads to one vortex dominating over the
other, and for certain parameter ranges the second
vortex is effectively eliminated.

The approach taken here to obtain the velocity field
is different from those of previous researchers, and is
only valid for use on helical tubes with small radius R.
For these geometries a helical tube can be reasonably
approximated by a circular cross-section translated by
a helical centerline. Conceptually, reversing this
approximation implies that a co-ordinate transforma-
tion can be applied to the Navier–Stokes equations in a
helical domain, and an existing spectral/hp element
code Nektar24 used to solve modified Navier–Stokes
equations in a cylindrical domain. This permits a
Fourier expansion basis in the periodic direction, and
therefore a single two-dimensional computational
mesh can be used for all geometries. This removes the
computationally expensive requirement for remeshing
different 3-D geometries, in addition to being inher-
ently faster to solve the velocity field than for a true
3-D mesh. This approach has been successfully used to
investigate the flow around bluff bodies,7,10,20 and in
3-D channel flows.16

Particle Tracking

Caro et al.’s preliminary study used labeled particle
maps and simple dye injection experiments to demon-
strate that helical tubes can cause rapid in-plane mix-
ing. Yamamoto et al.30 allude to mixing in a helical
tube, through their use of experimental flow visuali-
zation, and numerical particle tracking, however nei-
ther study comprehensively investigated the flow from
this perspective or attempted to quantify the mixing
behavior.

As a physical process, mixing is a combination of
advection and diffusion. Advection, by stretching and
folding the flow, creates large concentration gradients
across which species can rapidly diffuse. Previous re-
search has found that for bypass graft flows it is suf-
ficient to consider advection alone, as adding a
diffusion model makes little difference to the results,
except perhaps in areas of the velocity field where there

is recirculating flow.9 Therefore rather than solving the
advection-diffusion equation, we need only to integrate
the advection equations, shown in Eq. (1), with respect
to time. Strictly, mixing where only advection is con-
sidered should be termed ‘stirring’.

dx

dt
¼ uðx; tÞ ð1Þ

The numerical integration of Eq. (1) is accomplished
by tracking mass-less computational particles through
the velocity field. The algorithm used is a 4-stage
Runge–Kutta time integration scheme, which inter-
polates directly from the high-order polynomial rep-
resentation of the velocity field, and is thus more
accurate than a scheme using a linear interpolation
mesh.6

Entropic Measure of Mixing

Conceptually, mixing is the reduction of non-uni-
formity, or equivalently, the increase of disorder.
Information entropy was first defined by Shannon,23

and can be interpreted as a measure of disorder, nat-
urally leading to its use in such diverse fields as mixing
in polymer processing,27–29 chaotic micromixers14 and
aerosol mixing in the lung.2 Here the formulation used
is that introduced by Kang and Kwon.14 They tracked
passive, colored particles through a chaotic microm-
ixer, taking sections of the trajectories at areas of
interest, and having superimposed a grid onto the
section, applied Eq. (2).

S ¼
XNc

i¼1
wi

XNs

k¼1
ðni;k log ni;kÞ

" #
ð2Þ

In Eq. (2), i is the cell index, k is the species index, wi is
the weighting factor for each cell, Nc the number of
cells, Ns the number of species (i.e. different colors of
particles) and ni,k is the particle number fraction of the
kth species in the ith cell. The weighting factor wi is
defined so that it is zero if a cell contains no particles,
or only particles of a single species/color; within such a
cell the particle distribution is uniform, and therefore
should contribute zero to the entropy summation, i.e.
disorder can only occur if particles of different colors
are present. The box counting concept is illustrated in
Fig. 3, using a reduced number of boxes, along with
the corresponding terms used in Eq. (3). In Fig. 3
particles of only two colors are considered and this is
used throughout this work.

