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Abstract—Muscle artifacts are typically associated with sleep
arousals and awakenings in normal and pathological sleep,
contaminating EEG recordings and distorting quantitative
EEG results. Most EEG correction techniques focus on
ocular artifacts but little research has been done on removing
muscle activity from sleep EEG recordings. The present study
was aimed at assessing the performance of four independent
component analysis (ICA) algorithms (AMUSE, SOBI,
Infomax, and JADE) to separate myogenic activity from
EEG during sleep, in order to determine the optimal method.
AMUSE, Infomax, and SOBI performed significantly better
than JADE at eliminating muscle artifacts over temporal
regions, but AMUSE was independent of the signal-to-noise
ratio over non-temporal regions and markedly faster than the
remaining algorithms. AMUSE was further successful at
separating muscle artifacts from spontaneous EEG arousals
when applied on a real case during different sleep stages. The
low computational cost of AMUSE, and its excellent perfor-
mance with EEG arousals from different sleep stages
supports this ICA algorithm as a valid choice to minimize
the influence of muscle artifacts on human sleep EEG
recordings.

Keywords—Muscle artifacts, Sleep, Arousals, Awakenings,

EEG, Independent component analysis, Blind source sepa-
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INTRODUCTION

The role of arousals in sleep is a matter of interest
among basic researchers and clinicians not only for its
implications on the normal sleep physiology,7,8,21,39 but
also for its central role in the diagnosis and follow-up of
some prevalent sleep disorders.36,41,43,51 For instance,
arousals are often associated with sleep disruptions
which frequently intrude as muscle artifacts into the
ongoing electroencephalographic (EEG) activity of
many neurological and sleep disorders.14,19,27,29,36,41,51

Even though the enhancement of muscle tone is not

always a prerequisite for EEG arousal identification
(e.g., in non-REM sleep),1 the inclusion of this criterion
has been shown to shorten the scoring time without
altering the inter-scorer agreement and reliability
results.42 Consequently, muscle artifacts will distort
oscillatory EEG activity during the arousal period.

Previous results highlight the relevance of studying
spatiotemporal changes of EEG activity during the
arousal episodes. Evidence suggests that spectral
variations associated with arousals provide an effective
and reliable method of identifying sleep-disordered
breathing events.47,57 The influence of arousals on
EEG spectra has also demonstrated to be of clinical
value in the diagnosis of the restless legs syndrome.28

Indeed, periodic leg movements exert a differential
impact on sleep continuity and daytime functioning
when they are accompanied by arousals.46 Additional
examples emphasizing the importance of studying
EEG activity during arousals come from epilepsy
research. Terzaghi and colleagues50 have recently
found that highly stereotyped minor motor events and
seizure discharges frequently occur in association with
arousal fluctuations in nocturnal frontal lobe epilepsy
patients. In this particular case, minimization of
muscle artifacts has been shown to improve the source
localization of the pre-ictal and ictal seizure onset
which is critical for subsequent surgical resection of
epileptogenic tissue.26

Sleep EEG segments contaminated with muscle
artifacts are typically ruled out, by hand or with auto-
matic procedures, when they are larger than an arbi-
trarily preset threshold, generating a substantial
amount of data loss.20 Although different technical
approaches have been employed for correcting muscle
artifacts, none of them has yielded satisfactory results
in sleep research. Digital filters have been typically
applied on EEG signals to eliminate high-frequency
bands (above 15 Hz) where muscle artifacts are sup-
posed to contribute.25,58 It is well known, however, that
EMG activity not only obscures fast EEG oscillations,
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typical in the sleep-to-wake transition,44,45 but also
modifies slower EEG frequency bands.24,59 Regression
in either the time or frequency domain has been
extensively used to eliminate ocular artifacts from
human EEG recordings,16 but these methods are not
applicable to muscle activity since no regressing chan-
nels exist for these scalp-recorded artifact sources.35

Alternatively, there is a regression method which
reduces the influence of muscle artifacts on fast EEG
frequencies (51–69 Hz) but it does not apply to the time
domain.23 Principal component analysis (PCA) meth-
ods perform better than regression at correcting ocular
artifacts from EEG,6 but the assumption that EEG
sources are linearly decorrelated and spatially orthog-
onal to one another makes PCA techniques inappro-
priate for our purpose.34

