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Abstract—The knowledge of dynamic changes in the vascu-
lar system has become increasingly important in ensuring the
safety and efficacy of endovascular devices. We developed
new methods for quantifying in vivo three-dimensional (3D)
arterial deformation due to pulsatile and nonpulsatile forces.
A two-dimensional threshold segmentation technique com-
bined with a level set method enabled calculation of the
consistent centroid of the cross-sectional vessel lumen,
whereas an optimal Fourier smoothing technique was devel-
oped to eliminate spurious irregularities of the centerline
connecting the centroids. Longitudinal strain and novel
metrics for axial twist and curvature change were utilized to
characterize 3D deformations of the abdominal aorta,
common iliac artery, and superficial femoral artery (SFA)
due to musculoskeletal motion and deformations of the
coronary artery due to cardiac pulsatile motion. These
illustrative applications show the significance of each defor-
mation metric, revealing significant longitudinal strain and
axial twist in the SFA and coronary artery, and pronounced
changes in vessel curvature in the coronary artery and in the
inferior region of the SFA. The proposed methods may aid in
designing preclinical tests aimed at replicating dynamic
in vivo conditions in the arterial tree for the purpose of
developing more durable endovascular devices including
stents and stent grafts.
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INTRODUCTION

The introduction of minimally invasive endovascu-
lar therapies, such as coronary, carotid, and peripheral
artery stenting and aortic stent grafting, has radically

changed the treatment of cardiovascular dis-
eases.8,19,22,32,54 The engineering challenges associated
with these devices are considerable and include issues
related to biocompatibility, deliverability, efficacy,
safety, and durability.17,21,24,47,51 Efficacy of the device
in treating cardiovascular disease must be balanced
with safety considerations. Implanted devices simul-
taneously alter the biochemical and biomechanical
environment of the cardiovascular system, triggering
acute and chronic changes, and are in turn inherently
affected by the physiologic environment of the body.

While biocompatibility issues related to device safety
and efficacy have received considerable attention, the
in vivo forces imparted to endovascular devices are not
as well understood, despite the acknowledged impor-
tance of this information for designing durable endo-
luminal devices. Recent reports on device failures in the
coronary,11 carotid,12 renal,2,16,36,38 aorta,4,25,26 iliac,37

popliteal,46 and superficial femoral arteries (SFA),1,18,39

have been a source of great concern in the medical
device industry, among physicians and for regulatory
agencies, stimulating research on the characterization
of in vivo arterial deformation. A lack of knowledge of
the in vivo biomechanical environment may lead to
devices that are designed for deformations that are
arguably much less important than others. For exam-
ple, many of the stents that have been implanted in the
SFA have been nitinol biliary stents used off-label.
Although the stents were evaluated by means of radial
pulsatile fatigue tests, they have experienced a high
fracture rate in vivo when implanted in the SFA, likely
due to dynamic changes of curvature and longitudinal
strain in the femoral and popliteal region caused by hip
and knee flexion.10,39

Presently, quantification of in vivo forces on devices
has been limited to fluid shear and pressure imparted
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by the blood stream directly to the device or via the
cyclic radial force imparted by the blood vessel due to
the pressure pulse. Quantification of pulsatile longitu-
dinal and bending forces imparted by the vessel wall to
the device and nonpulsatile forces imparted to the
device due to musculoskeletal motion has received far
less attention. For good reason, such forces are
extraordinarily difficult to measure in vivo. Fortu-
nately, some information related to the nature of these
forces can be gained by studying the consequences of
these forces, namely the in vivo deformation of the
blood vessels themselves. Quantification of in vivo
deformation of blood vessels has only recently become
feasible with the advent of three-dimensional (3D)
imaging modalities, especially bi-plane angiography,
magnetic resonance imaging (MRI), and computed
tomography (CT).

In addition to the need to quantify in vivo defor-
mation for purposes of device design, quantifying
vessel geometry and the pulsatile and nonpulsatile
deformation of arteries is important for understanding
the pathogenesis of cardiovascular diseases.40–42 The
curvature and torsion of the vasculature are of interest
because of the resultant impact on hemodynamic
conditions and disease localization.6,34,42,44,50,53

Various methods and quantification metrics
have been proposed to characterize the afore-
mentioned types of in vivo arterial deforma-
tions.5,7,9,10,14,20,28,29,33,41–44,49,50,53 For example, the
‘‘distance factor,’’ which is defined as the ratio between
the vessel path length and the distance between two
endpoints, is a simple metric commonly used to mea-
sure nonlinearity of vessels, i.e., tortuosity.7,53 This
metric lumps 3D information into a one-dimensional
(1D) metric and hence does not clearly differentiate
local curvature changes, especially when the vessel
maintains the same distance factor. The well-known
Frenet formula has been widely used to describe the
curvature and torsion of a vessel. According to this
formula, curvature and torsion are defined as
j ¼ a0 � a00k k= a0k k3 and s ¼ ða0 � a00Þ � a000= a0 � a00k k2,
respectively, where a indicates a position vector in
space.9,28,29,33,35,53 By definition, this curvature metric
measures an infinitesimal rate of change in the tangent
vector at each point of the curve, whereas the torsion
metric measures the infinitesimal rate of change in the
orientation (binormal vector of the curve) of the
osculating plane. While curvature is well appreciated
because of its reciprocal relation to the radius of cur-
vature, the torsion metric is less frequently used in
practice because of its susceptibility to error in calcu-
lations associated with higher-order derivatives.

Moreover, despite the precise mathematical defini-
tion that the Frenet formula provides in a continuous
space, the discrete data points require finite differentiation

methods, or best-fit polynomials for calculating
derivatives. As a result, curvature and torsion metrics
calculated with this method may not represent the
global characteristics of vessel morphology because the
metric is highly sensitive to noise, commonly found in
medical imaging data. In addition, variations in cur-
vature or torsion that occur on a scale smaller than the
vessel radius are arguably insignificant for purposes of
designing implantable devices. Although arithmetic
averaging of the curvature, the so-called mean curva-
ture, has been commonly employed to report the cur-
vature,29,33,53 this approach may cause excessive
smoothing resulting in the underestimation of the
curvature in the region of interest. Therefore, the
averaging span needs to be determined judiciously so
as not to lose spatially varying characteristics.