As a value considered in isolation, the entropy cal-
culated in (2) has little meaning. Again following Kang
and Kwon we define a relative entropy measure j,
which quantifies the increase in entropy of the particle
distribution at a particular cross-section from that of
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the inlet distribution of particles. This is then nor-
malized by the maximum possible entropy increase
from the inlet particle distribution, and is defined in
Eq. (3).

j ¼ S� S0

Smax � S0
ð3Þ

From the above it can be appreciated that when j is
equal to zero, no mixing has occurred, and when
kappa equals one, the mixing is maximized.

This method of characterizing mixing relies on two
levels of statistical sampling. The first is the seeding of
the flow with particles, which will determine the quality
of the resolution of the flow features. The second is the
box-counting used to calculate the information
entropy. Care must therefore be taken both with the
number of particles, and the number of boxes, specif-
ically, Nparticles=Nspecies � Nboxes � 1:

Even if this condition is satisfied, it should be noted
that the entropy of a given particle distribution will
decrease as the number of boxes increases. In fact as
Nboxes !1; entropy S will disappear to zero; that is,
entropy only exists by virtue of the coarse-graining
process of box-counting. This property means that it is
not straightforward to compare the entropy values
calculated for different applications unless the number
of particles and boxes are identical.

In Eq. (2), the definition of entropy is such that only
boxes that contain particles of different colors con-
tribute to the entropy summation. This implies that if a
sufficient number of boxes are used, a box containing
more than one color will only do so along the
boundary of the interface that divides the colors. In
other words, with appropriate resolution, the entropy
calculation is analogous to determining the length of
the interface that separates the particle species. This
point was made in relation to the intensity of segre-
gation measure by Khakhar,15 but holds equally well
for information entropy, as both measures utilize

box-counting. This suggests that one way to validate
the entropic measure is to use particle distributions
with known, or easily determined, interface lengths,
and compare the entropy value with the interface
length. Unfortunately, as Krasnopolskaya et al.17

notes, the measure cannot, in general, be validated this
way for an arbitrary number of boxes. However, it is
certainly possible to validate the measure for a limited
range of particle distributions, which is the approach
taken here.

Tests were performed with progressively increasing
numbers of concentric rings of particles of different
colors. The total interface length of the rings increases
linearly with the number of rings. The test cases
showed that for roughly 60,000 particles, 10,000 boxes
are needed for the entropy calculation, so that the
variation in entropy is also linear. Calculations were
performed for several cases using 61,527 particles, to
validate the data generated using 15,371 particles.

RESULTS AND DISCUSSION

Variation of Velocity Field with Helical Geometry

Before examining the results for the velocity field, it
should be noted that, contrary to the case of curved
tubes, the curvature of all the geometries considered
here increases with helical radius. The curvature of a
helix is defined as:

j ¼ R

R2 þ c2
ð4Þ

This function is such that for all cases where R< c, the
curvature will increase with radius. The maximum
curvature occurs for R = c, beyond which curvature
decreases with radius.

As stated earlier, nine different geometries are
examined, with helical radius increasing from 0.1D to

(a) (b) (c)

FIGURE 3. Particle distributions overlaid with illustrative grid used for entropy calculation. (a) S0: initial distribution; (b) S:
R 5 0.25D at z 5 30D; (c) Smax: perfect mixing.
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0.5D in increments of 0.05D, however since the pat-
terns of velocity are similar we only show plots of the
velocity field for the cases R = 0.1D, R = 0.3D and
R = 0.5D.

As outlined earlier, there a several different coordi-
nate systems that can be used to describe the flow in a
helical tube. If a helical coordinate system is used, ei-
ther that of Wang, Germano or Mestel & Zabielski,
then the velocity field in a cross-section is symmetric
throughout the tube, that is, a single cross-section will
represent the flow in the whole tube. We choose to
display both the velocity field and mixing data in a
Cartesian co-ordinate system, as this is more conve-
nient for investigating the relationship between the
flow and the resultant mixing behavior. Nonetheless
processing the results using Wang’s convention allows
comparison with results in the literature, and indeed
our data is consistent with this work.

