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Abstract—Objective To use artificial neural networks
(ANNs) on uterine electromyography (EMG) data to classify
term/preterm labor/non-labor pregnant patients. Materials
And Methods A total of 134 term and 51 preterm women (all
ultimately delivered spontaneously) were included. Uterine
EMG was measured trans-abdominally using surface elec-
trodes. ‘‘Bursts’’ of elevated uterine EMG, corresponding to
uterine contractions, were quantified by finding the means
and/or standard deviations of the power spectrum (PS) peak
frequency, burst duration, number of bursts per unit time,
and total burst activity. Measurement-to-delivery (MTD)
time was noted for each patient. Term and preterm patient
groups were sub-divided, resulting in the following catego-
ries: [term-laboring (TL): n = 75; preterm-laboring (PTL):
n = 13] and [term-non-laboring (TN): n = 59; preterm-non-
laboring (PTN): n = 38], with labor assessed using clinical
determinations. ANN was then used on the calculated
uterine EMG data to algorithmically and objectively classify
patients into labor and non-labor. The percent of correctly
categorized patients was found. Comparison between ANN-
sorted groups was then performed using Student’s t test (with
p < 0.05 significant). Results In total, 59/75 (79%) of TL
patients, 12/13 (92%) of PTL patients, 51/59 (86%) of TN
patients, and 27/38 (71%) of PTN patients were correctly
classified. Conclusion ANNs, used with uterine EMG
data, can effectively classify term/preterm labor/non-labor
patients.
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INTRODUCTION

A most urgent challenge in healthcare currently is
the phenomenon of preterm labor, or labor prior to 37
completed weeks of gestation. Preterm birth contrib-
utes to handicaps generally, and is also the cause of
about 85% of all perinatal deaths.27 Preterm neonates,
with birth-weights less than 2500 g, represent about

10% of the total number of babies born each year. The
complications of preterm birth include significant
neurological, mental, behavioral and pulmonary
problems in later life. Among the preterm survivors,
the rate of neurological impairment varies from 10% to
20%, and growth restriction occurs in approximately
20% of the surviving infants. The development of
effective methods to prevent or reduce the incidence of
preterm birth depends largely upon finding indicators
for the problem.

Knowing that true labor (which will ultimately lead
to delivery) has begun, as well as predicting when it will
start, is important for both normal and abnormal
pregnancies. Diagnosis of labor in normal pregnancies
is important for minimizing unnecessary hospitaliza-
tions, interventions and expenses. On the other hand,
accurate identification of spontaneous preterm labor
would also allow clinicians to start necessary treatments
early in women with true labor and avert unwarranted
treatment and hospitalization for women who are sim-
ply having preterm contractions, but who are not in true
labor. Various clinical techniques for determining this,
such as the use of fetal fibronectin, salivary estriol,
cervical ultrasound, and tocodynamometer (TOCO), to
name a few, all have a limited range of usefulness in this
regard.6,13 Even noticeable dynamic cervical change,
long thought to be indicative, may not always be an
accurate identifier of true labor, since a large percentage
of women with established cervical dilation do not
actually deliver preterm, even when they are not treated
with labor-inhibiting, or tocolytic, agents.19 No present
method yields both a positive and a negative predictive
value above 65%. What is called for, then, is an alter-
native diagnostic paradigm.

Uterine electromyography (EMG) has shown great
promise for monitoring patients during pregnancy.
Early studies established that the electrical activity of
the myometrium, or uterine muscle, is responsible for
myometrial contractions.16,24 Many experiments have
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been performed in the last several decades in an
attempt to monitor uterine contractility using the
electrical activity measured from electrodes placed
directly on the uterus.2,5,28 The latest work indicates
that uterine EMG activity can be monitored non-
invasively from the abdominal surface.1,8,9 Once uter-
ine EMG data are obtained, however, they must be
assimilated in some fashion to get a diagnostic result.

Artificial neural networks (ANNs) are mathematical
algorithms that are ideal for the classification of
objects (e.g., patients) based upon one or more input
variables (e.g., uterine EMG variables).4,11,12 ‘‘Artifi-
cial intelligence’’ is the field of computer science that
attempts to give computers humanlike thought. One of
the primary means by which computers are endowed
with such capability is through the use of an ANN.