In our view, the lack of explicit methods for gener-
ating a centerline path is the most critical hindrance in
determining reliable quantitative measures of arterial
deformation in order to design practical benchtop tests.
Generally, centerline paths of vessels are employed to
represent 3D volumetric vessel trees because of the ease
of measuring geometric parameters based on the
coordinates of these paths. Extracting centroid coor-
dinates from segmentations of the cross-sectional
lumen boundaries of the vessel, or directly from 3D
geometry, has become a more common practice with
increased computing power and the development of
more efficient segmentation algorithms.5 Consequently,
the irregularity of centroids generated by segmentation
of the lumen boundaries, caused by the voxel size- or
noise-limited segmentation process, introduces a need
for a smoothing operation. Although least-squares
polynomial fitting has been employed to smooth
irregularities in the vessel path,33 higher-order poly-
nomials which may be necessary for representing
kinked segments of vessel, may introduce spurious
oscillations. Moreover, there has not been a systematic
method of determining the optimal level of smoothness
of the curve representing the vessel. Furthermore, the
presence of branch vessels adversely affects the con-
sistent calculation of centroids along a vessel. Thus,
segmentations around the branch ostia have been
generally excluded in determining the centerline path,33

and the effect of the branches on the centroid calcula-
tion of the main vessel has received little attention.
Finally, vessel twisting has not been comprehensively
investigated in previous studies although significant
twisting deformations may occur due to muscle defor-
mations observed in the myocardium55 or thigh.3,10

In this paper, we propose a general approach and
novel metrics for quantifying dynamic arterial defor-
mation due to pulsatile and nonpulsatile forces. More
specifically, we introduce a systematic framework for
generating the centerline path of the vessel by utilizing
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2D threshold and level set segmentation techniques.
The proposed framework includes centroid calcula-
tions for representation of vessel paths and a Fourier
smoothing method to eliminate the irregularity of these
centroid-based centerlines. In order to determine
optimal smoothness of the centerline, we introduce a
cost function using the degree of the Fourier smooth-
ing mode as an argument variable. These steps enable
us to find consistent centroids of a main vessel, even in
the vicinity of branch vessels, with minimal operator
dependency. After generating the centerline path, we
then describe methods for quantifying longitudinal
strain, axial twist, and curvature change to characterize
changes in vessel geometry. Moreover, these methods
are validated on software phantoms. Finally, to illus-
trate the application of these methods, we analyze
deformations of the coronary artery, abdominal aorta,
common iliac artery, and SFA, since these arteries are
predisposed to cardiovascular disease and hence are
frequent sites of endovascular stenting or stent grafting
procedures.

METHODS

Imaging Protocol

Magnetic resonance imaging and computed tomo-
graphy were used to acquire 3D in vivo geometric data
of the arterial tree. Depending upon the anatomic
locations and resolution, the imaging sequence and
parameters were optimized to capture changes in vessel
morphology, as follows.

MRI

The study protocol was approved by the Stanford
University Panel on Human Subjects in Medical
Research, and written informed consent was obtained
from each volunteer. We performed Gadolinium-en-
hanced magnetic resonance angiography (MRA) using
a General Electric Signa Excite 1.5T scanner (GE
Medical Systems, Milwaukee, WI, USA) to image the
SFA of one healthy subject (56 years old). Two static
supine and bent-leg positions were imaged to induce
arterial deformation within the constraint of the MRI
bore. A time-resolved MRA pulse sequence (GE-
TRICKS) was performed for approximately 4 min in
each position with the following parameters: 8 ms
repetition time, 1.6 ms echo time, 45� flip angle,
512 9 224 acquisition matrix per each slice, 2.6 mm
slice thickness with 1.3 mm overlap, and approxi-
mately 19 s temporal resolution. The voxel size of the
reconstructed image was 0.8 9 0.8 9 1.3 mm3.

In addition, we imaged the abdominal aorta and
common iliac arteries of one healthy subject (39 years

old) with the same magnet in order to investigate the
characteristics of nonpulsatile deformation in larger
vessels. As with the SFA experiment, two different
positions—supine and fetal—were prescribed to induce
nonpulsatile arterial deformation. Each scan lasted
approximately 30 s and was performed during a breath
hold to eliminate respiratory motion. The image vol-
ume was approximately 30 9 30 9 10 cm3 with a
reconstructed matrix of 512 9 512 9 72 pixels,
resulting in voxel size of 0.6 9 0.6 9 1.4 mm3. Using
proprietary software (GE Medical Systems, Milwau-
kee, WI, USA), we corrected each volume of MRA
data for known gradient nonlinearities which can cause
distortion in the slice-selection direction.15

CT

A pre-existing 64-row multi-detector CT image of
the coronary arteries was obtained from the Picture
Archiving and Communications System (PACS) at the
Stanford Hospital and Clinics and was de-identified.
With retrospective ECG gating, ten individual cardiac
cycles were used to generate one image data set of a
cardiac cycle. Thus, each frame represents 1/10th of the
cardiac cycle. The field of view was 20 9 20 9 20 cm3

with a reconstructed matrix size of 512 9 512 9 405
and voxel size of 0.4 9 0.4 9 0.5 mm3. In order to
quantify pulsatile deformation of the coronary artery,
the peak-systolic (maximum diameter of the aorta) and
end-diastolic (minimum diameter of the aorta) phases
were identified and compared.31

Image-Based Anatomic Model Construction

Significant morphological changes observed in the
coronary artery (Fig. 1), abdominal aorta, common
iliac artery, and SFA (Fig. 2) due to pulsatile and
nonpulsatile forces motivated the development of the
quantification methods. We analyzed each 3D image
volume to construct the centerline path of vessels and
branch locations using custom software.52

Centerline Path Generation

The most critical step in quantifying vessel geo-
metric changes is the generation of the centerline path.
Volumetric vessels were represented by 3D space
curves based on medical imaging data as follows. First,
an initial centerline path was generated by an inter-
polated cubic hermite spline from hand-picked points
selected along the center of the artery. Along this initial
centerline path, a two-dimensional (2D) threshold
segmentation technique was used to find the lumen
boundaries of the vessel at spline coordinates approx-
imately 1 mm apart. In order to compensate for the
intensity variation in the MRI data down the length of
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a vessel, linearly interpolated threshold values were
used on the basis of sampled locations along the artery.

Next, the centroid of the lumen cross section was
computed and used to construct a revised centerline
path of the vessel. Segmentations in the vicinity of the
branch vessels need special attention because the ostia
of the branch vessels perturb the centroids of the main
vessel (Fig. 3a and c). Particularly large branch vessels,
such as the celiac, superior mesenteric (SMA), renal,
and inferior mesenteric arteries (IMA) cause slowly
varying perturbations of the centroid path (Fig. 3c),
which render Fourier smoothing on the centroid-based
path ineffective (Fig. 3e). Thus, we excluded branch
structures by using a 2D level set method based on a
curvature constraint.48 The control over the curvature
of the lumen boundary effectively prevented the level
set segmentation from advancing towards the ostia of
the branching vessel (Fig. 3b). Prior to the calculation
of the centroids, a Fourier smoothing operation was
performed on the segmentation contours to eliminate
artificial irregularities as well as to provide evenly
spaced coordinates on the lumen boundary.

Since the centerline connecting the centroids of the
main vessel is inherently irregular (Fig. 3d) because of
various random factors including the pixel size and
noise in the image, the resultant centroid set needs
additional post processing before further calculations.
These random factors essentially cause calculated cen-
troids to deviate from the true, but yet unmeasurable,
position within the cross-sectional lumen boundary.
This was more apparent when segmentations were

more closely spaced as the smoothness of the vessel
centroid path was diminished. Thus, Fourier smooth-
ing was performed on the centerline connecting the
calculated centroids in order to remove spurious high
spatial frequency components in the centerline path
(Fig. 3f). This algorithm takes the original set of
coordinates and generates a newly allocated set of
evenly spaced coordinate points by linear interpolation.
A 1D fast Fourier transform is then independently
performed on each x-, y-, and z-coordinate that is
mirrored to ensure periodicity prior to use of the
Fourier transform. Next, only a small number of modes
(q), to be determined, are preserved for reconstructing
smoothed coordinates by inverse Fourier transform.
Finally, half of the smoothed coordinates are selected
since the data sets were mirrored. As a result of the
q-mode Fourier smoothing, the vessel’s centerline path
retains lower modes of spatial frequency (2pk/L, where
k = 1,...,q and L = vessel length).