An alternative approach for artifact reduction is
based on blind source separation techniques (BSS).
Independent Component Analysis (ICA)15 has been
commonly applied to both EEG source isolation3 and
artifact correction.30,32,35,55 ICA-based analysis meth-
ods are able to separate out EEG signals from an
estimate of the overlapping projections of the artifact
in all scalp EEG electrodes, assuming that sources are
statistically independent.12 ICA preserves more brain
activity than other correction techniques (i.e., PCA),
and is able to separate a wide variety of EEG artifacts
simultaneously, without needing of reference channels.
Though distinct ICA methods pursue identical goals,
they model different sources, which may critically
affect the effective elimination of extracerebral arti-
facts from EEG recordings.

A number of previous studies have employed dif-
ferent ICA algorithms to reduce muscle activity and
other artifacts from EEG recordings in clinical condi-
tions.30,56 ICA reliability has also been reported for
artifact correction in sensory evoked and event-related
potential studies,33,35,52 but the performance of differ-
ent ICA algorithms on removing muscle artifacts from
sleep EEG recordings remains largely unexplored.20

In the present study, we evaluated the performance
of four ICA algorithms to minimize artifacts from
temporalis muscles appearing in human sleep EEG
during spontaneous arousals. We focused on tempo-
ralis because together with frontalis muscles represent
the most common sources of muscle artifacts during
resting EEG conditions.2,37 The four selected ICA
algorithms have been previously proposed as valid
methods for EEG artifact correction,30,32,33,35,48,49,52,56

but they differ in both their theoretical assumptions
and the underlying statistic fundamentals. Two of
them (AMUSE and SOBI) are based on second-order
statistics (SOS) and can separate independent sources
by minimizing correlations between signals. The
other two (Infomax and JADE) employ higher-order

statistics (HOS) and the probability density functions
of the sources, assuming their non-gaussianity distri-
bution. As HOS-based techniques need a higher
number of samples than SOS algorithms to reach an
accurate signal separation, we would expect that the
former showed a lower performance when applied to
the short-duration EEG segments of sleep arousals.

To aim this goal, a semi-simulation study was
designed by combining sleep EEG recordings with
different levels of muscle contamination extracted from
real EMG signals. Then, the most efficient ICA algo-
rithm was applied to typical spontaneous arousals
identified in different sleep stages of a healthy elderly
subject. To test the performance of the selected ICA
algorithm on real sleep data, power spectra of tem-
poral electrodes were compared before and after min-
imizing muscle activity from scalp EEG recordings.

METHODS

Subjects

Four healthy volunteers (two men; mean age =
24,75 ± 1,5 year) and one additional healthy elderly
woman (64 year) participated in this study. Subjects
were evaluated by a structured interview and ques-
tionnaires, disregarding those with any medical and/or
psychological disorders. Medication or drugs con-
sumption was also an exclusion criteria. Subjects were
asked to refrain from naps, drugs, alcohol, or drinking
caffeinated beverages during 48 h prior to the day of
recording. To control the absence of sleep disorders,
subjects completed daily records in the week prior
to sleeping in the laboratory. All participants gave
informed consent after a full explanation of the
experimental protocol.

Recording Protocol

Polysomnographic recordings in the four young
participants included 24 EEG derivations referenced to
linked mastoids, horizontal electrooculogram (EOG),
and submental electromyography (EMG). 10 EEG
electrodes were placed longitudinally and regularly
spaced over scalp in left hemisphere (Fp1-O1) and 10
over right hemisphere (Fp2-O2) following identical
electrode separation as in the contralateral hemisphere.
4 additional electrodes were placed over temporal
regions (T3, T4, T5, and T6) following the Interna-
tional 10–20 system.31 Electrode impedances were kept
below 5 KX. Filters were set between 0.5 and 100 Hz
for EEG, 5–100 Hz for EMG and 0.3–30 Hz for EOG.
Signals were amplified and digitized using a MEDI-
CID� 4 system (Neuronic�, S.A.) at a sampling rate of
256 Hz.
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For the elderly subject, sleep was recorded from 59
scalp EEG derivations referenced to linked mastoids.
The recording protocol also included horizontal and
vertical EOG channels, and a bipolar montage for sub-
mental electromyography (EMG). Electrode imped-
ances were kept below 5 KX, and filter settings were
identical to the young participants. Signals were
acquiredwithBrainAmpMRamplifiers (BrainVision�)
at a sampling rate of 250 Hz. Two different sleep tech-
nologists performed independent visual sleep scoring
according to standard criteria40 in all recordings.