Figures 4a–4c show contour plots of the axial
velocity, where the axial direction is the z-axis in the
Cartesian frame. For R = 0.1D the axial velocity
profile is close to that of Poiseuille flow, with only a
small displacement of the peak velocity. As the radius,
and hence curvature increases, the location of the peak
velocity moves closer to the tube wall. The radial dis-
tance of the peak velocity, measured from the tube
center, is plotted in Fig. 5. The radial offset of the peak
velocity increases rapidly with helical radius upto
R = 0.25D, above this the rate of change of the offset
is much smaller. Indeed, the data suggests that the
value is reaching an asymptotic limit by R = 0.5D.

Figures 4d–4f show the corresponding contour plots
of the axial vorticity, xz. A white contour line at

xz = 0, highlights the regions of positive and negative
vorticity, showing more clearly the vortical structure.
For all cases there is a large region of positive vorticity,
indicating that a single vortex dominates the flow, with
a slight counter rotation near the wall. The existence of
solutions of this nature has been reported previously
by other researchers.30,32 The contiguous region of
positive vorticity is then integrated over the area to
obtain the circulation C. The variation of C with
helical radius, shown in Fig. 6, is similar in manner to
that of the radial offset of peak axial velocity, upto a

FIGURE 4. Axial velocity (upper) and axial vorticity (lower) contours at z 5 6D. The zero contour line of vorticity is shaded white.
(a) R 5 0.1D; (b) R 5 0.3D; (c) R 5 0.5D; (d) R 5 0.1D; (e) R 5 0.3D; (f) R 5 0.5D.

Helical Radius (D)

R
ad

ia
lO

ff
se

to
fP

ea
k

A
xi

al
V

el
oc

ity
(D

)

0 0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

FIGURE 5. Radial offset of peak axial velocity vs. helical
radius in Cartesian co-ordinate system.
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helical radius of 0.25D. For values of helical radius
greater than this, the rate of increase in C is reduced,
although the peak axial velocity offset appears to
asymptote. Clearly the radial location of the peak axial
velocity is limited by the wall and its no-slip boundary
condition. The circulation of the vortex, by contrast, is
expected to increase with radius, since the curvature
also increases, and with it the centrifugal force acting
on the fluid.

Mixing/Stirring

In examining the mixing characteristics of these
helical geometries we will first look at the qualitative
behavior of fluid particles, before quantifying the
mixing using the entropy measure introduced in sec-
tion ‘‘Entropic measure of mixing’’. An initial distri-
bution of 15,371 particles are seeded on a uniform grid,
truncated by the circular cross-sectional boundary.
The particles are tracked through the helical geome-
tries for a total of five pitch lengths, a distance of 30D,
a reasonable limit in terms of probable length con-
straints of clinical applications of a bypass graft. The
inlet particle distribution is colored by radius such that
there are an equal number of grey and black particles.
Besides their use in the entropy calculation, particle
coloring indicates the degree of exchange of near wall
particles with the core fluid. This is thought to be rel-
evant to biological applications, where wall-transfer
processes are implicated in disease initiation and
progression.21

Figure 7 shows the particle trajectory slices for the
geometry R = 0.25D, starting with the initial distri-
bution and then each subsequent integer pitch length.
Comparing the particle distributions at successive
downstream locations, the initial concentric color dis-
tribution is seen to become increasingly mixed. Closer
examination of the individual plots reveal common
features of the particle distribution, such as the loca-
tion of the dividing line between the two vortex-like
regions. Although visible in all the plots, the finer
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FIGURE 6. Circulation,C, of dominant vortex vs. helical radius.

(a) (b) (c)

(d) (e) (f)

FIGURE 7. Particle trajectory slices for R 5 0.25D at integer multiples of the pitch length. (a) Initial distribution; (b) z 5 6D (one
pitch); (c) z 5 12D (two pitches); (d) z 5 18D (three pitches); (e) z 5 24D (four pitches); (f) z 5 30D (five pitches).
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structures within each of the two regions become better
illuminated with each additional pitch length, since the
particle colors are more uniformly distributed within
the domain.