In order to develop a systematic method for deter-
mining the optimal number of modes (q), we investi-
gated the characteristics of smoothing operations and
conventional methods to determine the level of
smoothness as follows. The centerline connecting the
centroids is the best representation of the vessel in view
of the infinitesimal exactness, but the worst in view of
the global smoothness, as shown in Fig. 4a. In con-
trast, when a small number of Fourier smoothing
modes is used to eliminate the spurious irregularities,
the global smoothness of the centerline path increases,
whereas the exactness of the vessel representation is
compromised. To illustrate this, a 10-mode smoothing
generates a highly smooth centerline path while com-
promising the exact representation of the vessel cur-
vature (Fig. 4b). As the number of Fourier modes
increases, the centerline path represents a more accu-
rate vessel geometry while the smoothness decreases
because the curve approaches a set of irregularly
positioned centroids (Fig. 4b–f). Indeed, since a
smoothing operation inevitably compromises the
exactness, the minimal Fourier smoothing mode that
maintains a sufficient exactness, but avoids image noise
related fluctuations should be chosen.

Conventionally, the level of smoothness is deter-
mined by visual inspection of the exactness of the
smoothed centerline. For example, in the lower range
of smoothing modes, the difference between the
smoothed curve and the true geometry is visually dis-
tinctive, which requires an operator to increase the
number of modes (Fig. 4b and c). Infinitesimal
adjustment then occurs in the higher range of modes
(Fig. 4d–f). Therefore, an operator would choose an
estimate of the smoothness between 40 and 50 modes
(Fig. 4e and f) because the difference between the
two curves is not visually observable, which implies

Ascending
aorta

Left 
anterior
descending
coronary artery (LAD)

Right
coronary
artery

FIGURE 1. Geometric changes in human coronary arteries
due to cardiac pulsatile motion (Green: diastole, Red: sys-
tole).

Methods for Quantifying Arterial Deformation 17



‘‘convergence.’’ In summary, the conventional meth-
ods can be decomposed into two steps: exactness
observation and convergence determination, which
involve a large degree of subjectivity in determining the
‘‘optimal’’ number of smoothing modes.

The analysis of the characteristics of the smoothing
process and the conventional methods motivated the
development of a systematic framework to identify the
optimal level of smoothness. Fundamentally, this
framework transformed the conventional methods

based on empirical observation into a systematic
method with quantitative criteria as follows. For
comparison of two 3D curves generated by successive
q - 1 and q mode Fourier smoothing, points with half
of the vessel radius intervals were first sampled along
the q - 1 mode smoothed curve ð ~Xðq� 1ÞÞ. Next,
distances from the sampled points to the q mode curve
ð ~XðqÞÞ were calculated. The convergence rate cost was
then defined by the maximum distance among the
distances at sampled locations as follows:

Superfical
femoral artery
(SFA)

Profunda 
femoris

Descending
genicular

Aorta

Celiac trunk
Superior
mesenteric
artery (SMA)

Renal artery

Lumbar arteries
Inferior
mesenteric
artery (IMA)

Internal
iliac artery

Common 
iliac artery

High curvature

High
curvature

(a) (b)

(c) (d)

FIGURE 2. Geometric changes in human arteries due to hip and knee flexion. Geometric solid models of major arteries in the
thigh of a 56-year-old healthy male subject are shown together with a slice plane from the magnetic resonance imaging data
obtained under the (a) supine and (b) bent-leg positions. Note the pronounced changes in vessel curvature in the inferior region of
the model. Also shown are the geometric solid models extracted from a 39-year-old healthy female subject in the (c) supine and (d)
fetal positions. Note the changes in curvature of the aorta and the common iliac arteries with maximal hip and knee flexion.
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Cconvergence rateðqÞ ¼ max
i

~XiðqÞ � ~Xiðq� 1Þ
�
�

�
�; ð1Þ

where ~Xiðq� 1Þ represents the ith sampled coordinate
in the q - 1 mode Fourier smoothed curve, and ~XiðqÞ
represents the closest spline coordinate of q mode
smoothed curve to ~Xiðq� 1Þ. The maximum distance,
instead of mean distance, was used to penalize the
worst pair of points, as is the case for visual inspection.
As the number of Fourier modes increases, the con-
vergence rate cost decreases to a limit because the
smoothed curve eventually approaches the irregularly
positioned centroids (Fig. 4g). This property enabled
us to construct criteria to determine when to stop
further smoothing, and we found that 0.1 mm could be
used as a consistent upper bound of the convergence
rate cost for a stopping criterion. In short, the pro-
posed methods to determine the optimal number of
Fourier smoothing modes are simply represented by

minimize q subject to Cconvergence rateðqÞ � 0:1 mm

for 8 q: ð2Þ

In order to ensure sufficient exactness and smooth-
ness of the converged curve, we additionally examined
the approximation error and the noise ratio of the
resultant curve. The approximation error was defined
by the mean distance from the original irregularly
positioned centroids to the resultant smoothed cen-
terline and the noise ratio was measured by the pro-
portion of the curvature values that were higher than
the inverse of the vessel radius, which is a geometrically
admissible maximum curvature. The Frenet curvature
formula was used to effectively detect spurious high
curvature caused by any infinitesimal irregularities.

To illustrate these steps, as shown in Fig. 4g for the
SFA in the bent-leg, the convergence rate cost evalu-
ated at more than 47 modes was found to be smaller
than the threshold, and hence 48 modes was selected as
the optimal number of Fourier modes, satisfying
Eq. (2). The approximation error of the smoothed
centerline was 0.2 mm (25% of the pixel size) and the
noise ratio was 0% as compared with 34% for the
original centroid sets prior to smoothing operation.
These measurements showed that the smoothed
centerline was sufficiently accurate and high spatial
frequency noise was effectively removed by 48-mode
Fourier smoothing. Finally, the smoothed centerline
path was again interpolated by a cubic hermite spline
and subsequently used for the calculations of longitu-
dinal strain, curvature change, and axial twist.

