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Abstract—Fluid flow through the osteocyte canaliculi net-
work is widely believed to be a main factor that controls bone
adaptation. The difficulty of in vivo measurement of this flow
within cortical bone makes computational models an appeal-
ing alternative to estimate it. We present in this paper a finite
element dual porosity macroscopic model that can contribute
to evaluate the interstitial fluid flow induced by mechanical
loads in large pieces of bone. This computational model
allows us to predict the macroscopic fluid flow at both
vascular and canalicular porosities in a whole loaded bone.
Our results confirm that the general trend in the fluid flow
field predicted is similar to the one obtained with previous
microscopic models, and that in a whole bone model it is able
to estimate the zones with higher bone remodeling.
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Interstitial fluid flow, Finite element analysis, Bone remod-
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INTRODUCTION

Bone is a highly structured composite material with
a hierarchical network of flow channels with different
characteristic dimensions.8 In fact, cortical bone has
three main levels of porosity with different dimensions
and characteristics:8 vascular porosity (PV) is associ-
ated with blood irrigation and has a radius in the order
of 20 lm; lacuno-canalicular porosity (PLC) is asso-
ciated with the lacunae where the osteocytes are lo-
cated and with the canaliculi that connect them (order
of 0.1 lm); and collagen-apatite porosity (PCA) asso-
ciated with the spaces between collagen and mineral
(order of 10 nm radius). All of these porosities are
filled with bone fluid, but in PCA the fluid flow is
negligible.8

Bone has also the well-known property of adapting
its structure to the mechanical environment, tending
to a high strength structure with minimum material.31

This biological process of bone adaptation is well-
established, but the specific mechanical stimulus that
controls it is not completely understood yet.9 Current
evidences suggest that osteocytes are the mechano-
sensory cells in bone, and that a possible stimulus is
the shear stress induced by canalicular fluid flow.4,9

Although the increase of the transport capacity in-
duced by fluid flow is also considered an important
effect in the mechanosensory bone system. Unfortu-
nately, it is very difficult to directly measure fluid flow
velocities and shear stresses within the lacuno-cana-
licular system.5 Therefore, computational models
have been used to estimate these quanti-
ties.3,7,14,19,23,26,30 Most of these works study fluid
flow in bone from a microscopic point of view, sim-
ulating a small part taking into account the micro-
structural details of the osteonal canals. They use
poroelasticity to compute the fluid flow in the lacuno-
canalicular spaces. Other computational models have
determined the load-induced fluid flow at the mac-
roscopic level, but only considering lacuno-canalicular
porosity.26 However, as far as the authors know,
there is no model able to simulate a whole bone in
order to predict fluid movement through the different
bone porosities at a macroscopic level.

Given that hierarchical network of canals, the
extension of Biot�s concepts of poroelasticity6 to a dual
porosity approach can be very appropriate for cortical
bone. The theory of dual porosity, developed in the 70s
by Duguid10,11,12 and Aifantis1,2 to simulate the flow
through fissured porous media, is here used to predict
the movement of fluid within cortical bone at two
levels of porosity (PV and PLC). Two different models
have been developed to test the potential of the dual
porosity applied to bone: a 2D model of a small
sample of cortical bone, reproducing the simulation
of Starkebaum et al.25 and a 3D rat tibia model
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reproducing the experiments of Srinivasan et al.24 The
ability of this approach to reproduce complex bone
behavior and its potential to be used in bone remod-
eling studies are discussed according to the results
obtained with our models.

MATERIALS AND METHODS

Dual Porosity Model

The dual porosity formulation here presented is
based on that proposed by Valliappan and Khalili-
Naghadeh15 for the study of rocks as saturated fissured
porous media. Its derivation is fully described in
Appendix A.

The set of governing equations for the cortical bone
tissue is
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where k and G are the so called Lame�s constants, a1
and a2 are the effective stress coefficients, k1 and k2 are
the permeabilities of PV and PLC, qf and l are bone
fluid�s density and viscosity and c is the so-called
leakage parameter, which modulates the regulating
role that bone lining cells perform on bone surfaces
controlling the flux of fluid between compartments and
the interstitial fluid pressure.16 The rest of the param-
eters are defined as

a11 ¼ /1=Kf þ ða1 � /1Þ=Ks þ v=K
a12 ¼ a21 ¼ �v=K

a22 ¼ /2=Kf þ ða2 � /2Þ=Ks þ v=K
a1 ¼ K=Kv � K=Ks

a2 ¼ 1� K=Kv

v ¼ a1a2 � /1/2
a1þa2
/1þ/2

ð2Þ

being /1 and /2 the PV and PLC porosities, K the
drained bulk modulus, and Kv and Ks the PV and the
bone matrix bulk moduli.