In Fig. 8a, comparison of the mixing at a fixed
downstream location of 30D is shown for helical radii
ranging from 0.1D to 0.5D. From Fig. 8a it is clear
that very little mixing is occurring for the geometry
R = 0.1D. In fact, the section of black particles is
merely rotated, with only a small amount of distortion,
and crucially none of the near wall particles move to
the core of the flow, even after five pitch lengths. This
is in contrast to R = 0.25D, Fig. 7b where even after
one pitch length, the majority of particles initially
seeded near the wall have moved to the core.

Viewing the individual plots of Fig. 8 in sequence
reveals the gradual transition of the particle trajecto-
ries from a single vortex to a double vortex structure,
despite Figs. 4d–4f indicating that there is only a single
dominant vortical structure for all the radii investi-
gated. This counter-intuitive phenomenon has also
been reported by Yamamoto et al.30 in both their
computational particle tracking and smoke visualiza-
tion results. They suggest that this feature occurs due
to a combination of the secondary and axial velocities.
This is essentially correct, and we provide a more
complete explanation in the following.

In-Plane Particle Trajectory

Attempting to relate the in-plane mixing/stirring to
the flowfield is complicated by the fact that the planar

cross-section is both translating and rotating. There-
fore to interpret the motion of particles we must re-
move the effects of the plane’s translation and rotation.
Note that the following arguments are only kinematic
in nature, and are not concerned with the dynamics.

The velocity in the planar cross-section can be cal-
culated by:

Vin-plane ¼ VCartesian � Vtranslation � Vrotation ð5Þ

and illustrated in Fig. 9 for the case R = 0.25D. The
translation and rotation velocities will now be con-
sidered in turn. For any particle convected by the flow
with axial velocity w, the translational velocity of the
cross-sectional plane can be derived by differentiating
the helical centerline equations with respect to time.
Writing w = dz/dt, the corresponding rate of change of
position of the helix centerline is given by:

_xtranslation ¼ �ðwR=cÞ sinðz=cÞ ð6Þ

_ytranslation ¼ ðwR=cÞ cosðz=cÞ ð7Þ

For example, at z = 6, _xtranslation ¼ 0; and
_ytranslation ¼ wR=c:
Figure 9b shows the streamtraces for the in-plane

velocities in the Cartesian frame, overlaid on a contour
plot showing the magnitude of these velocity compo-
nents for comparison with the axial velocity. The
streamtraces show that the flow is not confined to the
plane, due to the movement of the cross-section along
the helix, and are thus sensible in the context of a 3-D
geometry. Removing the translation velocity produces

(a) (b) (c)

(d) (e)

FIGURE 8. Particle trajectory slices at z 5 30D (five pitches) for varying helical radius. (a) R 5 0.1D; (b) R 5 0.2D; (c) R 5 0.3D; (d)
R 5 0.4D; (e) R 5 0.5D.
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the velocity field in Fig. 9c. This in-plane flow is now
confined to the cross-section, forming one large vortex,
and a small counter rotating vortex near the wall.

As we have already observed, the flow profile in a
helical tube also rotates in a self similar method along
the length of the helix. Given a pitch length of c, the
apparent rate of rotation of a point at a distance r
from the tube center, traveling at an axial velocity w is
given by:

_hrotation ¼ w=c ð8Þ

and therefore the tangential velocity is:

Vrotation ¼ wr=c ð9Þ

The sign of rotation of this velocity is the same as that
of the Cartesian vortex in the flow. Therefore when the
rotating reference frame velocity is subtracted from the
Cartesian in-plane flow, the resulting in-plane flow
field depends on the relative strengths of these two
contributions, and their distribution of velocity mag-
nitude within the plane.