Identification of the Ostia

In order to acquire spatially resolved information,
the ostia of several branches along the main vessel

(a) (b)

(e) (f)

(c) (d)

FIGURE 3. Effect of the branch vessels on the centroid of the
abdominal aorta dataset. (a) Original 2D threshold segmen-
tations were generated. (b) The corrupted segmentations in
the vicinity of the celiac artery, SMA, renal arteries and IMA
were corrected by a 2D level set method, and 5-mode Fourier
smoothing was performed on the lumen contour. Centroids of
all segmentations along the aorta were calculated for the (c)
original segmentation, and the (d) corrected segmentation. A
15-mode Fourier smoothing was performed on the centerlines
connecting each centroid for the (e) original segmentation
and the (f) corrected segmentation. Note that Fourier
smoothing was not effective in removing low frequency per-
turbation, as shown in (e), whereas it was effective in gener-
ating a smooth centerline path by removing high frequency
perturbation, as shown in (f).
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were used as landmarks for a Lagrangian material
point in different image volumes. Detecting the
ostium consistently in different image volumes is
important because this information will be directly
used in the calculations of each deformation metric.
We thus defined the branch’s starting point by the
centroid of the segmentation at the ostium, as illus-
trated in Fig. 5 for a muscular artery branching off
the SFA. For this example, we first determined a line
slicing across the ostium and another line slicing
through the midpoint of the ostium on the axial plane
of the main vessel to generate sagittal and coronal
planes, respectively (Fig. 5a). Then, 2D threshold
segmentations were generated on sagittal slice planes
through the ostium (Fig. 5b). Of these sagittal seg-
mentations, a contour slicing through the midpoint of
the ostium was selected to help determine the seg-
mentation of the ostium in the coronal plane. For the
final segmentation of the ostium, we selected a con-
tour that began to exhibit the actual contour of the
ostium without perturbation of the main vessel
(Fig. 5c). Intervals between segmentations were on

the order of the sub-pixel size, e.g., 0.4 mm for this
example, to avoid missing the true ostium. After the
centroid of the ostium was identified, it was projected
onto the main artery by calculation of the minimum
distance to the centerline path (Fig. 5d). Finally, the
branch projection point provided a Lagrangian
landmark to compute the following deformation
metrics.

Deformation Metrics

On the basis of the centerline path and branch
projection points, the longitudinal strain of the vessel
was readily computed. In addition, metrics for axial
twist, and curvature change were defined to further
quantify the vessel deformation.

Longitudinal Strain

Longitudinal strain was defined by the change in the
arc length of a segment between branches divided by
its original length as follows:
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Threshold
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FIGURE 4. Algorithm to determine the optimal Fourier smoothing mode and the effect of Fourier smoothing on the vessel
centerline paths. (a) An initial irregular centerline, connecting the centroids of the cross-sectional lumen boundaries of the SFA
was generated and was followed by Fourier smoothing with (b) 10 modes, (c) 20 modes, (d) 30 modes, (e) 40 modes, and (f) 50
modes. As the number of Fourier modes increases, the difference between centerlines becomes negligible and visually indis-
tinctive. On the basis of this observation, the convergence rate cost was defined by the maximum distance between centerlines in
successive Fourier smoothing. As shown in (g), the convergence rate cost decreases to a limit as the number of Fourier mode
increases and the threshold value of 0.1 determines the optimal Fourier mode as 48.
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el ¼
l� L

L
; ð3Þ

where L is the length in the reference configuration,
and l is the length in the current configuration. The
branch projection points were used as landmarks
to determine the corresponding range of segments
between branch vessels in different configurations. As
the value for L decreases, the limitations of image
resolution can compromise the accuracy of the strain
value. Moreover, since the length of stents and stent
grafts significantly exceeds the diameter of the devices,

changes in length of segments that are shorter than the
vessel diameter scale are less useful for designing pre-
clinical tests. Therefore, the approximate order of the
vessel diameter was used as a minimum distance
between branches to ensure measurement robustness by
limiting error potentially produced by the finite pixel
size. Specifically, starting with well-recognized branch
vessels, e.g., the profunda femoris for the SFA and left
circumflex coronary artery (LCX) for the left anterior
descending coronary artery (LAD), we identified next
branch vessels distal to the first branch vessel by more
than its diameter distance. For example, muscular

(a) (b)

(c) (d)

Sagittal 
plane

Coronal
plane

Axial plane

Line for the sagittal plane

Line for the coronal plane

Selected
sagittal
segmentation

Selected
segmentation
of the ostium

Centroid
of the ostium

Projection on
the centerline

Centerline of
the main vessel

FIGURE 5. Identification of the ostium of a branch vessel. (a) A line slicing across the ostium and another line slicing through the
midpoint of the ostium were determined on the axial plane of the main vessel. (b) 2D threshold segmentations were generated on
the sagittal slice planes through the ostium. A contour slicing through the midpoint of the ostium was selected to help determine
the segmentation of the ostium. (c) 2D threshold segmentations were generated on the coronal slice planes. A contour that began
to exhibit the actual contour of the ostium without perturbation of the main vessel was selected as a final segmentation of the
ostium. (d) The centroid of the ostium was projected onto the main artery.
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branches <7 mm apart from the profunda femoris
were ignored in the SFA analysis since the vessel
diameter was approximately 7 mm.

Curvature Change

Changes in vessel curvature can occur because of a
bending moment due to pulsatile or nonpulsatile for-
ces. Surrounding tissue support and vessel compliance
can affect the amount of curvature change. Geomet-
rically, the curvature is the inverse of the radius of the
osculating circle. In a discrete domain, the osculating
circle can be approximated by a circumscribed circle
around three points on the vessel centerline path, as
illustrated in Fig. 6.27

In order to characterize the global curvature rather
than the infinitesimal curvature, we computed the
radius of the circumscribed circle through three
sequential centerline coordinates within the range of a
window size x (discussed subsequently), at each evenly
spaced coordinate. Specifically, as illustrated in
Fig. 6b, the curvature at Pi was defined as the inverse
of the radius of the circumscribed circle around the
three coordinates Pa, Pi, and Pb, where Pa and Pb have
equal distance of x=2 to Pi along the vessel curve.

As the window size, x, decreases to an infinitesimal
value, the curvature estimation approaches the true
curvature. From a practical perspective, however, x
should be limited to a finite length. We chose the
diameter of the vessel as a window size for measuring
curvature in order to eliminate spurious changes in
curvature due to the imaging or segmentation process,
while simultaneously preserving true changes in the
local curvature caused by vessel bending or buckling.
The choice of the diameter as a window size can be
further rationalized as follows. In a perfect arc vessel,
as illustrated in Fig. 6b, the maximum deviation (di) of
the interpolated line from the original vessel centerline
is represented by Taylor series expansion with the
assumption of R=ð2qiÞ � 1, as follows:

di ¼ qi 1� cos
hi
2

� �

¼ qi 1� cos
R

2qi

� �

� R2

8qi

; ð4Þ

where hi is the central angle of the arc PaPi and PiPb,
R is the radius of a vessel, and qi is the radius of
curvature (Fig. 6b). Assuming the vessel undergoes
smooth deformation (e.g., centerline path 2 C2),
which is a physiologically reasonable assumption
considering the internal blood pressure and elastic
nature of healthy blood vessels, the minimum possible
radius of curvature is the vessel radius itself. There-
fore, the admissible radius of curvature is always lar-
ger than the vessel radius (qi >R), and hence the
maximum deviation is always limited by the following
inequality:

di<
1

8
R: ð5Þ

In real image data, the upper bound (right hand side
of the inequality (5)) is more likely to be much smaller
than the above calculation (R/8), since the radius of
curvature is generally much larger than the vessel
radius. In this respect, choosing the vessel diameter as
a window size guarantees that global characteristics of
vessels can be effectively captured without spurious
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FIGURE 6. Method to calculate vessel curvature. (a) A win-
dow size of the vessel diameter was moved down along the
centerline path incrementally to identify three adjacent points
on the centerline path for the curvature calculation. (b) A
circumscribed circle through three points was used to com-
pute the curvature of the vessel along its length.
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curvature spikes that might be observed in segments
shorter than the vessel radius.