An ANN is composed of fundamental components,
usually a circuit or computer program, which are
designed to be the machine equivalent of neurons in
the brain of living creatures. ANNs are made up of
inputs, ‘‘hidden layers’’ (a system of artificial neurons
to process the data), and outputs. Modern applications
of ANNs include the following: risk management, data
validation, industrial process control, sales forecasting,
speech recognition, diagnosis of hepatitis, interpreta-
tion of multi-meaning Chinese words, undersea mine
detection, texture analysis, three-dimensional object
recognition, hand-written word recognition; and facial
recognition.4,11,12 Most recently, work has progressed
which will utilize various biological and clinical
markers for evaluating the risk of pre-term labor using
ANNs.20

For the present study, we wanted to determine how
well ANNs can classify pregnant patients. Values cal-
culated for a number of uterine EMG parameters were
used as inputs for a particular type of ANN, and the
outputs, specifically patient classifications, were com-
pared to clinical assessments. The joining of uterine
EMG with ANNs in this way may produce a powerful,
objective tool for assessing labor.

MATERIALS AND METHODS

Patients

The University of Texas Medical Branch (UTMB)
Institutional Review Board gave approval for this
study, and all patients were required to sign written
consent forms. We included 134 term and 51 preterm
women (all of whom ultimately delivered spontane-
ously). An additional 28 patients were excluded, as
they exhibited complications sufficient to justify deliv-
ery via cesarean section. Only those patients for whom
a clear clinical determination of labor or non-labor
could be made were included. Patients were recruited

over a period of 4 years. Maternal ages were within the
17- to 36-year-old range. Gestational ages ranged from
24 to 41 weeks. Measurement-to-delivery (MTD) times
varied from less than 1 day in the case of term labor
patients, to over 100 days in the case of preterm non-
labor patients. All patients included in the study were
admitted to the labor and delivery area of The Uni-
versity of Texas Medical Branch, in Galveston, Texas.

Signals

Contractions were monitored for at least 30 min
using bipolar electrodes (Quik-Prep models, Quinton,
Bothell, Washington) placed non-invasively on the
abdominal surface. A standard 4-electrode arrange-
ment was used for all patients (symmetric about the
navel, with vertical and horizontal axes parallel to the
patient vertical and horizontal axes, respectively, and
with center-to-center distances between adjacent elec-
trodes set at 6.35 cm).7,22,23 Analog uterine electrical
signals were differentially band-pass filtered from
0.05 to 4.00 Hz, and sampled at 100 Hz using a cus-
tom-built uterine EMG patient-monitoring system
(Reproductive Health Technologies, www.reproduc-
tivehealthtech.com). For each patient record, the
optimal differential channel combination was utilized
for calculations (i.e., the two-channel differential sig-
nals that exhibited the greatest effective signal/noise
ratio, as calculated for the mean rectified voltage
during ‘‘bursting,’’ or elevated electrical activity, peri-
ods, divided by the mean rectified voltage during qui-
escent, or ‘‘non-bursting,’’ periods). The mean S/N
ratio for all optimal channels was 6.57±4.90, while it
was 2.47±1.87 for the non-optimal channels.

From every recording, only the bursts of uterine
electrical activity occurring during verifiable contrac-
tions were analyzed, while periods of inactivity
between contractions were not quantified (for inclusion
purposes, uterine electrical bursts were defined as a
succession of increased-amplitude voltage spikes whose
mean amplitude remained at >2� the mean baseline
activity, and whose duration was >10 s; an additional
inclusion criterion was that the burst also had to cor-
respond, at least approximately, temporally to uterine
pressure events as measured by TOCO). These burst
periods were ascertained manually by the investigators
offline (although current efforts are underway to dev-
elop software to automatically identify and quantify
bursts in real-time). In order to exclude from analysis
most of the artifact components due to motion, res-
piration, and cardiac electrical signals, only frequencies
in the 0.34–1.00 Hz ‘‘uterine-specific’’ range were
evaluated. This was accomplished by subsequently
filtering the signals digitally. Standard TOCO exte-
rnal mechanical force readings were also recorded
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simultaneously by a transducer belt around the pa-
tients’ abdomens, but only to assist with additional
confirmation of the presence of uterine contraction
events. Since previous work with the crude TOCO
instrument has indicated limited, if any, predictive
utility,25 no numerical data were utilized from that
instrument for this study.