The finite element formulation of the governing
equations (1) is obtained by employing the standard
Galerkin approach.28 The resulting system can be
expressed as:
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being N the shape functions matrix, Bu and Bp the
strain matrices expressed in terms of the derivatives of
shape functions employed respectively for displace-
ments and pressures, D the constitutive stress–strain
matrix, K1 and K2 the PV and PLC permeability
matrices,T the boundary traction vector and qa the fluid
fluxes. Linear interpolation functions were used for
displacements and pressures, and a backwardEuler time
integration schemewas employed to define the velocities
in terms of the associated degrees of freedom.

The particularization of this formulation to the case
of simple porosity is straightforward, with no more
than adding the conditions a21 = a12 = a22 = a2 =
k2 = c = 0, getting the poroelastic u-p formulation
described for instance in Zienckiewicz and Shiomi.34

Numerical Examples

This dual porosity formulation has been imple-
mented in the commercial finite element software
Abaqus20 as a user element routine. Several mechanical
load conditions were then simulated in order to check
its potential.

Simulation of Bending of a Small Sample
of Cortical Bone

We first simulated the experimental work of
Starkebaum et al.25 (Fig. 1a), where bending is applied
to a small sample of cortical bone (size of a few ost-
eons). A similar sample was also simulated computa-
tionally by Wang et al.30 with a microscopical model
where Haversian canals were modeled as holes. To
take advantage of the symmetry of the problem a
rectangle of 1.2 · 0.1 mm was modeled (Fig. 1b),
applying symmetry boundary conditions at the left side
of the mesh, and a sinusoidal bending moment
(1.5 Hz) at the other side, with the outer fiber strain
being 200 le. The model is composed of 366 nodes and
300 linear, quadrilateral elements. As a first approach,
vascular porosity was considered isotropic. Three
different values of vascular porosity were simulated:
/1 = 0 (no PV present), /1 = 0.03 and /1 = 0.07.
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The goal of this simulation was to test if the dual
porosity model is able to achieve realistic results in
bone tissue, and also analyze the role of the different
parameters involved in the results obtained. Following
Wang et al.,30 we applied a bending moment so that
the outer fiber stress was trr ¼ 4 MPa.

Bone was assumed to have a drained bulkmodulus of
K = 12 Gpa, a solid bulk modulus of Ks = 16 Gpa
and a drained Poisson�s ratio of m = 0.25.33 The fluid
bulk modulus was assumed to be the same of salt water
(Kf = 2.3 Gpa). PV permeability was taken from Co-
win8 as 3�10�13 m2 for /1 = 0.03 and 6:36�10�13 m2

for/1 = 0.07. PLCwas established as/2 = 0.05 and its
permeability k2 ¼ 1:7�10�20 m2.30 We estimated the
leakage parameter as c ¼ 1:7�10�9 m2/Ns for /1 =
0.03 and c ¼ 2:7�10�9 m2/Ns for /1 = 0.07. The vas-
cular compressibility Kv (15 Gpa) was computationally
estimated through a microscopic model of a portion of
cortical bone characteristic of aHaversian canal. All the
parameters used in the simulation have been summa-
rized in Table 1.

With this model, we analyzed the fluid flow induced
by cyclic loading under different frequencies. In fact,
the influence of the loading frequency in the range
from 0.01 to 500 Hz was studied. All pressure results
presented correspond to steady state values once they
were reached after the sinusoidal load was applied. A
sensitivity study was also performed in order to study
the influence of the following parameters: leakage

parameter c from 10-12 to 10-6 m2/Ns, vascular per-
meability from 10-14 to 10-12 m2, lacuno-canalicular
permeability from 10-21 to 10-19 m2 and vascular bulk
modulus Kv from 12 to 16 GPa.