Finally, curvature changes between two different
configurations can be calculated by comparison of local
curvature values for corresponding points in the two
configurations. In many cases, however, branch vessels,
i.e., landmarks, are located in a limited region that may
not necessarily include the region of interest for cur-
vature comparison. For example, as shown in Fig. 1,
branch vessels from the distal LAD near the apex of the
heart are either nonexistent or invisible although cur-
vature changes are more pronounced in that region.
Therefore, for curvature comparison beyond the land-
marks, we extrapolated corresponding points by cal-
culating an equivalent length of the vessel in the current
configuration to that in the reference configuration.
The strain measurement (el) between the identified
landmarks, and the relationship of scurrent = sreference
(1 + el) were used for the extrapolation.

From the perspective of designing preclinical tests,
the maximum cyclic change in the curvature would be
the most important measure for extreme bending
deformation. The comparison between curvature val-
ues for two configurations can be evaluated at the
linearly interpolated locations between the landmarks
and at the extrapolated locations beyond the land-
marks. However, a nonuniform longitudinal defor-
mation in the interpolated and the extrapolated regions
may result in misregistration of corresponding points.
Therefore, we calculated maxima of curvature in each
configuration and then identified maximum difference
in corresponding ‘‘nearby’’ maxima, instead of piece-
wise comparison, as follows:

Dj�max ¼ max j�current � j�reference
�
�

�
�; ð6Þ

where j�current and j�reference represent corresponding
maxima, and ‘‘nearby’’ was defined as a distance
within the vessel radius (R) along the vessel length.
This approximate measure of maximum change in
curvature was based on the assumption of a ‘‘±R’’
misregistration between two configurations.

In addition, change in mean curvature was also cal-
culated to characterize the difference in curvature change
along the vessel length, after the vessel was divided into
two or three equal segments depending upon the cur-
vature variations along the length as follows:

D�j ¼ �jcurrent � �jreference; ð7Þ

where �j ¼ ð1=NÞ
PN

i¼1 ji, and N represents the total
number of sampled curvature values in each subdi-
vided segment. For example, the LAD was divided into
two segments and change in mean curvature during
cardiac phases was measured in the proximal and distal
segments, respectively.

Verification of the Algorithm to Calculate Curvature

The curvature calculation algorithm was verified by
means of an analytic space curve based on the fol-
lowing modified helix curve (Fig. 7a):

xðsÞ ¼ j
j2 þ s2

cos
s

L

� �

yðsÞ ¼ j
j2 þ s2

sin
s

L

� �

zðsÞ ¼ s
j2 þ s2

s

L
e�ks

ð8Þ

The Frenet formula was employed to compute the
analytic curvature, janalyticðsÞ as:

janalyticðsÞ ¼
jðj2þ s2Þ

j2þ s2ð1� ksÞ2e�2ks

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j2þ s2e�2ksðL2k2ð2� ksÞ2þð1� ksÞ2Þ
j2þ s2e�2ksð1� ksÞ2

s

;

ð9Þ

which served as a gold standard for computing the
difference. In the case of k = 0, coefficients j and s
represent the curvature and torsion of a helix, respec-
tively. In the example of Eq. (9), k in the exponent of
z(s) generates spatially varying curvature and torsion,
resulting in a kinked shape, while L is a scaling factor.
Those coefficients were adjusted to mimic the geo-
metric shape observed in the MRI study of SFA
deformations, which exhibited significant changes in
local curvature, as will be further discussed in the
‘‘Results’’ section.

In order to investigate the accuracy of the curvature
estimation, the difference between the estimated cur-
vature and the analytic curvature was evaluated as
follows:

gðsÞ ¼ jestimateðsÞ � janalyticðsÞ: ð10Þ

The curvature variation and error estimation along
the parametric arc length of the phantom are shown in
Fig. 7b. When the diameter of the SFA (6.6 mm) was
used for the window size, the maximum error of
-0.0046 mm-1 (-4.0%) occurred at the location of
the maximum curvature due to the finite window size,
resulting in underestimation of the true curvature. The
difference in the corresponding radius of curvature was
0.36 mm. The root-mean-square of the absolute value
of g(s) over the entire length was 0.00002 mm-1

(0.03%). This analysis shows that the proposed algo-
rithm can effectively measure the local curvature when
a global scale of the vessel diameter is used as a win-
dow size.
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Axial Twist

Musculoskeletal motion or cardiac pulsatility can
induce torsional moments that result in axial twist of
the vessel. The twisting of the vessel is a volumetric
quantity that cannot be derived by one centerline path
in one configuration. For example, a straight cylinder
can twist axially without variation of curvature or
torsion, as shown in Fig. 8a. In this sense, the axial
twist is different from the aforementioned Frenet tor-
sion metric. To overcome the limitations of the Frenet
formula for describing axial twist, we developed a new
twisting metric that more completely measures 3D
characteristics of the vessel geometry. Specifically, we
defined a new metric, which we refer to as the ‘‘angle of
separation,’’ as the angle between adjacent branches.
Axial twist is determined by the difference between the
angle of separation of a current configuration h and
that of a reference configuration H. In the simplest
case, illustrated in Fig. 8a, the vessel is straight in both
configurations, and hence the twisting angle is h - H.

During vessel deformation, however, bending and
twisting effects are superimposed, and the vessels are
not necessarily coplanar. Therefore, the bending
component was separated from the total deformation
to obtain a pure twisting component as follows. First,
the centerline of the vessel was divided into small
segments such that each subdivided segment of the

centerline could be assumed to be planar. Second, a
datum curve from the first branch to the next branch
was found by means of the rotation axis ~xi ¼ ~ni�
~niþ1= ~ni �~niþ1k k and rotation angle wi ¼ cos�1

~ni �~niþ1= ~nik k � ~niþ1k kð Þð Þ in each segment (Fig. 8b).
Specifically, the datum points Bi were calculated as
follows:

Piþ1B
���!

iþ1 ¼ Rotðx* i;wiÞ � PiB
��!

i; ð11Þ

where

Rotðx* i;wiÞ ¼ e½~xi�wi and ½x* i� ¼
0 �xiz xiy

xiz 0 �xix

�xiy xix 0

0

@

1

A

Third, the angle of separation, H, was determined
in a reference configuration by means of the identified
datum curve. A counterclockwise position of the
distal branch origin relative to the proximal branch
origin was considered as a ‘‘positive’’ angle of sepa-
ration. This algorithm was applied to a second
dataset to get the angle of separation in a different
position, h, and then the twisting angle was calculated
by subtraction of those angles of separation, h - H.
With the same sign convention as the angle of sepa-
ration, a counterclockwise twisting angle was con-
sidered positive. Lastly, the axial twist rate was
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FIGURE 7. Software phantom used to verify new curvature metric. (a) A helix curve was modified to mimic the kinked shape of the
SFA for the bent-leg position. (b) On the basis of 6.6 mm window size reflecting the SFA diameter, curvature was measured by the
proposed methods and was plotted with analytic curvature by use of Frenet formula as a gold standard. The difference between the
two metrics was plotted and was found to be relatively small.
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determined by division of the twisting angle over the
segment length.