Simulation Study

To compare the performance of different ICA
algorithms on removing muscle artifacts from sleep
EEG recordings, a semi-simulation study was carried
out by combining real sleep EEG recordings with dif-
ferent levels of EMG contamination. Sixteen artifact-
free EEG segments (4 20-s segments per subject) were
extracted from tonic REM sleep periods characterized
by the absence of rapid eye movements and muscular
atonia. Each EEG segment was selected by careful
visual inspection considering the total lack of artifacts.

Artifacts from temporalis muscles were modeled
using submental EMG activity recorded during a
spontaneous awakening (20-s epoch) and multiplied by
a typical muscle scalp map for both right and left
temporal muscle components. The scalp map was
isolated as follows. First, ICA (Infomax algorithm)
was applied to a 20-s segment of sleep EEG (20 s)
highly contaminated by muscle activity in temporal
channels, obtaining the separation matrix and the
different ICA components. Two ICA components were
located over temporal regions (right and left) based on
their scalp topography and power spectral distribution.
After identification of temporal muscle components,
they were replaced by previously selected EMG sig-
nals. Values of remaining ICA components were set to
zero. The new set of components was multiplied by the
mixing matrix to obtain the scalp distribution of
muscle artifacts. Amplitude of the muscle contamina-
tion was maximum over temporal electrodes (T3 and
T4), and near zero in the remaining ones.

Since performance of different ICA algorithms may
be affected by the strength of muscle contribution, this
variable was manipulated with four power ratio condi-
tions (100, 10, 1, and 0.1). Power ratios were computed
dividing the power of the muscle artifact signal by the
power of the EEG signal recorded in T4. Signal-to-noise
ratios (SNR) corresponding to the above power ratios
result in 20, 10, 0, and -10 dB, respectively. Altogether,
64 20-s datasets (16 EEG segments · 4 SNR conditions)
were obtained before ICA application.

ICA Algorithms

Each ICA algorithm employs a different approach
to estimating independence18 which may affect the
sensibility of each method on separating muscle arti-
facts from sleep EEG activity. Four ICA algorithms
were tested in the present study considering its statis-
tical properties and frequency of use in EEG studies
for artifact correction: AMUSE (Algorithm for Mul-
tiple Unknown Source Extraction) is a second-order
statistic (SOS) method, useful to separate temporally
uncorrelated sources.53,54 It only employs one time
delay to compute correlation between signals, in
addition to the instantaneous correlation. SOBI (Sec-
ond Order Blind Identification) is another SOS algo-
rithm that exploits the time coherence of the signal
sources to decompose the mixture of sources. Because
such cross-correlations are sensitive to the temporal
EEG features, detailed characteristics of the ongoing
activity provide useful information for source separa-
tion.4 SOBI performance has demonstrated to improve
EEG source separation when both long time intervals
(300 ms) and large number of time delays were con-
sidered.48,49 Since no studies have determined the
optimal time delays to separate muscle activity from
EEG signals, the maximum amount of consecutive
time delays (77) was applied every 300 ms considering
our sampling rate. Infomax algorithm is based on high-
order statistics (HOS) to estimate the probability dis-
tributions of the independent component. It assumes
a priori the probability density functions of the sources
(supergaussian and subgaussian for the extended ver-
sion).38 Contrary to SOS algorithms, temporal infor-
mation from signals is not considered. Estimation of
independence is based on minimization of mutual
information between sources. JADE (Joint Approxi-
mate Diagonalization of Eigen-matrices) is another
HOS algorithm that uses fourth-order statistics and
minimizes cross-cumulants to achieve independence
among estimated components. It assumes that sources
of interest are non-gaussian whereas noise is a gaussian
independent source. Although no parameter-tuning is
required, a considerable data length seems necessary
for reliability of source separation.11

