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Abstract—The power law of sensory adaptation was
introduced more than 50 years ago. It is characterized by
action potential adaptation that follows fractional powers of
time or frequency, rather than exponential decays and
corresponding frequency responses. Power law adaptation
describes the responses of a range of vertebrate and inver-
tebrate sensory receptors to deterministic stimuli, such as
steps or sinusoids, and to random (white noise) stimulation.
Hypotheses about the physical basis of power law adaptation
have existed since its discovery. Its cause remains enigmatic,
but the site of power law adaptation has been located in the
conversion of receptor potentials into action potentials in
some preparations. Here, we used pseudorandom noise
stimulation and direct spectral estimation to show that
simulations containing only two voltage activated currents
can reproduce the power law adaptation in two types of
spider mechanoreceptors. Identical simulations were previ-
ously used to explain the different responses of these two
types of sensory neurons to step inputs. We conclude that
power law adaptation results during action potential encod-
ing by nonlinear combination of a small number of activa-
tion and inactivation processes with different exponential
time constants.

Keywords—Action potential, Neural coding, Information
capacity, lon channel, Hodgkin—Huxley, Frequency res-
ponse.

INTRODUCTION

In a seminal study, Landgren®* examined the
detailed static and dynamic properties of action
potential firing in cat carotid baroreceptor neurons as
a function of blood pressure. He found that a step
increase in blood pressure increased the rate of firing,
but the firing then decreased, or adapted to the step.
The decrease in rate of firing versus time, g(z), was
not exponential, but instead followed a power law
equation:
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g(t) =ar™ (1)

where ¢ is time after the step, ¢ and k are constants.
The constant k, which is now called the fractional
exponent, was 0.65 in one example, but varied
depending on the step amplitude.

Following this, Chapman and Smith® re-examined
the adapting response of an insect mechanoreceptor,
the cockroach tactile spine. They pointed out that
power law behavior would lead to a frequency response
function of the form:

G(f) = Af* (2)

where G(f) is gain as a function of frequency, f, A4 is a
constant and k is the same fractional exponent. The
phase relationship, P(f), of the same system would be:

P(f) = k-90° 3)

so that the output signal would lead the input in phase,
independent of frequency for k > 0. Adaptation of
firing in the cockroach tactile spine was found to fit the
power law equations with both step and sinusoidal
stimuli.®

A later review of power law adaptation in sensory
receptors concluded that the behavior was widespread,
with further examples in crayfish stretch receptors,
Limulus eye, mammalian muscle spindles and spider
slit sensilla.'>% Subsequently, power law adaptation
has been shown for mechanical stimulation of frog skin
mechanoreceptors,’” cat skin mechanoreceptors,**
monkey skin touch receptors® and different groups of
spider slit sensilla.*'* In each case the estimated frac-
tional exponent, k, was between zero and unity.

What causes power law adaptation? Chapman and
Smith® listed processes that could contribute. These
included the viscoelastic properties of mechanical
coupling to the receptor neuron, dynamic properties of
the mechanotransduction channels, action potential
encoding, and unspecified nonlinear mechanisms at
any stage. Brown and Stein® developed a specific
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mechanical model of power law adaptation in crayfish
stretch receptors, but they also suggested that the
power law could arise from a combination of multiple
exponential relaxation processes occurring at each
stage between mechanical input and action potential
output. They also noted that the power law is a linear
function, so it is not necessary to invoke nonlinear
behavior to explain it, although nonlinear contribu-
tions are not precluded. Thorson and Biederman-
Thorson™ supported the idea that a combination of
exponential relaxation processes with distributed time
constants was responsible, although they emphasized
processes occurring before action potential production.

French® recorded the receptor potential before
action potential encoding in the cockroach tactile
spine. Surprisingly, there was no detectable adaptation
in this receptor potential, even though there was power
law adaptation of action potentials.®!'? This was fol-
lowed by the complementary finding that direct elec-
trical stimulation of action potentials, which bypassed
the mechanotransduction stage, produced the familiar
power law adaptation.'” Similar results were found in
spider slit sensilla, where receptor current did not
adapt,'” while electrical stimulation produced power
law adaptation.'?