Figure 9d shows the vortical structure induced by
the rotation of the cross section. Although its core is
at the center of the tube, the highest velocities occur
near the peak of the axial velocity, as comparison
with Fig. 9a indicates. Figure 9e shows the velocity
streamtraces for the in-plane reference frame, overlaid
on contours of the velocity magnitude. The average
magnitude of the in-plane velocity is roughly half of
that in the Cartesian frame, and almost seven times
smaller than the mean axial velocity, which means
that an average particle will move from one side of
the plane, to the other, as it travels one pitch length
of the helix. Figure 9f shows these same velocity

streamtraces, overlaid on the particle trajectory slice
for the same case. The correspondence between the two
is excellent; the location of the vortex cores coincide, as
does the angle of the dividing line between the vortical
structures, and clearly supports the reference frame
explanation of the particle mixing.

Relationship Between Velocity Field and Mixing

We now outline how the changes in location of peak
axial velocity and circulation affect the in-plane
streamtrace plots for different values of R. In the case
R = 0.1D the vortex in the flow is weak, and due to the
small curvature of the tube, the axial velocity profile
resembles a slightly perturbed Poiseuille flow. There-
fore, when the axial velocity is multiplied by radial
position, the rotational velocity produced will be rel-
atively uniformly distributed. When subtracted from
the physical vortex the resulting flow is a vortex in the
opposite direction to the Cartesian one, and hence the
particles are merely rotated with almost no mixing
occurring.

For the case R = 0.3D the circulation of the
Cartesian vortex is almost 6 times larger than for
R = 0.1D. Therefore in the positive x and y quadrant
this vortex dominates the one from the rotational ref-
erence frame, but due to the large radial shift of the
peak axial velocity towards the lower-left wall, the
peak velocities in this vortex are larger than previously,
and therefore this vortex dominates the negative x and
y quadrant. In this way two vortices of opposite rota-
tion are created in the in-plane reference frame. The
situation is similar for R = 0.5 except that the Carte-
sian vortex is slightly stronger and therefore the second

(a) (b) (c)

(d) (e) (f)

FIGURE 9. In-plane velocity transformations to obtain particle trajectories. (a) VCartesian, w; (b) VCartesian; (c) VCartesian 2 Vtranslation;
(d) Vrotation; (e) Vin-plane; (f) Vin-plane.
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in-plane vortex is itself stronger, and consequently the
streamtraces occupy more of the cross-section.

Although the structure of the apparent vortex which
arises from the rotation of the reference frame is the
same for all of the geometries considered, the distri-
bution of the velocity changes, due to the change in
axial velocity profile. This means that the summation
of both vortices also changes with helical radius.

To quantify the mixing behavior, we now employ
the concept of information entropy. Figure 10 shows
the normalized entropy increase, j, plotted against
helical radius. It is clear that entropy increases, and
therefore mixing, for all cases, apart from R = 0.1D.
Furthermore, Fig. 10 shows that there is a sharp in-
crease in mixing upto and including R = 0.25D, be-
yond which there is only a small increase in j with
increasing helical radius at five pitch lengths. The trend
exhibited by this data is very similar to that for C and
the location of peak axial velocity. The particle dis-
tributions and the reference frame explanation suggests
that mixing increases with the size of the apparent
second vortex structure in the particle trajectories.
Indeed it is this apparent structure that generates the
particle mixing, as it increases the length of the inter-
face between the particles within the plane.

With increasing radius, C increases, and hence the
strength of the second apparent vortex in the in-plane
reference frame increases, at the expense of the first
apparent vortex. This explains why the gradient of j
for R> 0.25D is smaller compared to the gradient for
R< 0.25D, than is the case for C.

If the radius of the helix were increased far beyond
R = 0.5D, forming a toroidal-like configuration, the
in-plane velocity field would be two vortices, as
reported in previous studies. For these geometries,

where our Cartesian formulation of the problem is no
longer appropriate, the strength of the vortex induced
by the rotation of the reference frame reduces with
helical radius, due to the increased arc length. There-
fore, after substraction from the in-plane velocity field,
it is likely that the two vortices will remain, although
with altered strengths. Therefore, the mixing pattern of
the flow will be similar to that reported here. However,
the smaller centrifugal forces implies weaker vortices,
and therefore mixing will likely decrease with radius
for these cases.