Wang et al.30 showed their results in terms of a
dimensionless pressure, defined as P = 3p/rB, being B
the Skempton coefficient. In that simulation,
trr ¼ 4 MPa and B = 0.53, so P = 1.415p. Also, the
transcortical pressure difference (Dp) was defined as
the average dimensionless pressure difference between
the two external surfaces of the bone specimen.
Dimensionless pressure and transcortical pressure dif-
ference are calculated in this work in order to compare
the results with those of Wang et al.30

Simulation of a Whole Bone

Next, we simulate the experiments performed by
Srinivasan et al.24 in order to compare the influence of
using a simple or dual porosity model in the fluid flow of
awhole bone. For this objective, a finite elementmesh of
the cortical bone of a rat tibia was developed. The values
of the properties of the rat tibia used in the simulation
are detailed in Table 2. Due to the aligned distribution
of the Haversian canals according to the longitudinal
axis of the bone, vascular permeability has beenmodeled
as transversely isotropic. To simulate the fluid boundary
conditions at the periosteal and endosteal surfaces we
used the samemethod as in Steck et al.,26 creating a thin
layer of elements to simulate each surface. These layers
had approximately 1/4 to 1/3 of the characteristic ele-
ment thickness and have a very low stiffness in order to
not affect the mechanical behavior of the model.
Experimental studies reported that periosteal surface
was relatively impermeable to fluid flow,18 and endosteal
surface was relatively permeable.8,17 According to these
criteria, permeability in the periosteum was established

FIGURE 1. (a) Model employed by Wang et al. where an idealized section of cortical bone is subjected to bending (taken with
permission from Wang et al.30) (b) Finite Element mesh and boundary conditions. Displacement is defined as
ux = 5:2310�5(y /D) sin xt.

TABLE 1. Parameter values of the dual porosity model.

dc (lm) /1 /2 k1 (m2) k2 (m2) c (m2/Ns)

0 0 0.05 0 1:7�10�20 0

40 0.03 0.05 3�10�13 1:7�10�20 1:7�10�9

60 0.07 0.05 6:36�10�13 1:7�10�20 2:7�10�9
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as k1 = 10-15 m2 and k1 = 10-22 m2 and in the endos-
teum as k1 ¼ 2�10�12 m2 and k2 ¼ 2�10�19m2: The
rest of the parameters were equal in both surfaces to
those of cortical bone (Table 2). The resulting model
was composed of 23691 nodes and 39873 elements,
divided into 24272 tetrahedron elements for cortical
bone and 15601 wedge elements for the periosteum and
endosteum.

The tibia was fixed proximally at the tuberosity and
loaded distally, being subjected to medial-lateral can-
tilever bending (Fig. 2a). The applied load magnitude
was 0.8 N. Longitudinal strain was compared with the
results of the experiments, and PLC pore pressure
and fluid flow patterns were analyzed and compared
with the experimental zones of new bone formation

described by Srinivasan et al.24 A simple porosity
analysis (only lacuno-canalicular porosity) was also
performed to compare the results of single and dual
porosity models.

RESULTS

Simulation of Bending of a Small Sample
of Cortical Bone

After reaching the steady state, lacuno-canalicular
pressure always showed the same kind of distribution
pattern from the tensile side of the bone specimen (with
negative pressure) to the compressive side (with posi-
tive pressure) (Fig. 3). With a loading frequency of
1.5 Hz, the pressure distribution (see Fig. 3) resulted
very similar to that obtained by Starkebaum et al.25 in
their experimental model and by Wang et al.30 in their
computational one. Obviously our dual porosity model
did not reproduce the cusp-like shapes around the
osteonal canals, because there are no holes in our
macroscopic model, but it was able to predict the
transcortical distribution with enough accuracy.
Lacuno-canalicular pressure in bone has a strong
dependence on the diameter of the osteonal canal.
Pressure value decreased considerably when the vas-
cular porosity increased, due to the larger surface of
osteonal canals and the larger number of canaliculi
connected to them, allowing more bone fluid to flow
from PLC to PV and viceversa.

The loading frequency has also a great influence on
the maximum value of lacuno-canalicular pressure, but
has almost no influence on the shape of its distribution
along the bone specimen, as can be seen in Fig. 4. It is
interesting to remark that these results followed a
similar pattern to that included in the work of Wang
et al.,30 obtained by means of a microscopic model (see
Fig. 1) with a pressure increase when loading fre-
quency increased.

The value of the leakage parameter c has a great
effect on the lacuno-canalicular pressure (see Fig. 5).
When c increased, more fluid could flow from PLC to
PV and then pressure in PLC decreased quickly. If c
decreased, pressure in PLC increased until a maximum
value, which corresponds to the absence of vascular
porosity. Lacuno-canalicular permeability k2 also
strongly influences on the fluid movement as can be
seen in Fig. 6, where it becomes clear that the higher
the difficulty of the fluid to flow along canaliculi (lower
permeability), the higher pore fluid pressure we get. In
the same sense, vascular permeability (k1) has a great
influence on the PV pressure but, on the contrary, it
has a negligible influence on the PLC pressure.