It should also be noted that the power law phase
prediction (Eq. 3) has been found whenever phase was
measured in receptors with power law gain behavior,
but experiments often reported additional phase lags at
higher frequencies that could be explained by a time
delay. One cause of such delay can be action potential
conduction to the recording electrode.?’

The available data indicate that power law adapta-
tion arises during action potential encoding from the
receptor potential, but what components of an electri-
cally excitable membrane are required? Voltage acti-
vated ion channels are the primary agents in the
production and timing of action potentials. Ion channel
kinetics can display complex dynamics, including power
law distributions of event durations****” and power law
relationships between activation and inactivation
kinetics.** Distributed ion channel behavior can lead to
power law firing properties,'® but are distributed prop-
erties required to explain power law adaptation?

We have previously shown that major features of
action potential firing and modulation in the two types
of spider VS-3 slit sensilla can be simulated by a model
containing Hodgkin—Huxley style representations of
the two major voltage activated ion currents: inacti-
vating Na© and delayed rectifier K* currents.'®
Here, we show that the same simulations can produce
power law adaptation of action potential firing that
agrees well with the experimental data over the mea-
sured dynamic range. We also measured coherence
functions and derived information capacities from

them for each simulation. While not directly related to
power law adaptation these measurements provided
additional evidence that the simulations matched the
experimental data, and provide indications of the
inherent noise levels in the experimental neurons.

METHODS

Membrane Current Simulation

Simulation of membrane currents in spider VS-3
mechanosensory neurons was performed by methods
described previously.'*** The approach was based on
the Hodgkin-Huxley model'® using the exponential
Euler method for integrating the differential equa-
tions*® with a step duration of 20 us. Time constants of
activation, inactivation, and recovery from inactiva-
tion, 7, were represented by:

SO—Vs0)/5)

T:Tmaxm7 0<o<l (4)

where T,,., 1S the maximum value of 7, and 0 is a
constant.’® This formulation simplifies simulation and
allows the inclusion of a different time constant for
recovery from inactivation in the model, based on
experimental measurements of sodium channel inacti-
vation in these neurons.’> The value of 1,,,, for inac-
tivation switched between two values, depending on
whether the inactivation parameter, /, was increasing
or decreasing during each time step. An alternative
approach® is to use different values of T,y for values
of h above and below 0.5. Previous simulations®*
showed that both methods gave similar results, but the
slope method was closer to the experimental mea-
surements used to obtain Ty,y.

The software was constructed as a C++ class
library, similar to the Conical simulation system®' but
restricted to a single isopotential spherical cell. All
simulations were performed on IBM-compatible per-
sonal computers. Stimulating membrane currents are
reported as positive for depolarization throughout.

Frequency Response Estimation

Pseudorandom Gaussian white noise was used as
the input signal, followed by direct spectral estima-
tion to obtain the frequency response and coherence
functions.? Noise was generated from a 33-bit binary
sequence algorithm clocked to give a simulated band-
width of 0-300 Hz. This frequency range was chosen
to match the bandwidth used in experimental mea-
surements from spider VS-3 neurons.'? The bandwidth
in this earlier work was limited by the intracellular
stimulation electronics. Noise values were adjusted to
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give the desired root mean square (RMS) current
amplitude, and stimulus data points between the
clocked noise values were filled in by linear interpola-
tion. Simulations were run to generate 100 s of mem-
brane potential data, including action potentials,
(Fig. 1) and then re-sampled at 10 kHz to generate a
simulated voltage recording.