Mixing at Higher Reynolds Number

In order to provide some indication of the mixing
expected for operating conditions appropriate for an
A–V shunt, flow solutions have been obtained for a
selection of geometries at higher Reynolds numbers.
Figure 11 shows streamtraces of Vin-plane for the cases
R = 0.1D, 0.25D and 0.4D, at Reynolds numbers of
approximately 250 and 500. It is clear that there is only a
slight difference in structure between the two Reynolds
numbers, although the magnitudes are obviously dif-
ferent. The second (upper) vortex which forms with
increasing R, occupies slightly more of the cross-section
at Re = 500, the difference being smaller for R = 0.4D.
Extrapolating these results to Re � 900–1000, it is pre-
dicted that the helical radius at which ‘‘sufficient’’
mixing is generated will be slightly smaller than for
Re = 250, but likely no smaller than R = 0.2D.

These results come with the caveat that the precise
Reynolds number at which flow transitions to turbu-
lence within helical geometries is not properly charac-
terized as a function of geometric parameters. One
study that attempted to understand this phenomenon31

investigated geometries similar to those considered in
this study, with comparative pitch lengths, though not
for values of R as small as here. The results suggest
that transition occurs at values of Re smaller than for a
straight pipe O(2000), possibly as low as Re = 800,
depending on the geometry. An interesting property of
the flow is that torsion is initially destabilizing, but
beyond a certain point, increasing torsion will increase
the critical transition Reynolds number. If the flow
does transition to turbulence then we concede that the
results presented here will no longer apply. It is clear
that a careful analysis of the stability of such flows is
needed, but this is beyond the scope of the present
investigation.

Particle Residence Times

Thus far we have examined only the in-plane
mixing, however dispersion of the particles in the axial
direction is also of relevance. For the particles tracked
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FIGURE 10. Relative entropy, j, vs. helical radius.
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in section ‘‘Mixing/Stirring’’ the time taken to travel
through one pitch length was recorded. The mean and
standard deviation of the residence times are shown in
Fig. 12. It is clear that both quantities vary in a
similar fashion, and since a lower mean residence time
is desirable, the trend is the same as for j in Fig. 10.
The lower average residence time with increasing ra-
dius is due to the greater in-plane mixing, which
means that more of the particles are brought into the
core of the flow, and thus experience the high axial
velocities there. The smaller standard deviation, by
definition, means that the residence times are closer to
the mean value, and hence the residence time distri-
bution is more uniform for the larger radii. In the
preliminary study by Caro et al.3 simple dye injection
experiments were performed for two U-bend config-
urations; one constructed using conventional cylin-
drical tube, and the other a helical tube with radius
0.5D. The axial dispersion was lower for the helical
tube, as was the retention of dye near the inner wall of
the bend. Though we have only considered a straight
section, those results are in accordance with our
findings.

It is suspected that the effect of fluid mixing on
residence time distributions provides the link to
reduced thrombus formation. Consider the activation
parameter defined by Ramstack et al.,22 which is the
product of shear rate and exposure time. They show
that if this parameter exceeds 1000, procoagulant
platelet factor 3 (FP3) is released, thus enabling the
formation of a thrombus. In a Poiseuille flow the
shortest axial distances sufficient to cause FP3 release,
occur in the near wall region, creating the ideal con-
ditions for a thrombus to form on the tube’s surface.

In the helical geometry, the more uniform residence
time distribution implies that extremes of shear expo-
sure time are reduced, likely reducing the number of
activated platelets. Additionally, the mixing of particle
between the near wall region and core of the flow,
facilitated by the double-vortex structure, helps pre-
vent activated platelets from residing near the wall and
ultimately accumulating.