All ICA algorithms run in MATLAB� v. 7.4 (The
MathWorks, Inc.) and are freely downloaded from the
Internet. Infomax was implemented in the runica func-
tion of the EEGLAB toolbox v. 5.3 (http://www.sccn.
ucsd.edu/eeglab/).17 The remaining ICA algorithms are
available in the ICALAB toolbox for Signal Processing
v.3 (http://www.bsp.brain.riken.jp/ICALAB/).13 All
the analyses were performed on a Dell� workstation
with 4 Intel Xeon� Dual Core processors, 2.66 GHz
each, and 16 GB of RAM, under Microsoft Windows
XP 64 bits.
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Muscle Component Selection

Criteria for identifying muscle components in
practice were based on time-domain features, scalp
topography, and power spectrum.33–35 Muscle com-
ponents were characterized by the presence of fast
EEG activities together with an abrupt increase in
amplitude simultaneously to the arousal episode.
Furthermore, topographic distribution of fast EEG
activity associated with muscle contamination showed
their maximal values over fronto-temporal areas, and
near zero in the remaining cortical regions. EEG seg-
ments contaminated with muscle activity suffered a
drastic enhancement of spectral power above 50 Hz.
Overall, the entire process (ICA application on EEG
signals, muscle component identification, and sub-
sequent artifact removal) takes about 15 min when
performed by an experienced person. In our simulation
experiment, the muscle component selection was faster
since the number of muscle components (two) and the
time-domain representation of the original muscle
signals were known a priori by the experimenters.

Efficacy Indicators

The efficacy of each ICA algorithm was determined
considering three different indexes: (i) computation
time; (ii) Pearson’s correlation coefficient (R2) and
mean square error (MSE) between scalp EEG signals
recorded from temporal regions; and (iii) Pearson’s
correlation coefficient and MSE between the remaining
electrodes (EEG signals recorded from non-temporal
areas). Correlation and MSE were computed between
artifact-free EEG segments extracted from tonic REM
sleep before and after applying each ICA algorithm for
the four SNR conditions. Both correlation and MSE
are two different statistical approaches to evaluate
similarity between two signals. Algorithm efficacy is
near optimal when the values of correlation coefficients
are close to 1 and MSE approximates to zero.

Statistical Analysis

Correlations and MSE data were statistically tested
by using a two-way ANOVA with repeated measure-
ments, including the algorithm (AMUSE, SOBI,
Infomax, JADE) and the SNR (20, 10, 0, -10 dB) as
within-subject factors. Multiple comparisons were
corrected with the Greenhouse-Geisser estimator.
Differences between conditions were analyzed by using
Newman-Keuls post hoc tests.

Data Visualization

To verify the performance of the most efficient ICA
algorithm in realistic conditions, 20-s EEG epochs

corresponding to arousals from stage 2, slow wave sleep
(SWS) and REM sleep were selected from the sleep
recording of a healthy 64-year woman. In all cases, the
EEG arousal was accompanied by an increment of the
EMG activity in association with scalp-recorded mus-
cle contamination. To provide information about gross
variations of spectral power caused by state-dependent
EEG arousals, Fourier spectra were computed on the
7-s period preceding and following the arousal onset for
each sleep stage before and after applying the ICA
algorithm to the signal recorded at electrode T8 (the
most contaminated EEG location in these data sets).
To further determine the time–frequency changes of
state-dependent EEG arousals, wavelet power analysis
was applied to 14-s EEG segments (7 s preceding the
arousal and 7 s from the arousal initiation). For this
analysis, a continuous complex Morlet was used with
0.5 Hz of spectral resolution. The wavelet difference
was also computed to evaluate the time–frequency
evolution of spectral power caused by the muscle con-
tamination before and after ICA application for each
state-dependent EEG arousal.

RESULTS

Computation Time

AMUSE demonstrated to be considerably faster,
whereas Infomax took significantly longer than the
remaining ICA algorithms used in the present study. In
particular, AMUSE took 0.03 s at separating muscle
artifacts from EEG activity in a 20-s EEG segment
with 24 electrodes. However, Infomax lasted longer
than 1 min for the same data set, whereas SOBI was
almost fourfold faster than JADE (1.3 vs. 4.7 s,
respectively). Differences in computation time between
ICA algorithms are unlikely due to implementations in
different toolboxes, since similar results were observed
when the four ICA algorithms were run in EEGLAB.