Vascular compressibility Kv also influences on the
PLC pressure, as can be seen in the parametric study of

TABLE 2. Parameter values of the rat tibia dual porosity
model.

Longitudinal Young Modulus El = 17 GPa

Transverse Young Modulus Et = 13 GPa

Poisson�s ratios mt = 0.38 mlt = 0.41

Vascular porosity /1 = 0.04

Lacuno-canalicular porosity /2 = 0.05

Longitudinal vascular permeability k1l = 10-12 m2

Transverse vascular permeability k1t = 10-13 m2

Lacuno-canalicular permeability k2 = 10-20 m2

Bone matrix bulk modulus Ks = 16000 MPa

Interstitial fluid bulk modulus Kf = 2300 MPa

Vascular bulk modulus Kv = 15000 MPa

Leakage parameter c ¼ 1:7�10�10 m2=Ns

FIGURE 2. (a) Applied load and fixed zone in the model of
the rat tibia. (b) Load cycle on the rat tibia.
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this parameter (Fig. 7). The reason is that in a medium
less compressible (higher Kv), the volumetric change of
the medium is lower, leading to a higher fluid pressure.

Lacuno-canalicular peak pressure for the three dif-
ferent vascular porosities and the complete range of

loading frequencies calculated, from 0.01 to 500 Hz, is
represented in Fig. 8. Pressure increased with fre-
quency until approaching asymptotically to its limiting
value, ar (a = a1 + a2). Therefore, the lacuno-cana-
licular pressure at high frequencies resulted very simi-
lar, being independent on the value of vascular

FIGURE 3. Lacuno-canalicular pressure distributions across the bone specimen from inner (y = -600 lm) to outer (y = 600 lm)
surfaces. Loading frequency: 1.5 Hz. (a) Model of Wang et al.,30 with three values of the vascular diameter. (b) Dual porosity model,
with the corresponding three values of vascular porosity.

FIGURE 4. Lacuno-canalicular pressure distributions across
the bone specimen from inner (y = -600 lm) to outer
(y = 600 lm) surfaces, with loading frequencies of 1.5 and
15 Hz, /1 = 0.03.

FIGURE 5. Lacuno-canalicular pressure in the outer fiber
(y = 600 lm) depending on c, /1 = 0.03, f = 1.5 Hz.

FIGURE 6. Lacuno-canalicular pressure in the outer fiber
(y = 600 lm) depending on the PLC permeability (c = 1:73
10�9 m2/Ns, /1 = 0.03, f = 1.5 Hz).

FIGURE 7. Lacuno-canalicular pressure in the outer fiber
(y = 600 lm) depending on the vascular compressibility Kv

(c = 1:7310�9 m2/Ns, /1 = 0.03, f = 1.5 Hz).
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porosity. However, for low frequencies, higher lacuno-
canalicular pressures were reached for /1 = 0.

Finally, the vascular pressure was much lower
(several orders of magnitude) than the lacuno-cana-
licular one and depended linearly on the vascular
permeability (Fig. 9).

Simulation of a Whole Bone

Resulting longitudinal strains in the rat tibia were
1500 le in the periosteal surface and 1150 le in the
endosteal surface. Srinivasan et al.24 reported case
strains of 1600 and 1200 le, respectively. Our results
showed therefore a sufficiently good agreement with
the experimental ones.

PLC pressure and fluid flow in the rat tibia reached
their maximum value in the mid-shaft, near the tibi-
ofibular joint (Fig. 10). An interesting result is that
fluid flow was higher in the periosteum than in the

endosteum, which is in agreement with the experiments
of Srinivasan et al.24 in which most of the new bone
formation was concentrated on the periosteal zone.

A comparison between single and double porosity
models of the rat tibia showed that the fluid flow
reaches higher peak values in the single porosity model
(2�10�5 mm/s with single porosity, 10-5 mm/s with
double porosity, see Fig. 11). This result is in agree-
ment with that of the small sample of cortical bone and
corroborates that vascular porosity has a remarkable
effect relaxing pressure, pressure gradients, and fluid

FIGURE 8. Lacuno-canalicular pressure in the outer fiber (y = 600 lm) depending on the frequency and PV porosity. (a) Model of
Wang et al.30 (b) Dual porosity model.

FIGURE 9. Vascular pressure in the outer fiber (y = 600 lm)
depending on the vascular permeability k1 (c = 1:7310�9 m2/Ns,
/1 = 0.03, f = 1.5 Hz).