Calculation of ANN Input Parameters

Spectral analysis was used to help quantify the
electrical signals. Chart 5 software (ADInstruments,
Castle Hill, Australia) was utilized for the spectral
analysis. The magnitude squared of the Fast Fourier
Transform (i.e., the FFT-generated periodogram) was
used as an estimator of the spectrum. An even multiple
of 8192 data points, using a 50% overlap for sub-
sequent FFT windows (cosine-bell window used to
reduce edge effects), was distributed in such a way as to
include the greatest number of data points that were
contained within each identified burst (Fig. 1). In this
way, the 8192 FFTs actually step through the burst
data in approximately 4.1-second intervals. The aver-
age periodogram for a given burst was then calculated
using the several calculated periodograms for that
burst, and this average is what was used to assess the
dominant spectral peaks from the overall burst.

The mean duration of the bursts in this study was
50.5 s. Although the uterine EMG traces, as a whole,
are non-stationary, each of the short, individual FFT
time-periods in the recordings that was assessed within
the bursts was approximately stationary, i.e., these
parts of the trace are locally stationary,14,21 especially
when considering the very-low-frequency uterine band-
width being investigated.22 Furthermore, we were not
concerned with (at least in the present study) mapping,
temporally, any of the minute changes in the signal
which may have occurred within the duration of the
bursts themselves. Rather, we were only interested in
an approximate overall power measure for each burst
as a whole.

The largest-magnitude power spectrum (PS) peak
within the 0.34–1.00 Hz range was found for each
burst, and its frequency was noted. The average PS
peak frequency for a given patient was then found by
averaging the frequencies of the largest PS peaks from
the bursts for the particular patient. A similar proce-
dure was used to find the average burst duration: the
duration of any particular uterine electrical burst was
determined by noting the onset and termination time-
points for the burst. Total activity for a patient was
calculated by multiplying the number of bursts in a 30-
minute period for the patient by the mean burst
duration for that patient.

FIGURE 1. An example of a uterine electrical burst, and the use of overlapping, successive FFT windows to estimate the overall
burst power. The beginning and end-points of the bursts are first determined. Then a multiple of 8192-sized FFT windows is applied
to the burst-trace in such a way as to cover it maximally, temporally speaking. In this particular case, the burst is approximately
37 s long, requiring 8 FFT windows (overlapped 50%, using cosine-bell windowing to reduce edge effects). The total temporal
‘‘coverage’’ of the FFT windows is approximately 9� 4.1 = 36.9 s. The 8 individual FFTs are used to find an average FFT, which is
then used for determining spectral peaks.
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So, in all, the bursts of uterine electrical activity,
corresponding to contractions, were quantified by
finding the means and standard deviations (where
applicable) of the PS peak frequency (i.e., frequency at
which the greatest power occurs, using an 8192-point-
size FFT for sufficient frequency resolution), burst
durations, number of bursts per unit time, and total
activity. Initially, seven input parameters were calcu-
lated from the uterine EMG for use in the ANN. An
eighth input parameter was also formed by taking the
ratio of the PS peak frequency divided by the standard
deviation of the burst duration. These particular vari-
ables were chosen as a result of our previous studies
that showed that they may either have some predictive
worth, or some physiological or clinical signifi-
cance.1,8,22

It must be mentioned that for the non-laboring
patients, especially those who were preterm, the uterine
electrical bursting activity was often not very well cor-
related with TOCO activity, and the electrical bursts
themselves were, at many times, short-lived. However,
for all the patients studied, at least three uterine elec-
trical events were identified within the recording that
satisfied the inclusion criteria described above.