Further processing of the voltage recordings pro-
ceeded identically to previous analysis of experimental
recordings,'® using the same software. Action poten-
tials were separated from the underlying continuous
membrane potential by an algorithm that identified
action potentials as a minimum increase of 20 mV,
followed by a minimum decrease of 20 mV, all within
less than 2 ms. Separations were inspected visually,
together with the original recording, to ensure that
the algorithm functioned properly. Separated action
potentials were stored as times of occurrence, while the
gap caused by action potential separation was filled by
linear interpolation between its ends. Each action
potential was convolved with a sin(x)/x function and
then re-sampled at regular 1 ms intervals to band-limit
the signal to the range 0-500 Hz.'' Membrane poten-
tial signals were digitally re-sampled by averaging to
give a 1 ms sample interval.

Sampled signals were transformed to the frequency
domain using the fast Fourier transform’ using
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FIGURE 1. Simulated sensory neuron responses to step and
random noise stimuli. Current traces and resulting voltage
responses are shown during current-clamp stimulation.
Depolarizing steps of 0.5 nA to Type A (left) and Type B (right)
neurons produced a single action potential and a burst of
action potentials, respectively (upper panels). Randomly
fluctuating current stimulation with amplitude 0.25 nA RMS
produced fluctuating membrane potentials with superim-
posed action potentials in both neuron types (lower panels).
The randomly fluctuating current had a bandwidth of 0-300 Hz
and was approximately Gaussian distributed. A normalized
histogram of the current amplitude distribution obtained from
100 s of stimulation is shown between the two random current
traces.

segments of 1024 input—output data pairs. Frequency
response functions (gain and phase) between the input
(mechanical displacement or membrane potential) and
the output (action potentials) were calculated and
plotted as Bode plots of phase and log gain versus log
frequency.

A linear relationship was fitted to the log gain versus
log frequency data by linear regression, corresponding
to the power law model (Eq. 2). The fractional expo-
nent, k, was used to predict the phase relationship
(Eq. 3). Residual phase lag, P.(f), after subtracting the
power law phase shift, was modeled by a fixed time
delay, At, and was fitted by linear regression between
residual phase and linear frequency:

P.(f) = —A1£360° (5)

The coherence function, %(f), was calculated from
the same data and plotted together with the frequency
response functions. Coherence is a normalized corre-
lation function that measures the proportion of the
output signal that can be accounted for by linear
transformation of the input signal.? Its value is unity
for a linear, noise-free system and is reduced by the
presence of nonlinearity or uncorrelated noise in the
system. The information capacity, R, for each record-

ing was calculated from the coherence function:*'*

R= / logo{1/(1 - 72(1)}df (6)

For each simulated condition, ten equal length
segments were created and each segment was processed
to give the fitted parameters 4, k, At, and R. Mean
values and standard deviations were reported from
each set of 10 parameter values.

RESULTS

Each of the two types of spider VS-3 neuron was
simulated as a spherical cell containing a single sodium
current with voltage dependent activation and inacti-
vation, plus a single potassium current with voltage
dependent activation (delayed rectifier). These models
and their parameters (Table 1) were based on those
used previously to simulate spider VS-3 neurons.** The
models each included separate time constants for the
development and recovery from inactivation, switching
between the two time constants as inactivation
increased or decreased. This approach was based on
experimental measurements of sodium current in these
neurons,” which necessarily estimated development
and recovery from inactivation as completely separate
processes, and has proved successful in modeling sev-
eral aspects of firing behavior in these neurons.'**
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TABLE 1. Parameters used during simulation of Type A and Type B neurons are identified by conventional symbols,'® except for

s (Eq. 4).
Type A Type B
Passive parameters
Diameter (um) 54 54
Specific resistance (Qm?) 1.68 1.68
Specific capacitance (F/m?) 0.01 0.01
Voltage-activated currents (activation)

K* Na® K’ Na®
Ginax (nS) 200 400 200 400
Viev (mV) -85.1 99.0 -85.1 99.0
Exponent of m, n 4 3 4 3
Vso (mV) -50 -45 -50 -45
s (mV) 10 5 10 5
Timax (MS) 5 1 6 1
o 0.4 0.4 0.4 0.4

Voltage-activated currents (inactivation)

Exponent of / 1 1
V50 (mV) -60 -60
s (mV) 5 9
Tmax (MS) 20 20
S 0.4 0.4
Trecovery (MS) 120 40

Tmax @Nd Trecovery, refer to time constants of inactivation and recovery from inactivation respectively.