Muscle Artifact Removal from Temporal Regions

To determine the efficacy of different ICA algo-
rithms on removing muscle contamination from tem-
poral regions during awakenings, correlations between
artifact-free sleep EEG and ICA-processed sleep EEG
were computed. Electrodes T3 and T4 were chosen for
the analysis because they presented the highest strength
of muscle contamination in our simulation experiment.
Since results were quite similar in both temporal loca-
tions, T4 data was just reported for simplicity matter.
Figure 1 depicts mean correlation values across ICA
algorithms and contamination levels for T4. A princi-
pal effect of the factor ‘ICA algorithm’ was obtained
[F(3,45) = 73.09, p<10-7, e = 0.41], mainly due to
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the lower performance of JADE as compared to the
remaining algorithms [F(3,252)>6, p<10-3]. This
result was confirmed for all contamination levels
(p<0.04), except when the spectral power of the
muscle signal was 10 times below the real EEG ampli-
tude. Statistical results provided by MSE data were
highly similar to those obtained with correlations
(Table 1), pointing out the equivalence between
both statistical indexes to evaluate efficacy between
different ICA algorithms. JADE showed the maximal
MSE values in T4 signals [F(3,45) = 45.7, p<10-5,
e = 0.34], specifically for SNR ‡ 0 (p £ 0.02).

Muscle Artifact Removal from Non-temporal Regions

Muscle activity also spreads to extratemporal elec-
trodes but in a lesser degree. To comply with this
premise, non-temporal EEG regions were slightly
contaminated by muscle activity in the simulation
study. Despite similarities (all correlations were higher
than 0.95 due to the low artifact contribution in extra-
temporal regions), differences between algorithms were
statistically significant [F(3,45) = 21.3, p<10-5, e =
0.69]. AMUSE and SOBI showed the highest perfor-
mance for non-temporal EEG locations, followed by

Infomax [F(3,252) = 15.7, p<10-8]. Again, JADE
was the least efficient ICA algorithm at separating
muscle signals from sleep EEG recordings. As
expected, performance varied as a function of con-
tamination strength [F(3,252) = 9.3, p<10-5]. Inter-
action between ‘ICA algorithm’ and ‘contamination
level’ was also significant [F(9,135) = 4.3, p<10-2,
e = 0.36] mainly due to the lower correlation values
obtained with JADE for the three higher contamina-
tion levels (p<10-3). For the -10 dB SNR (muscle
contamination 10 times below EEG amplitude),
AMUSE performed better than Infomax and JADE
(p<10-2). Figure 2 depicts mean correlation values
across ICA algorithms and contamination levels for
extratemporal electrodes.

Similar results were obtained for the MSE index. An
interaction effect between ‘ICA algorithm’ and ‘con-
tamination level’ [F(9,135) = 4.3, p<10-2, e = 0.36]
allowed to determine that MSE results shown by
JADE were significantly worse than those obtained
with the remaining algorithms for SNR ‡ 0 (p<10-3).
In contrast, AMUSE performed significantly better
than both JADE and Infomax in the least contami-
nated conditions. With the exception of AMUSE, the
rest of ICA algorithms showed an impaired efficacy in
the lowest contamination level (SNR -10 dB) over
non-temporal EEG locations. As shown by the two
statistical indexes, AMUSE performance was inde-
pendent of the strength of contamination for non-
temporal EEG derivations.

Application of AMUSE to Real Data

To qualitatively validate the abovementioned
results, the AMUSE algorithm was applied to human
sleep EEG recordings during spontaneous arousals
from stage 2, SWS, and REM sleep (Fig. 3). Figure 3a
shows examples of EEG recordings from a 64-year
healthy woman containing arousals from different
sleep stages before (top panel) and after reduction of
muscle artifacts with AMUSE (bottom panel). Note
that most of the high frequency muscle contamination
was eliminated in all sleep stages after AMUSE
application, as displayed in the raw EEG data and

FIGURE 1. Mean correlation values (R2) between artifact-free
T4 signals and same EEG signals after being processed with
AMUSE, SOBI, Infomax, and JADE across different levels of
muscle contamination. Mean correlation values between arti-
fact-free T4 signals and contaminated T4 signals are also
displayed (no ICA, gray square). Vertical bars indicate mean
errors.

TABLE 1. Mean square errors (standard deviations) obtained with each ICA algorithm for different levels of signal-to-noise ratio
(SNR) in T4 signals.