FIGURE 10. (a) PLC pressure (MPa) and (b) modulus of the
PLC fluid flow (mm/s) in the rat tibia.
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flow in the lacuno-canalicular system, apart from its
well-known function of carrying nutrients and wastes.

When the applied load was increasing, in the
beginning of the load cycle, the fluid flowed in the tibia
from the compressive to the tensile side, while in the end
of the cycle, when the load was decreasing, the fluid
flow direction inverted. In the mid-phase of the cycle
the applied load was constant, and consequently fluid
flow experimented relaxation during this phase.

DISCUSSION

A finite element dual porosity model has been
developed to calculate the mechanically load-induced
fluid flow at different bone porous networks: PV and
PLC. Treating bone as a continuum, using macro-
scopic poroelastic properties that characterizes the two
levels of porosity and defining a leakage parameter
that describes the rate of flow between them, we were
able to model complex bone behaviors.

Using this model is advantageous with respect to
classical poroelastic models with only one level of
porosity, since we are now able to simulate a whole
loaded bone and estimate very well both vascular and
lacuno-canalicular pressures at least in average since
this is a continuum macroscopic approach. These re-
sults can be very useful for a better understanding of
the macroscopic role that fluid flow plays in me-
chanotransduction phenomena at lacuno-canalicular
level related to the global mechanical bone environ-
ment. In fact, this model can help to understand the
bone transport capacity through the fluid movement
from bone vasculature to canaliculi and lacunae in
bone extracellular matrix.

In order to check the potential of this dual porosity
model, we studied the example shown by Starkebaum
et al.,25,30 which consisted on a sinusoidal bending
load applied to a little sample of cortical bone. Our
results showed the same general trend that those ob-
tained experimentally,25 with a pressure gradient be-
tween tensile and compressive fibers. The experiment
of Starkebaum et al.25 and the simulations of Wang
et al.30 also showed a cusp-like form gradients near the
Haversian canals. Our model is not able to predict
these gradients due to heterogeneous structure of cor-
tical bone, because it is a macroscopic approach and
the Haversian canals are not physically considered in
the model. This aspect is one of the main limitations of
our model if you are interested on estimating the fluid
flow shear stress along the cells and not the averaged
flows. The use of a multiscale formulation combining a
micro–macroscopic approach in which the microscopic
effects control the macroscopic behavior could be an
important tool to surpass this limitation. Nevertheless,
the model here presented is able to predict the global
distribution pattern of the lacuno-canalicular pressure
and flow.

Another microscopic effect that we have not con-
sidered in the model is the difference between canalic-
ular and lacunar porosities.14 In fact, Gururaja et al.14

showed that there is a gradient of fluid pressures in the
canaliculi that leads to flow into and out of the lacuna
due to the heterogeneity of the deformation around a
lacuna. Again, this effect could be taken into account
by means of multi-scale models that incorporate the
different levels of bone poroelasticity.

We have also studied the influence of the mechanical
loading frequency, concluding that higher load fre-
quencies increase considerably the fluid flow at the
canalicular level. This effect has been also observed
experimentally.9,27,32 Lacuno-canalicular pressure de-
creases when vascular porosity is modeled due to the
pressure relaxation induced by fluid flowing from PLC
to PV. Frequency analysis involves a large range from
0.01 to 500 Hz. Since this dual-porosity model neglects

FIGURE 11. (b) Time evolution of the lacuno-canalicular fluid
flow modulus of the rat tibia at the location shown in (a).
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inertial effects, the approximation at high frequencies
could not be sufficiently accurate, although it is enough
to show the main trend of the frequency influence and
compare our results with those presented by Wang
et al.30 that used the same approximation.

From our results, we can observe that PLC and PV
pressures differ in several orders of magnitude. This
fact has a clear meaning, because while fluid in PLC
has to transport nutrients to the osteocytes network
through the very thin canaliculi, PV fluid never surpass
the capillarity pressure (about 0.05 atm33) to allow a
normal blood supply into the bone.

Strains usually applied to bone (0.04 to 0.3%) are
much smaller than those needed to cause bone sig-
nalling in deformed cell cultures (1–10%),13,22,29 so it is
widely believed that there must be a mechanism that
amplifies the external stimulus at cellular level.9 This
mechanism is reflected indirectly by fluid flow at PLC,
a mechanical stimulus that can be sensed by osteocytes.
Zhang et al.32 estimated that the maximum pressure at
an osteon is about 0.27 MPa and is reached at the
cement line. In our simulation, the maximum lacuno-
canalicular pressure is in the range of 0.2–0.3 MPa for
dual porosity simulations and a physiological fre-
quency of 1.5 Hz.