A key result from quantifying the degree of mixing,
is that there is a relatively small difference in the mixing
performance between the cases R = 0.25D and R =

0.5D. Therefore if enhanced in-plane mixing, as we
have defined and measured it, is responsible for the
apparent improved performance of the SMAHT A–V

(a) (b) (c)

(d) (e) (f)

FIGURE 11. Streamtraces of Vin-plane for Re 5 250 and 500 for several helical geometries. (a) R 5 0.1D, Re 5 250; (b) R 5 0.25D,
Re 5 250; (c) R 5 0.4D, Re 5 250; (d) R 5 0.1D, Re 5 500; (e) R 5 0.25D, Re 5 500; (f) R 5 0.4D, Re 5 500.
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shunts used by Caro et al.,3 it would appear that a
helical geometry with R = 0.25D should be just as
effective at preventing thrombogenic occlusion, as the
R = 0.5D geometry. A further consideration when
selecting a geometry for medical applications, is the
magnitude of the pressure drop across one pitch length
of the helix. As the helical radius increases, pressure
losses will arise from both the greater total arc length
of the helix, and the energy required to drive the vor-
tical structure. Figure 13 shows the variation of this
pressure drop with helical radius, indicating that the
pressure loss for R = 0.5D is approximately 1.6 times
larger than for R = 0.25, but without a corresponding
increase in the degree of mixing.

Implications of In Vivo Conditions
for Helical Prostheses

The focus of this study has been to understand the
fundamental process of mixing in helical geometries,
hitherto a problem not fully resolved in the fluid
mechanics literature. When used as a prosthetic device,
several in vivo conditions may have an effect on the flow
structures, and hence the mixing. Here we comment on
the likely significance of these additional factors, and
their implications for the conclusions drawn regarding
optimal geometries for medical applications.

The first effect, and the most significant, is the
presence of an additional curvature in part, or all, of
the shunt geometry, arising due to the loop configu-
ration commonly used to connect the artery to the
vein. To a first approximation, the flow in a helical
tube formed on a curved centerline, can be taken as the
superposition of symmetric counter-rotating Dean
vortices, and the single-vortex swirling flow of a helical

tube. Since, the velocity field in the helical pipe varies
only slightly with increasing radius for R> 0.25, this
means the resultant flow in a curved helical tube will
not vary significantly in this parameter range. There-
fore, despite the precise mixing behavior differing from
the straight helical case, the ranking of geometries
from a mixing perspective should not be altered by the
presence of additional curvature.

Whilst the additional curvature is relevant to the
A–V shunt application, for the cases of a bypass graft
and arterial stent, the additional curvature will be
small, and negligible in its effect. Related to this point,
an interesting structural property of helical tubes is
their improved resistance to kinking when subjected to
bending moments, compared to conventional straight
cylindrical tubes. This property helps to guarantee the
geometry of the graft in vivo, and prevents extreme
curvatures, due to a kink, that would more easily cause
the flow to separate. Furthermore, a recent study by
Coppola and Caro5 that investigated a helical geome-
try formed on a curved centerline showed that even at
Re = 600 the flow remained attached throughout the
bend, so that even though the mixing behavior may be
altered, the additional curvature is unlikely to have a
pathological effect.

The second point to consider is the possibility of
pressure-compliance mismatches at the junctions of the
shunt. This is a problem associated with grafts in
general, and it has been hypothesized that this mis-
match might play a role in the development of intimal
hyperplasia near the suture line.18 Whilst the cross-
plane pressure gradient that exists in the helical pipe
means this may be slightly different to the straight pipe
case, it is not thought to be significant, and nor would
it have such a direct bearing on the rate of develop-
ment of thrombosis within the graft itself.

CONCLUSIONS

The results presented here promote an explanation
of the mechanics of scalar particle mixing in helical
tubes. The dependence of mixing effectiveness on the
radial offset of peak axial velocity and strength of the
vortical structures are determined. If further studies of
mixing in helical tubes are to be performed, then a
good estimate of the mixing can be made using these
quantities, without the need for 3-D particle tracking
analysis; a large saving in computational effort, en-
abling a larger parameter space to be examined.
Quantifying this mixing using an information entropy
method, and particle residence times shows that be-
yond R = 0.25D only a small increase in mixing occurs
with increasing helical radius, which may be important
for clinical applications.
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