Verification of the Algorithm to Calculate the Angle
of Separation

The proposed algorithm for quantifying the twisting
angle was verified by means of a software phantom.
The angle of separation was quantified in a vessel of
known geometric configuration with high torsion. The
analytic vessel comprised two planar arcs that were
connected with a 90� angle, as shown in Fig. 9a. The
upper arc was located on the z–x plane, while the lower
arc was on the y–z plane (Fig. 9b and c). Six branches
had known angles of separation (-30�, -60�, 180�,
150�, 120�) with respect to the first branch.

The verification test cases consisted of evaluating
the angle of separation between the first branch and
the five subsequent branches. Geometrically, the seg-
ments between Branch 1 and Branch 5, and Branch 1

and Branch 6 have high torsion because the segment
between Branch 5 and Branch 6 is located on the y–z
plane whereas Branch 1 is located on the z–x plane.
For these test cases, the estimated angles of separation
were -30.0�, -60.0�, 179.2�, 150.1�, 120.2�, which
resulted in an estimation error of 0.2 ± 0.3�. This
analysis shows that the proposed algorithm to quantify
the angle of separation in the vessel is robust and
accurate for these test cases with high torsion.

RESULTS

To demonstrate the methods described in this paper,
we quantified deformations in examples of the
abdominal aorta, common iliac artery, SFA, and LAD.
These vessels were chosen to demonstrate applicability
of the methods for a variety of vessel sizes.

Generation of the Centerline Path using Fourier
Smoothing

For the SFA in the bent-leg position, 48-mode
Fourier smoothing was optimal for the approximately
500 centroids defined at 0.7 mm intervals. The
48-mode smoothing process satisfied the convergence
rate criteria established, effectively representing both
the low and high curvature region. A 35-mode Fourier
smoothing was used for the SFA in the supine posi-
tion. For the abdominal aorta in the fetal position,
15-mode smoothing for the approximately 300 cen-
troids at 0.5 mm intervals was enough because its
shape is inherently quite smooth. A 35-mode smooth-
ing was required for the common iliac artery in the
fetal position. For the supine position, 16- and
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15-mode Fourier smoothing was used for the abdom-
inal aorta and the iliac artery, respectively. For the
coronary artery in systole, 38-mode smoothing for the
approximately 370 centroids at 0.3 mm intervals was
optimal to effectively represent the local curvature
variations of the LAD. In diastole, 34-mode Fourier
smoothing was used for the coronary artery. Next,
longitudinal strain, axial twist, and curvature change
were calculated in each example.

Deformation Metrics for the Coronary Artery

The geometry of the LAD (diameter: 2.5 ± 0.8 mm)
at the peak-systolic and end-diastolic phases of the
cardiac cycle was quantified to investigate the effect of
the pulsatile cardiac motion on the artery (Fig. 1). Ostia
of two branch vessels including the LCX were used as
fiducial landmarks between the two cardiac phases
(Fig. 10a). Although a short segment was used for the
strain calculation due to the location of the side bran-
ches, an approximately 110-mm-long segment was used
for the curvature comparison beyond the landmarks.
From the end-diastolic to peak-systolic phases, the
LAD shortened by 6.7% (diastole: 19.2 mm, systole:
17.9 mm), twisted clockwise by 6.0� (twist rate: 0.3�/
mm), and the curvature increased by 0.077 ± 0.14 mm-1

on average (diastole: 0.10 ± 0.08 mm-1, systole:
0.18 ± 0.15 mm-1).When changes inmean curvaturewere
compared, the distal half of the LAD (D�jdistal: 0.14 mm-1,
�jdiastole: 0.13 mm-1, �jsystole:0.27 mm-1) exhibited

approximately four times higher curvature change than
the proximal half of the LAD (D�jproximal: 0.03 mm-1,
�jdiastole: 0.07 mm-1, �jsystole: 0.10 mm-1). For the local
curvature change, as shown in Fig. 11a, the maximum
curvature change ðDj�maxÞ was 0.75 mm-1

(j�diastole: 0.05 mm-1, j�systole: 0.80 mm-1). For geomet-
ric interpretation, locations at the LAD corresponding
to the maxima of the curvature graph are illustrated in
Fig. 11b.

Deformation Metrics for the Abdominal Aorta

The deformation of the infrarenal abdominal aorta
(diameter: 16.3 ± 1.3 mm) was quantified among two
different body positions: supine and fetal positions
(Fig. 2c and d). The renal arteries and aortic bifurcation
were used as fiducial landmarks (Fig. 10b). Although
the lumbar arteries were visible in the image, they were
not used for the landmarks because of small intervals of
their locations and ambiguous ostia. For this subject,
13.4� clockwise axial twisting (twist rate: 0.14�/mm) and
-4.1% longitudinal strain (supine: 97.9 mm, fetal:
93.8 mm)were observed.On average, from the supine to
fetal positions, the curvature increased by 0.0007 ±

0.0047 mm-1 (supine: 0.0086 ± 0.0030 mm-1, fetal:
0.0093 ± 0.0043 mm-1). Distinctive local changes in
mean curvature along the length were not observed in
the abdominal aorta on the basis of the measurement at
the proximal half (D�jproximal: 0.002 mm-1, �jsupine:
0.006 mm-1, �jfetal: 0.008 mm-1) and the distal half

(a) (b) (c)

Infrarenal
Aorta

Common
Iliac artery 
(Left)

LAD

SFA segments 
(Left)

FIGURE 10. Selected segments of each artery for quantifying the vessel deformation. (a) Left anterior descending coronary
artery, (b) infrarenal aorta and left common iliac artery, and (c) left superficial femoral artery were used for geometric analysis.
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(D�jdistal: 0.001 mm-1, �jsupine: 0.011 mm-1, �jfetal:0.010
mm-1). For the local curvature change, the maximum
curvature change ðDj�maxÞ was 0.008 mm-1 (j�supine:
0.007 mm-1, j�fetal: 0.015 mm-1).

Deformation Metrics for the Common Iliac Artery

Deformation of the left common iliac artery (diam-
eter: 8.4 ± 1.6 mm) was quantified over a segment be-
tween the aortic bifurcation and the internal iliac artery
(Fig. 2c and d). The origin of the common iliac artery
was defined as the intersection between the aortic
bifurcation plane and the centerline of the iliac artery
(Fig. 10b). Then the arc length change of the common
iliac artery centerline between its origin and the internal
iliac artery was measured. From the supine to fetal
positions, the iliac artery segment shortened by 2.2%
(supine: 66.6 mm, fetal: 65.2 mm) and twisted coun-
terclockwise by 1.5� (twist rate: 0.023�/mm). The cur-
vature increased by 0.010 ± 0.012 mm-1, on average
(supine: 0.020 ± 0.010 mm-1, fetal: 0.031 ± 0.013
mm-1) although distinctive local changes were not
observed in the iliac artery on the basis of the
mean curvatures at the proximal half (D�jproximal: 0.011
mm-1, �jsupine: 0.018 mm-1, �jfetal: 0.029 mm-1) and the
distal half (D�jdistal: 0.010 mm-1, �jsupine: 0.023 mm-1,
�jfetal: 0.033 mm-1). For the local curvature change, the
maximum curvature change ðDj�maxÞ was 0.020 mm-1

(j�supine: 0.017 mm-1, j�fetal: 0.037 mm-1).