A similar approach was used by others in simulating
voltage-activated calcium channels.® The major dif-
ferences between the currents in Type A and Type B
neurons, and their simulations, are in the rate of
sodium inactivation, which is faster in Type A neurons,
and the rate of recovery from inactivation, which is
faster in Type B neurons.**3

Simulated Voltage Responses

Simulated responses to depolarizing current steps in
Type A and Type B neurons (Fig. 1) have been
described previously.** Type A neurons typically have

a threshold for current injection of 0.1-0.5 nA and fire
only one or two action potentials regardless of step
amplitude. Type B neurons have a similar threshold
but produce bursts of repetitive firing that can last for
more than 100 ms, in strong contrast to Type A neu-
rons. When the two neuron types are stimulated with
randomly fluctuating membrane current there are
resulting fluctuations in membrane potential that lead
to action potentials if the stimulation is strong enough.
Both neuron types produce action potentials continu-
ously for long periods with random stimulation. This
has been shown in real neurons'® and was also found
in the present simulations, so the randomly varying
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membrane potential and resultant action potentials
(Fig. 1) would continue indefinitely.

Frequency Response Functions

Action potentials were separated from the underly-
ing membrane potential fluctuations (Methods) and
frequency response functions calculated between
membrane potential, as the input to the neuronal
encoder, and the action potentials as output. Frequency
responses showed the typical power law relationship
(Egs. 2 and 3) in both the gain and the phase at low
frequency (Fig. 2). Additional phase lag with increasing
frequency was well fitted by a simple time delay (Eq. 5).

Power Law Parameters

Previous measurement from spider VS-3 neurons
explored the fitted power law parameters as a function
of action potential firing rate, with varying amplitudes
of noise stimulation.'® However, intracellular record-
ings usually cause additional leakage current that
depolarizes neurons, and some of the variation in firing
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FIGURE 2. Frequency response and coherence functions
between membrane potential (input) and action potentials
(output) obtained from simulated Type A and Type B neurons
during random current stimulation. Filled symbols are simu-
lated data from Type A (circles) and Type B (squares). Solid
lines show the fitted parameters of Egs. (2), (3), and (5) with
k=0.43, At=1.51 ms (Type A) and k=0.34, At=1.32ms
(Type B). Information capacity from Eq. (6) was 79.4 Bits/s
(Type A) and 124.9 Bits/s (Type B).

rate was probably caused by leakage current. There-
fore, we used a range of noise stimulus amplitudes
(0.25-1.25 nA RMS in steps of 0.25 nA RMS) and
two levels of depolarizing leakage current (50 and
100 pA) to generate a range of action potential firing
(2.4-42.5 AP/s) that approximated the range found in
the original experiments. Figures 3—6 show average
parameter values from 10 simulations at each different
firing rate plotted on the same axes as the previously
published experimental data."?

Mean values for the power law exponent, k, and time
delay, Az, were closely comparable to the experimental
values'? for both neuron types (Table 2 and horizontal
lines in Figs. 3 and 4). Plots of k versus firing rate
(Fig. 3) were similar, both in the mean values and in the
tendency for higher values at lower firing rates. Simu-
lated Type A neurons had a higher mean value of k,
corresponding to more rapid adaptation, as also seen in
experimental measurements. Plots of simulated Az ver-
sus firing rate were also closely similar to experimental
values (Fig. 4). Simulated and experimental Type A
neurons had higher mean values of A¢ than Type B
neurons.