SNR

ICA algorithm

AMUSE SOBI Infomax JADE

20 dB 0.36 (0.09) 0.33 (0.07) 0.37 (0.12) 0.54 (1.54)

10 dB 0.21 (0.06) 0.21 (0.06) 0.22 (0.07) 0.43 (0.29)

0 dB 0.19 (0.06) 0.19 (0.05) 0.21 (0.08) 0.26 (0.11)

-10 dB 0.12 (0.03) 0.09 (0.02) 0.12 (0.06) 0.13 (0.06)

Muscle Artifacts and ICA 471



wavelet power spectra plotted in Fig. 3a (bottom
panel).

During the stage 2 of sleep, muscle contamination
was also present several seconds preceding the EEG
arousal, particularly on temporal locations. This is in
agreement with previous indications that not only
phasic EMG events but also tonic aspects of myogenic
activity are likely to affect cortical EEG activity during
non-REM sleep.10 In this case, AMUSE not only
attenuated the high frequency events intermingled with
the cortical EEG activity but also those slower EEG
components, including theta and alpha oscillations,
which have also been demonstrated to be affected by
muscle activity.59

Interestingly, the EEG arousal during non-REM
sleep was characterized by an increase in delta power,
mostly evident in stage 2 (Fig. 3b, left panel). These
slower frequency components were also removed by
AMUSE, but only during the arousal from SWS.

FIGURE 2. Mean correlation values (R2) between artifact-
free extratemporal EEG signals and same EEG signals after
being processed with AMUSE, SOBI, Infomax, and JADE
across different levels of muscle contamination. Mean cor-
relation values between artifact-free extratemporal EEG sig-
nals and the same EEG signals but contaminated are also
displayed (no ICA, gray square). Vertical bars indicate mean
errors.

FIGURE 3. Muscle artifact removal by AMUSE applied to human sleep EEG recordings during spontaneous arousals recollected
from different sleep stages in a healthy 64-year woman. (a) EEG segments (14 s) during spontaneous arousals from stage 2, SWS
and REM sleep before (top panel) and after removal of muscle artifacts with AMUSE (bottom panel). Raw EEG data for each sleep
stage represents a subset of 4 EEG electrodes highly contaminated with muscle activity from a set of 59 scalp EEG montage.
Wavelet power spectra of T8 signals for each EEG segment are additionally shown before (top panel) and after AMUSE application
(bottom panel). (b) Fourier power spectra of T8 signals computed before and after the arousal onset (identical time window of 7 s)
for the raw EEG data (solid line) and for the same signals after muscle artifact removal with AMUSE (dashed line). Independent
component scalp maps of muscle contribution removed from arousals in each sleep stage are also displayed. (c) Difference
wavelet spectral power in T8 signals before and after AMUSE application for each variant of EEG arousal.
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Although K-complexes can also be present in arousals
from stage 2, the enhanced delta power observed in our
study likely came from different extracerebral sources
such as breathing, which also contribute to activity
within the delta band. Breathing can produce two
kinds of EEG artifacts. One of the them in the form of
slow and rhythmic activity, synchronous with the body
movements of respiration and mechanically affecting
the impedance of usually one electrode. The other type
can be slow or sharp waves that occur synchronously
with inhalation or exhalation and involve those elec-
trodes on which the patient is lying. As shown in the
ICA maps (Fig. 3b), the sources of these artifacts,
usually asymmetric, were not included among the ICA
components that were removed from the EEG, which
might explain the enhanced delta power.

The arousal from REM sleep included an increase in
EMG amplitude together with an enhanced power of
fast EEG frequencies. However, as indicated by the
small effect of AMUSE, the contribution of the EMG
activity to cortical EEG activity was negligible in this
sleep stage as compared with stage 2 and SWS. The
amount of muscle activity removed from the electrode
T8 during non-REM and REM arousals is shown in
the difference wavelet power spectra plotted in Fig. 3c.

DISCUSSION

This study evaluated, for first time, the efficacy of
different ICA algorithms at minimizing muscle activity
from human sleep EEG recordings by using simulated
and experimental data. We found that AMUSE, In-
fomax, and SOBI performed significantly better than
JADE when the strength of the muscle contamination
was above the EEG amplitude over temporal regions.
Additionally, AMUSE demonstrated to be fairly
independent of the contamination level as indicated by
the high performance at removing muscle artifacts
from non-temporal EEG electrodes even when the
amplitude of muscle contamination was 10 times lower
than EEG activity. The low computational cost of
AMUSE (44–2000 times faster than the remaining ICA
algorithms tested in this study), and its excellent per-
formance supports this ICA algorithm as the best
choice to remove muscle artifacts from sleep EEG
recordings.