Deformation Metrics for the Superficial Femoral Artery

Deformation of the left SFA (average diameter:
6.6 ± 0.6 mm) caused by body change from the supine
to the bent-leg positions was measured (Fig. 2a and b).
The profunda femoris and five muscular branches,
including the descending genicular arteries defined five
segments of the SFA, as illustrated in Fig. 10c. For this
subject, SFA shortening of 8.8 ± 4.4% was observed
from the supine (71.9 ± 50.0 mm) to bent-leg
(65.4 ± 46.4 mm) positions. For axial twisting angle,
the absolute value was taken in each segment, resulting
in the average twisting of 0.8 ± 0.4�/mm. On average,
curvature increased by 0.014 ± 0.022 mm-1 (supine:
0.008 ± 0.005 mm-1, bent-leg: 0.022 ± 0.024 mm-1)
while the changes in curvature between the supine
and bent-leg positions were more pronounced in the
distal portion of the SFA (D�jdistal: 0.031 mm-1,
�jsupine: 0.008 mm-1, �jbent: 0.039 mm-1) compared
with the proximal (D�jproximal: 0.007 mm-1, �jsupine:
0.009 mm-1, �jbent: 0.016 mm-1) and middle
(Djmiddle: 0.006 mm-1, jsupine: 0.006 mm-1, jbent:
0.012 mm-1) portions of the SFA. Curvature variation
for both positions along the SFA is shown in Fig. 11c.,
and the maximum curvature change ðDj�maxÞ was

0.14 mm-1 (j�supine: 0.01 mm-1, j�bent: 0.15 mm-1). In
addition, a circumscribed circle at the maximum cur-
vature is plotted on the curvature plane with the vessel
intensity view for geometric interpretation, as shown in
Fig. 11d.

DISCUSSION

As more innovative endovascular devices are
developed, the knowledge of dynamic changes in the
vascular system will become increasingly important in
ensuring the safety and efficacy of these devices. Reg-
ulatory agencies require specific benchtop testing of
devices in a manner reflecting the in vivo environment
in terms of the duty cycle and number of cycles. The
superficial femoral and iliac arteries are particularly
susceptible to multi-modal deformations due to
repetitive hip and knee flexion, which can occur, for
example, during walking. The coronary arteries expe-
rience dynamic forces due to cardiac motion, and the
aortic motion can be induced by cardiac, respiratory,
and musculoskeletal motion. Understanding these
cyclic changes in arterial geometry is essential for
understanding device fatigue. Therefore, more com-
plete and practical methods are needed to quantify 3D
arterial deformation. There is also a need to make
these metrics readily accessible to device manufacturers
and clinicians.

We have developed a systematic framework, with
reduced operator dependency, for generating the cen-
terline path of a vessel by employing Fourier
smoothing. To do so, we generated a reference cen-
terline path of the vessel by calculating the centroid of
the segmented lumen cross section. This irregularly
positioned centerline connecting the centroids was then
gradually smoothed by an increasing number of Fou-
rier smoothing modes. Due to the competing charac-
teristics of the exactness and smoothness as a result of
the smoothing operation, exactness constraints would
provide a lower limit of the smoothing mode, whereas
the smoothness constraints would provide an upper
limit of the smoothing mode. Moreover, since the
minimal Fourier smoothing mode is desirable provided
that a sufficient exactness is guaranteed, we used the
convergence criteria, which were a stricter condition
than the exactness criteria, for identifying the optimal
Fourier smoothing mode. Although the smoothness
criteria were not employed in developing these meth-
ods, we confirmed the smoothness of the resultant
centerline by means of the noise ratio while examining
whether the maximum curvature was geometrically
admissible.

More importantly, we developed a consistent crite-
rion for different arterial centerlines when determining
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the level of smoothness by employing the maximum
distance between two successive smoothed centerlines
as the convergence rate cost. Although the cost ideally
would converge to zero in the limit, the finite interval
between spline points resulted in residuals (Fig. 4g).
Since the criteria are required to be robust to random
factors including the image resolution, noise in the
image, number of centroids, as well as the vessel size,
the original irregularly positioned centroids, which
involve maximum randomness, were not directly used
to construct the cost. The use of smoothed centerlines,
instead of the irregular centroid set, for establishing
quantitative criteria allowed us to find a consistent
criterion that could be applied to all image data sets,
studied herein. Essentially, the process of examining
convergence criteria for determining the optimal
Fourier mode is equivalent to the visual comparison of
successive centerlines in conventional methods.

The application of this method to various vessels of
different size and image resolution illustrates a suffi-
cient performance in terms of the exactness and
smoothness of the centerline path, measured by the
approximation error and the noise ratio. The SFA,
especially for the bent-leg position, was one of the
most challenging applications of smoothing because of
its large variation in the curvature along the length:
minimum curvature was as low as 0.0003 mm-1,
whereas maximum curvature was 0.15 mm-1 at the
distal portion of the SFA. The noise ratio for the ori-
ginal centroid data set was 34% with a maximum
Frenet curvature of 2.0 mm-1. For the SFA in the
supine position, the noise ratio was 15% and the
maximum Frenet curvature was as high as 20.8 mm-1,
undoubtedly resulting from the noise. On the contrary,
the maximum Frenet curvature of the smoothed cen-
terline significantly decreased to 0.03 and 0.17 mm-1

for the supine and bent-leg positions, respectively,
resulting in 0% noise ratio. Consequently, the Fourier
smoothing method on the basis of the identified opti-
mal mode enabled an effective elimination of spurious
high spatial frequencies while preserving a wide spec-
trum of real curvature. Overall, for all smoothed cen-
terlines, the approximation error was 0.22 ± 0.08 mm
(38 ± 13% of the pixel size) and the noise ratio was
0.04 ± 0.07% as compared with 51 ± 30% for the
original irregular centroid sets. The small noise ratio
was caused by one coordinate for the smoothed aorta
centerline (supine) and two coordinates for the coro-
nary (systole) that exhibited spurious high Frenet
curvature larger than the inverse of the vessel radius.
However, when the proposed curvature metric based
on the diameter-window size was used, the curvature
values were within a reasonable range.

While Fourier smoothing could effectively reduce
sharp perturbations—high spatial frequencies—of the

centroids caused by small branch vessels or image
noise, segmentations at the ostia of relatively large
vessels such as the celiac, renal and SMA required a
different segmentation algorithm in order to eliminate
the effect of segmentation ‘‘leaking’’ (Fig. 3a and b). A
curvature-based 2D level set segmentation technique
enabled us to detect consistent centroids of the main
vessel without perturbation by the branch vessels
(Fig 3f).

The vessel length between branches was determined
by projecting the centroid of the ostia of the branches
onto the centerline path of the main artery. This defi-
nition was essential for detecting consistent branch
location between different image volumes. Detection of
branch vessels for longitudinal strain calculations was
performed such that the interval distance between
identified branches was longer than the vessel diameter
ensuring robustness to the measurement error inherent
in a finite voxel size. In a pilot study applying these
methods, we observed shortening of the SFA caused
by musculoskeletal movement. The anatomic location
of the SFA, which continues down the thigh from
anterior to posterior with respect to the femur, may
induce compression of the SFA caused by hip and knee
flexion. The shortening of the SFA from the supine to
flexed positions is consistent with our previous in vivo
study10 (-13 ± 11%), and a cadaver study45 (mid
SFA: -5%, distal SFA: -14%). However, the smaller
strain in this study as compared to our previous in vivo
study may be related to less elastic vessels of the older
subject and a smaller hip flexion angle although a
larger study is needed. Coronary artery shortening was
observed from the diastolic to systolic phases, likely
related to the changes in ventricular volume. The
observed strain of the LAD was similar to the value
reported in a previous study13 (4.0 ± 1.8%) despite the
difference in analysis methods and subjects. Further
investigations will be required to quantify coronary
longitudinal strain and achieve statistically significant
results.