Simulated information capacity measurements
were converted to information per action potential
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FIGURE 3. Fitted fractional exponent, k, of simulated neu-
rons versus their action potential firing rates. Filled circles
show fitted values of k for Type A and filled squares for Type
B neurons (mean and standard deviation from 10 simula-
tions). Smaller unfilled symbols show the orlglnal experi-
mental data from real neurons published previously.'® Dashed
lines (Simulated) show mean values of k from Table 2. Solid
lines (Experimental) show the correspondlng mean values
obtained from the real neurons.’
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FIGURE 4. Fitted Time delay, At, of simulated neurons ver-
sus their action potential firing rates. Filled circles show fitted
values of At for Type A and filled squares for Type B neurons
(mean and standard deviation from 10 simulations). Smaller
unfilled symbols show the original experimental data from
real neurons published previously.'® Dashed lines (Simulated)
show mean values of At from Table 2. Solid lines (Experi-
mental) show the corresponding mean values obtained from
the real neurons."®
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FIGURE 5. Information per action potential versus action
potential firing rate for simulated Type A (filled circles) and
Type B (filled squares) neurons (mean and standard deviation
from 10 simulations). Smaller unfilled symbols show the ori-
ginal experimental data from real neurons published previ-
ously.” The values were calculated by dividing information
capacity (Bits/s) by firing rate (AP/s). Solid lines (Experimen-
tal) show previously published lines that were drawn by eye
through measurements made on the real neurons.'3
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FIGURE 6. Gain at 1 Hz, A, versus firing rate for simulated
Type A (circles) and Type B (squares) neurons (mean and
standard deviation from 10 simulations). No experimental data
is available for comparison.

(Fig. 5). Information per action potential approached
20 Bits/AP at low firing rates but decreased with firing
rate to asymptotic values of ~3 Bits/AP. These data
were closely similar to the experimental measure-
ments."? Mean values of information capacity were
higher in simulated Type B neurons than in Type A
neurons (Table 2). This difference was not seen in the
experimental data.

Parameter A, the gain at 1 Hz, increased with firing
rate in the simulated neurons and was significantly
higher in Type B neurons (Fig. 6, Table 2). This
parameter is difficult to interpret in terms of general
neuronal properties. While it reflects the neuronal sen-
sitivity, or excitability, at 1 Hz, the sensitivity at other
frequencies depends on the combination of both 4 and
k. Experimental values of 4 have not been reported
previously.

TABLE 2. Comparison of power law frequency response
parameters and information capacities obtained from simu-
lated and experimental measurements in spider VS-3 neurons.

Type A Type B

Simulated Experimental Simulated Experimental

k 0.37 +0.11 0.37 £0.14 0.28 + 0.09 0.26 = 0.11
At (ms) 1.40 £0.30 1.49+0.43 1.25+0.15 1.34 = 0.31
R (bits/s) 79+17.3 118298 113+329 118277
A (AP/s/mV) 0.37 + 0.10 0.76 + 0.18

n 12 26 12 37

All experimental data are taken from Table 1 of Ref. 14.
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DISCUSSION

Power Law Sensory Adaptation

Simulated VS-3 neurons not only gave frequency
response functions that could be fitted by the power
law (Egs. 2 and 3), but the parameters obtained were
closely similar to those obtained from experimental
measurements on real neurons over a range of action
potential firing rates (Table 2 and Figs. 3-5). This
supports the hypothesis that the physical basis of
power law behavior in these sensory neurons is a
combination of several different exponential processes
in their action potential encoding membranes.'> The
present simulations contained four different time
constants (Na™ and K™ activation, Na ™ inactivation
and recovery from inactivation) distributed over the
range of 1-120 ms (Table 1). Real VS-3 neurons con-
tain several additional currents®®? that could con-
tribute other exponential components, although they
are clearly not required to explain the major features of
action potential activity produced by step or noise
currents.

Time Delay

Action potentials in VS-3 neurons have duration of
~2 ms, so there is an inherent time delay of ~1 ms
between action potential initiation and detection of the
peak depolarization. The observed delays of <1.5 ms
can probably be entirely explained by the time required
to activate the Na ' channels, which have an activation
time constant of 1 ms, and reach the peak depolar-
ization. It was previously observed that mechanically
stimulated action potentials are produced with signif-
icantly less time delay (<1.0 ms)."> Other evidence
supports the existence of a distally located mechano-
transduction site with lower threshold and greater
excitability than the cell soma,'”'® which could explain
the reduced delay.