We tested ICA algorithms based on both second-
order measures (such as the autocorrelation function
and power spectrum) and higher-order statistics (such
as the nth order cumulants and the nth order spec-
trum). Since EEG and muscular sources are assumed
to be temporally uncorrelated, both SOS- and HOS-
based methods should provide adequate BSS estima-
tions to face up this problem. Results showed that

AMUSE, SOBI (both SOS algorithms), and Infomax
(HOS algorithm) performed better than JADE (HOS
algorithm) at separating muscle artifacts from sleep
EEG recordings. Pilot studies revealed that FastICA
(another HOS algorithm broadly used to remove EEG
artifacts)18,22 yielded similar results to those obtained
with JADE. Ting and colleagues52 compared AMUSE
(SOS algorithm) and FastICA (HOS algorithm) per-
formance at separating genuine EEG activity from
typical artifact sources (EOG and EMG) over single-
trial event-related potential epochs with a small num-
ber of samples. Signal sources obtained with FastICA
were not as accurately estimated as compared with
AMUSE, probably due to the fact that HOS-based
ICA algorithms need larger data sets to provide robust
source separation between EEG activity and artifacts.
Considering that muscle artifacts in sleep EEG
recordings can appear during short sleep-to-wake
transitions (arousals) and longer awakenings, the use
of SOS-based ICA algorithms, like AMUSE, should
work efficiently in both scenarios.

Infomax, a HOS-based ICA algorithm, yielded
similar results to those provided by the two SOS
algorithms used in the current study (SOBI and
AMUSE). It is worth noting that Infomax uses higher-
order moments to estimate the probability density
functions of the obtained components, assuming that
sources have a supergaussian distribution.3 Our muscle
signals were markedly supergaussian (positive kurtosis
of 11.84) when compared with the almost gaussian
distributions observed in the rest of EEG signals
(averaged kurtosis of 0.99), allowing Infomax to show
a similar performance as SOS-based ICA algorithms.

Multiple time delays make SOBI a more robust
choice than AMUSE (just one time delay) in the
presence of temporally uncorrelated additive white
(random) noise.5 However, multiple time delays em-
ployed by SOBI did not make the difference relative to
AMUSE. Likely, EEG signals considered as noise in
our study are composed by different temporally cor-
related sources, and due to their oscillating nature are
far from being random signals. Finally, AMUSE
shows a number of attractive advantages over other
ICA algorithms: (i) it relies only on second-order sta-
tistics of the input signals, which are expected to pro-
vide more reliable estimations in adverse signal-to-
noise ratios; (ii) it allows—in contrast to HOS-based
ICA algorithms—the separation of gaussian sources;
(iii) it requires relative small datasets to identify arti-
facts; (iv) it is much faster than the vast majority of
BSS algorithms, and (v) it is straightforward to apply
because no parameter-tuning is needed.

Extracerebral artifacts affecting sleep EEG record-
ings can be originated from a variety of sources includ-
ing motion of different body parts, sweat, 50–60 Hz
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noise from electrical line, slow and rapid ocular move-
ments, cardiac pulse, as well as glossokinetic and respi-
ratory events. ICA-based methods are able to remove
artifacts from different sources simultaneously,9 which
would not only improve sleep classification but also
accuracy in the diagnosis of both neurological and sleep
disorders.

In summary, our results revealed that ICA algo-
rithms provide an efficient tool for identification and
minimization of muscle artifacts from sleep EEG
recordings. Artifact identification has relevance for
automatic sleep scoring systems, whereas reduction of
myogenic activity is crucial at determining EEG
mechanisms associated with normal and pathological
sleep fragmentations, which might be of helpful to get
further insights about the pathophysiology of pre-
valent sleep disorders. Furthermore, efficient methods
to reduce muscle contamination from sleep EEG
recordings would enhance the reliability of quantita-
tive EEG results on cortical dynamics underlying
arousals and awakenings from sleep.
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