The skeletonizing process of the volumetric vessel
into a centerline path may add spurious curvature
because of noise in the image data or segmentation
error inherent in data processing. Consequently, cur-
vature can be overestimated if an infinitesimal segment
is used for the measurement. In an attempt to avoid
these limitations, we have proposed that a vessel
diameter is an appropriate window size for curvature
calculation based on the geometric definition of cur-
vature—the inverse of the radius of a circumscribed
circle around sampled points. The verification study
with an analytic space curve showed that this algo-
rithm was accurate enough to detect global charac-
teristics of the vessel curvature. When this method was
applied to actual image data, pronounced curvature
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change in the SFA occurred in the distal portion of the
SFA, approximately at the level of the adductor hiatus.
This finding is consistent with that of a previous
study.1 Moreover, the average curvature value in the
supine position was in the similar range of that in the
literature53 (0.006 ± 0.009 mm-1).

The circumscribed circle at the maximum curvature
helped us to understand the geometric interpretation of
the curvature. For the coronary artery, curvature
range of the LAD in this study was within those
reported in previous studies13,23,28 although individual
anatomic variation along the length would have a
greater effect on the numerical values. We also
observed a greater curvature change in the distal LAD
than the proximal portion which is consistent with the
literature.28 However, a much larger curvature and
cyclic curvature change may be related to our subject’s
anatomic specificity in the distal LAD, as illustrated in
Fig. 11a and b.

A significant increase in curvature of the common
iliac artery was observed from the supine to fetal
positions (0.020 ± 0.010 mm-1, 0.031 ± 0.013 mm-1),
which was strongly related to the anatomic location of
the common iliac artery adjacent to the hip joint. The
curvature in the abdominal aorta also increased from
the supine to fetal positions (0.0086 ± 0.0030 mm-1,
0.0093 ± 0.0043 mm-1). This increase in curvature
may be attributed to the curvature change of the
common iliac arteries due to hip flexion or the spine
influencing the shape of the abdominal aorta via the
lumbar arteries, although further statistical study
among a larger subject population is required to con-
firm these results. Curvature of the common iliac
artery and abdominal aorta measured in this study was
in a similar range compared with those in a previous
study33 (iliac: 0.022 ± 0.008 mm-1, aorta: 0.014 ±

0.003 mm-1).
For quantifying the axial twisting angle, we

developed a new method that can be applied to any
geometric shapes of vessels without losing 3D infor-
mation. The proposed algorithm is unique in that it
quantifies the axial twisting of the object with varying
curvature and torsion. We verified this algorithm by
using software phantoms and found it to be valid in all
segments with various kinds of torsion. Compared
with our previous in vivo results10 (60 ± 34�, 0.28 ±

0.17�/mm), significantly larger twisting of the SFA was
observed in this most recent study. Besides the varia-
tions in population or methods to calculate the twisting
angle, we think this difference resulted from the fact
that local changes along the SFA were ignored in the
previous study. If only the profunda femoris and the
most distal branch were used, the twisting angle
between those branches was -39.4� (-0.11�/mm),
which showed a similar result to our previous study.

This present study had several limitations. First, the
quantification methods depend inherently upon the
limitation of the imaging modalities despite significant
improvements in image resolution that have been made
in recent years. For example, the inhomogeneous
gradient field in MRI may induce spurious deforma-
tion of the imaged vessel. Thus gradient-warp correc-
tion for the MRI is essential prior to geometric
quantification. With regard to the cardiac-gated CT,
misregistration of the images during a cardiac cycle
potentially caused by the irregular heartbeat may also
cause spurious deformation of the vessel. In addition,
small vessels such as those in the distal portion of the
coronary arteries may limit the exactness of the vessel
representation due to an insufficient number of pixels
across the vessel diameter. These types of limitations
can be minimized as more reliable and accurate med-
ical imaging systems are developed. Second, although
manual processing was significantly reduced in the
proposed framework, minimal user intervention was
necessary in detecting the ostia or in removing the
branch structure for the centerline generation. Direct
3D segmentation methods may help to improve the
consistency of geometric analysis. Third, all of the
metrics were calculated from centerline paths of volu-
metric blood vessels. Thus the proposed metrics do not
reveal any information about the deformation of the
surface of the vessel, which may be important espe-
cially for large vessels such as the thoracic or abdom-
inal aorta. There is also an inherent limitation of
Fourier smoothing used for generating centerline
paths.30 Mirroring of the nonperiodic centroid sets was
employed to ensure periodicity since vessel centerlines
are generally open space curves. Fourth, we assumed
circular vessel cross sections, which are not necessarily
accurate for diseased vessels. Further studies are
required to quantify deformations of blood vessels
with atherosclerosis or aneurysmal degeneration.
Lastly, the data used in the longitudinal strain and
twisting metrics required determination of branch
locations. The strain and twisting angle metrics were
discontinuous measurements since we used a finite
number of branches as fiducial landmarks to compare
different configurations. Thus, there is no information
available in the segment between branches. Although
the curvature is a continuous variable along the vessel,
the strict comparison between different configurations
is only possible at the branch locations. The compar-
ison between segments is an approximate evaluation at
the linearly interpolated locations between identified
branches. More fiducial markers, such as calcification,
will help improve the limited amount of spatial infor-
mation that can be obtained.

While we presented four examples at different ana-
tomic locations (the SFA, abdominal aorta, common
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iliac artery, and coronary artery), we believe that the
methods described herein are applicable to quantifi-
cation of many other 3D vessel deformations. For the
clinical implications, measured parameters of longitu-
dinal strain, twisting angle, or curvature change can be
studied as dynamic factors indicative of stimulants for
vascular remodeling or sites predisposed to occlusive
disease. Moreover, deformation metrics obtained with
these methods can be directly used to design benchtop
testing parameters for cyclic longitudinal compression
(or tension), axial twisting, and bending tests.

CONCLUSIONS

We have developed general methods to quantify 3D
vessel deformations due to pulsatile and nonpulsatile
forces. We illustrated these methods by applying them
to examples including the deformation of the SFA,
abdominal aorta, and common iliac artery caused by
hip and knee-flexion and to the deformation of the
coronary artery due to cardiac pulsatility.

On the basis of these examples, we believe these
metrics for longitudinal strain, axial twist, and curva-
ture change can be applied to many other examples
beyond those illustrated herein. In addition, the pro-
posed metrics have proven to be practical and
straightforward to implement for benchtop tests aimed
at replicating the in vivo condition and developing
more durable endovascular devices. Further studies
will be required to characterize deformation of dis-
eased vessels that have asymmetric cross sections and
nonuniform vessel properties.
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