Differences between Type A and Type B Neurons

In contrast to the strong difference in firing behavior
seen with step depolarizations, there were more subtle
differences between their responses to noise stimulation
for both experimental'® and simulated data (Table 2).
Type A neurons had larger mean values of the power
law exponent, k, corresponding to faster adaptation, as
seen in the step response, and a longer time delay, A,
which could reflect the lower excitability seen in the
step response.

Simulated Type B neurons had a higher mean
information capacity that was not seen in experimental
neurons'? and is difficult to interpret here because
simulated Type A neurons did not achieve such

high firing rates as Type B neurons (Fig. 5). Simulated
Type B neurons also had higher values of the gain at
1 Hz, parameter 4 (Table 2, Fig. 6), again reflecting
their ability to fire more action potentials, especially
at low frequencies. The step response (Fig. 1) is an
extreme illustration of this difference, with Type B
neurons continuing to fire with constant (0 Hz) depo-
larization.

This difference in adaptation behavior of the two
neuron types seems to be dominated by the differences
in sodium channel inactivation, as shown previously.*
In terms of power law parameters, this leads to
stronger low frequency response and a higher value of
parameter A for Type B neurons, but more sensitivity
to higher frequencies and a higher value of parameter k
for Type A neurons.

Information Capacity

Information capacity divided by firing rate reached
asymptotic values of ~3 Bits/AP. This is comparable to
the values obtained in experimental VS-3 neurons.'?
Similar values were obtained for mechanotransduction
in cricket hair receptors.’® Combined with maximum
firing rates of about 50 action potentials/s, these values
imply a maximum information capacity of ~150 Bits/s,
which is comparable to the maximum values of
~200 Bits/s found in these and other spiking neurons,
whereas the information capacities of non-spiking
neurons can exceed 2000 Bits/s.>! The estimation of
information capacity used here (Eq. 6) was based on
the coherence function. Since the data were obtained
by simulation there was no uncorrelated noise, and the
reduction in coherence below unity reflects nonlinear
properties of the simulated currents. Again, it is diffi-
cult to compare the mean information capacities
between simulated and experimental neurons because
the parameter varies with firing rate and we were un-
able to exactly reproduce the collection of firing rates
observed experimentally. However, the similar
asymptotic values suggest that real VS-3 neurons have
little inherent membrane noise.

In the simulations here, and in the experimental
work on real neurons,'® we used membrane potential
as the input and action potentials as the output. The
experimental work also gave power law relationships
between mechanical stimulation and action potentials.
Conversion of mechanical stimuli to membrane cur-
rent, and hence membrane potential and action
potentials, occurs near the distal tips of sensory den-
drites in these neurons.'”'® The detailed biophysical
properties of the mechanotransduction mechanisms
are not well understood, but the evidence suggests that
relatively short time constants are involved, which
would account for the similar dynamic response to
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mechanical displacement or membrane potential. Any
addition of inherent noise to action potential encoding
probably occurs at this distal location.

CONCLUSIONS

More than 50 years after Landgren® described
power law adaptation in mammalian baroreceptors,
we conclude that this form of sensory adaptation can
be produced by neural action potential encoders as
they combine nonlinear voltage activated membrane
currents with several different time constants of acti-
vation and inactivation. The dynamic range of the
power law behavior in this case was limited by exper-
imental conditions to about two log units, and cannot
be assumed to apply over a much wider range. In
addition, other linear or nonlinear mechanisms, such
as viscoelastic mechanical components, channels
transducing external stimuli, or more distributed ion
channel properties may make additional contributions
to sensory receptor adaptation, and may even help to
extend the power law behavior over a wider time or
frequency range. Nevertheless, we conclude that the
primary components producing power law behavior in
these sensory neurons are conventional voltage acti-
vated Na™ and K" channels.
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