The parameters from our model that mainly regu-
late this stimulus amplification are c (the leakage
parameter), k2 (the lacuno-canalicular permeability)
and vascular compressibility Kv. If c is too small, fluid
exchange between PV and PLC is not enough to
accomplish its function of transporting nutrients to
osteocytes and evacuate waste from them, but if it is
too high, the pore pressure decreases in the canaliculi
and the amplification mechanism disappears. If the
permeability of PLC increases, fluid can flow more
freely along the canaliculi, and the pore pressure in
PLC decreases. Our results show that, when the model
takes into account the PV, the pressure decreasing in
PLC is remarkable. We think that this suggests that the
role of the PV is not only to provide blood and
nutrients supply, but also to contribute to the regula-
tion of the PLC pressure.

An accurate estimation of the leakage parameter
would require a detailed study of the microstructural
interaction between Haversian canals and canaliculi.
Parameters such as the spacing between Haversian
canals or the density and permeability of the cana-
liculi attached to them have a crucial influence on the
value of c. The leakage parameter also probably de-
pends on the loading frequency. The value of c can-
not be determined with a macroscopic model, being
necessary to achieve this objective the use of a mul-
tiscale model that allows evaluating this parameter at
the microscopic level to be next used at the macro-
scopic one.

Since permeability values in bone are subjected to
considerable uncertainty, typical values have been ta-
ken from literature in this model.8 Nevertheless, a
sensitivity analysis has been performed in order to
know the influence of these values. In fact, perme-
ability of PV has practically no influence on the stim-
ulus that osteocytes sense. However, permeability of
the PLC is a characteristic parameter of the fluid flow
in canaliculi: higher PLC permeability leads to lower
PLC pressure as it is clearly shown in Fig. 6.

Another key point is the estimation of the vascular
compressibility. The value of the Kv used in this work
has been estimated through a microscopic finite ele-
ment computational model. In order to know the
influence of this property, a sensitivity analysis has
been performed and it has revealed a high dependency
of the lacuno-canalicular pressure on the vascular
compressibility Kv (see Fig. 7).

The three dimensional analysis of the rat tibia
showed a good agreement with the experiments.
Lacuno-canalicular pressure and fluid flow resulted
higher in the zones where the new bone formation was
reported. There was also a significant difference in
peak values between single and double porosity model.
These results suggest that the employment of the dual
porosity model may allow to estimate the variables
with decisive impact on bone behavior and incorporate
them in future bone remodeling models. Therefore,
this simulation demonstrates the great potential of this
dual porosity approach to study the complexity of a
whole loaded bone in an easy way via a macroscopic
model.

Although we think this macroscopic approach is
appropriate for the estimation of the averaged fluid
flows and pressures at both vascular and canalicular
porosities, a better and more complex multiscale for-
mulation could be used. And so, a combination of
macroscopic with microscopic approach could model
the different levels of porosity of cortical bone,
enhancing the evaluation of fluid flows and pressures
at these porosities. This sophisticated model, however,
would imply a high computational cost that would be
necessary to evaluate. Therefore, depending on the
objective to analyse, a macroscopic model or a micro–
macro approach can be appropriate.

In our case, we are interested on the development of
a computational model able to simulate bone func-
tional capacity to adaptate its properties to mechanical
and metabolic environment changes. When a whole
loaded bone is analyzed to simulate this adaptative
property, a phenomenological stimulus is normally
required to control this process. Currently, research
work has described that fluid flow induced by
mechanical load in the osteocytic network is the main
factor that regulates mechanosensory bone system by
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different ways: nutrition and removal of waste sub-
stances, shear stresses or streaming potentials.9

Therefore, in order to achieve more biophysically-
based stimuli, this phenomenological stimulus has to
be related to this bone fluid flow. The keypoint is
to know if the mechanobiological bone response due to
osteoblasts and osteoclasts is regulated by osteocytes
individually, or if it is controlled by a set of osteocytes
interconnected. In the first situation, probably is nec-
essary to estimate the fluid flow at osteocyte level, but
in the second one is probably enough to determine the
averaged fluid flow. Therefore, and as a first hypoth-
esis, we consider that averaged fluid flow at lacuno-
canalicular level can be sufficient to estimate mechan-
ical stimuli valid for bone remodeling, although more
complex multiscale approaches can be used to improve
fluid flow estimation in a loaded bone.

APPENDIX A: DUAL POROSITY MODEL

For saturated porous media (like cortical bone tis-
sue), the equilibrium equations can be written as

@sij
@xj
þ Fi ¼ 0 ð4Þ

where Fi is the body force per unit volume and sij is the
total stress that can be expressed as

sij ¼ rij � a1p1dij � a2p2dij ð5Þ

being rij the effective stress, p1 and p2 the pore fluid
pressures in the two levels of porosity (here PV and
PLC), a1 and a2 the effective stress coefficients and dij
the Kronecker�s delta. For an elastic and isotropic
bone matrix, the effective stress can be written as

rij ¼ 2Geij þ kekkdij ð6Þ

with eij the global strain tensor and k and G the so
called Lame�s constants, that are expressed in terms of
the Young�s modulus E and the Poisson�s ratio m as
k = Em/(1 + m)(1 - 2m) and G = E/2(1 + m).

The governing equation for the solid phase is ob-
tained combining Eqs. (4), (5) and (6) getting:

2G
@eij
@xj
þ k

@ejj
@xi
� a1

@p1
@xi
� a2

@p2
@xi
þ Fi ¼ 0 ð7Þ

For small deformations, strains are related to dis-
placements by the well-known Cauchy strain tensor

eij ¼
1

2

@ui
@xj
þ @uj
@xi

� �

ð8Þ

with u the displacement vector. Substituting Eq. (8)
into (7), the governing equation of the solid phase can
we written as a function of displacements as

G
@2ui
@xj@xj

þ ðkþ GÞ @2uj
@xi@xj

� a1
@p1
@xi
� a2

@p2
@xi
þ Fi ¼ 0

ð9Þ

The definition of the effective stress parameters a1
and a2 can be determined in terms of physically mea-
surable parameters. Following the procedure of Khalili
and Valliappan,15 a representative planar volume of
cortical bone is subjected to external principal stresses
rii and to internal vascular pressure p1 and lacuno-
canalicular pressure p2. These stresses can be decom-
posed in four components, as it is shown in Fig. 12: (I)
equal PV, PLC and external hydrostatic pressure p1;
(II) zero PV pressure and equal PLC and external
hydrostatic pressure (p2 - p1); (III) external hydro-
static pressure ðr� p2Þ, being r ¼ rii=3; and (IV)
external deviator stress erij ¼ rij � rdij: The total vol-
umetric strain of this representative bone volume may
be calculated, according to Nur and Byerlee,21 as

eii ¼ eIii þ eIIii þ eIIIii þ eIVii ð10Þ

being

eIii ¼
p1
Ks

ð11aÞ

eIIii ¼
p2 � p1
Kv

ð11bÞ

eIIIii ¼
r� p2
K

ð11cÞ

eIVii ¼ 0 ð11dÞ

where Ks, Kv and K are the drained bulk modulus of
the bone matrix, the vascular porosity and the cortical
bone, respectively. Introducing Eq. (11) into (10) and
rearranging, the volumetric strain results

eii ¼
r
K
� 1

Kv
� 1

Ks

� �

p1 �
1

K
� 1

Kv

� �

p2 ð12Þ

Applying now the definition of effective stress, it can
also be written as

eii ¼
1

K
ðr� a1p1 � a2p2Þ ð13Þ

Comparing Eqs. (12) and (13) yields

a1 ¼
K

Kv
� K

Ks
a2 ¼ 1� K

Kv
ð14Þ

Note that when the lacuno-canalicular porosity is
reduced to zero (i.e. Kv = K), the stress effective
coefficients are those used in single porosity models
(a1 = 1 - K/Ks, a2 = 0).
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The governing equations for fluid flow in PV and
PLC can be obtained from the mass conservation
equations for the fluid. Darcy�s law has been consid-
ered here as the constitutive equation, that is,

vai ¼ �
ka

l
@pa

@xi
a ¼ 1; 2 ð15Þ

being k the permeability of the pore network and l the
viscosity of the fluid. Subindex a takes the value 1 for
the PV and 2 for the PLC, and vai represents the rel-
ative fluid velocity in each network with respect to the
bone matrix, that can be expressed in terms of the
porosity /a, the absolute velocity vaif and the velocity
of the bone matrix vis as

vai ¼ /aðvaif � visÞ a ¼ 1; 2 ð16Þ

Mass conservation of the fluid in the PV and PLC
networks can be written as

� @

@xi
ðqf/avaifÞ ¼

@

@t
ð/aqfÞ � ð�1ÞaC a ¼ 1; 2 ð17Þ

where C corresponds to the leakage term that repre-
sents the rate of flow between canaliculi and Haversian
canals. Substitution of Eq. (16) into (17) yields

� @

@xi
ðqfvaiÞ�

@

@xi
ðqf/avisÞ¼

@

@t
ð/aqfÞ�ð�1ÞaC a¼1;2

ð18Þ

which, introducing the Lagrangian material derivative
relative to the solid (ds()/dt = ¶()/¶t + vis¶()/¶xi) can
be rearranged as

FIGURE 12. Stress decomposition of a representative bone element. The component normal to the plane, r2, is not shown for
simplicity.
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� @

@xi
ðqfvaiÞ ¼ /a

dsqf

dt
þ qf

ds/a

dt

þ qf/a
@vis
@xi
� ð�1ÞaC a ¼ 1; 2 ð19Þ

According to the definition of compressibility one
can write for the fluid

1

qf

dsqf

dt
¼ 1

Kf

dspa

dt
a ¼ 1; 2 ð20Þ

Substituting Eqs. (15) and (20) into (19) divided by
qf it results in

1

qf

@

@xi
qf

ka

l

� �
@pa

@xi
¼ /a

Kf

dspa

dt
þ ds/a

dt

þ /a
@vis
@xi
� ð�1Þa C

qf

a ¼ 1; 2

ð21Þ

Equations (9) and (21) conform the governing
equations system for cortical bone. However, in order
to completely solve these equations another relation-
ship is needed to establish the term ds/a/dt. This
relationship can be derived from the definition of
porosities

/a ¼
Va

V
a ¼ 1; 2 ð22Þ

whereV is a representative volume of cortical bone, and
V1 and V2 are the volumes of PV and PLC in that rep-
resentative volume. Differentiation of Eq. (22) yields

d/a ¼
1

V
ðdVa � /adVÞ a ¼ 1; 2 ð23Þ

The last term in Eq. (23) is actually related to the
volumetric strain of the matrix

dV

V
¼ tre ¼ @uis

@xi
ð24Þ

and, for the first terms in the right-hand side of Eq.
(23), which correspond to the variation in fluid content
of each porosity fa, Khalili and Valliappan15 showed
that they can be expressed as

dV1

V
¼ f1 ¼ a1

@uis
@xi
þ a1 � /1

Ks
dp1 þ

v
K
dðp1 � p2Þ

ð25aÞ

dV2

V
¼ f2 ¼ a2

@uis
@xi
þ a2 � /2

Ks
dp2 þ

v
K
dðp2 � p1Þ

ð25bÞ

v ¼ a1a2 � /1/2

a1 þ a2
/1 þ /2

ð25cÞ

Applying (23) in (21) and considering that, in gen-
eral, vis¶()/¶xi � ¶()/¶t and then ds()/dt � ¶()/¶t, it
results into

k1
l

@2p1
@xi@xi

¼ /1

Kf
þ a1 � /1

Ks
þ v
K

� �
@p1
@t

� v
K

@p2
@t
þ a1

@vis
@xi
� C

qf

ð26aÞ

k2
l

@2p2
@xi@xi

¼ /2

Kf
þ a2 � /2

Ks
þ v
K

� �
@p2
@t

� v
K

@p1
@t
þ a2

@vis
@xi
þ C

qf

ð26bÞ

and recovering Eq. (9) the complete set of governing
equations for the bone cortical tissue becomes

G
@2ui
@xj@xj

þ ðkþ GÞ @2uj
@xi@xj

� a1
@p1
@xi
� a2

@p2
@xi
þ Fi ¼ 0

ð27aÞ

k1
l

@2p1
@xi@xi

¼ a11
@p1
@t
þ a12

@p2
@t
þ a1

@2ui
@t@xi

� C
qf

ð27bÞ

k2
l

@2p2
@xi@xi

¼ a21
@p1
@t
þ a22

@p2
@t
þ a2

@2ui
@t@xi

þ C
qf

ð27cÞ

C
qf

¼ cðp1 � p2Þ ð27dÞ

where c is the so-called leakage parameter, which
modulates the regulating role that bone lining cells
perform on bone surfaces controlling the flux of
fluid between compartments and the interstitial
fluid pressure.16 The rest of the parameters are
defined as

a11 ¼ /1=Kf þ ða1 � /1Þ=Ks þ v=K
a12 ¼ a21 ¼ �v=K

a22 ¼ /2=Kf þ ða2 � /2Þ=Ks þ v=K
a1 ¼ K=Kv � K=Ks

a2 ¼ 1� K=Kv

ð28Þ
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