Although the techniques for the clinical determina-
tion of pre-term labor are unreliable in many patient
cases, there still exist a number of preterm patients who
do exhibit such obvious symptoms of labor (or non-
labor) that clinical determination can be made with a
high degree of certainty for them. Since these are the
types of patients we included in this particular study,
term and preterm patients were each clinically divided
into two subgroups, which resulted in the following
categories: [term laboring (TL): n = 75; preterm
laboring (PTL): n = 13] and [term non-laboring (TN):
n = 59; preterm non-laboring (PTN): n = 38], with
labor assessed by a physician using clinical determi-
nations that incorporated contraction frequency, cer-
vical dilation, station (which is, roughly speaking, the
relative position of the fetus to the maternal pelvis),
and effacement (cervical ‘‘thin-ness’’), among other
factors. For clinically assessing labor, often the ‘‘typi-
cal’’ contraction frequency is >3 contractions/10 min,
with cervical dilation >3 cm, but this is not necessarily
an industry standard, and can vary from patient to
patient, and must therefore be interpreted in the con-
text of other clinical parameters.

ANN Data Processing

Once all uterine EMG variables were calculated, the
full data set was conditioned according to common
practice for ANN data preparation,18 specifically by
rescaling all data values to common decimal repre-
sentation, replacing any missing data values with data

set means for that parameter, and by removing outliers
(according to Grubb’s test). Training of the ANN was
accomplished by running training data (38 TL
patients, 30 TN patients, 6 PTL patients, and 19 PTN
patients) through 10,000 iterations, and using a
learning rate of 0.6. Training was performed separately
for the term analysis and then again for the preterm
analysis. The initial learning rate (see below) was
chosen so as to be high enough to increase the learning
capability of the network while not being so high as to
cause the network to ‘‘oscillate.’’ Based on previous
publications,3,10 we tried increasing the initial learning
rate from 0.1 to 0.5, and then finally up to 0.6, with no
difference in the classification results. ANN (NeuroXL
Classifier, www.analyzerXL.com) was then used on the
calculated EMG input data in an attempt to algorith-
mically classify patients into labor and non-labor. The
particular ANN used for classification in this study
utilizes the ‘‘Kohonen’’ method. This was chosen
because in some studies, the Kohonen method gave
superior results over the more traditional back-prop-
agation neural network method.29 Ease of use (unsu-
pervised training – see below) is another reason the
Kohonen method was employed.

A Kohonen ANN differs considerably from a feed-
forward back-propagation neural network, for exam-
ple. The Kohonen ANN differs both in how it is
trained and how it recognizes a pattern (Fig. 2). The
following steps apply generally to Kohonen networks:

(a) Input the values ai, where i = 1, ..., n.
(b) Output nodes compute the output values bj

by

bj

Xn

i¼1
ða1 � rijÞ2,

FIGURE 2. The layers of an ANN include the inputs (for the
present study, uterine EMG calculated values), the hidden
layer(s), and the outputs (in the present study, classification
of patients as either labor or non-labor). The hidden layer in
our ANN, a Kohonen layer, is where the actual decision-
making process essentially takes place.
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where j = 1,..., m. and where rij is the weight
associated with the connection from the i-th
input node to the j-th output node.

(c) ‘‘Winning’’ node is defined as the node with
minimum output bmin = min{bj}

(d) Update weights of the connections to the
winning node and its neighbors.

(e) Repeat all steps for specified number of iter-
ations.

When the learning rate is set to decrease as the
number of iterations increases,15 as in our own
algorithm, convergence is guaranteed in a Kohonen
neural network. This convergence was assumed to
have been achieved if there was no subsequent
change in the final classification state of the neural
network with at least a 2nd-order-of-magnitude
increase in the number of iterations.29 In fact,
beyond 10,000 iterations, no change was seen in
the final classification state for a 2nd-order-of-
magnitude increase in the number of iterations (up
to 1,000,000).

The Kohohen ANN does not use an activation
function, the output does not consist of the output of
several neurons, and it is trained in an unsupervised
fashion. This means that the Kohonen network is
presented with data, but that the correct output cor-
responding to the data is not specified a priori. When
data are presented to a Kohonen network, one of the
output neurons is selected as a ‘‘winner.’’ The win-
ning neuron becomes the output from the Kohonen
network. These winning neurons represent groups, or
clusters, in the data set. Using the Kohonen network,
then, the output data are already essentially classified.
For this study, these ANN-sorted groups were desig-
nated as term labor (TLS), term non-labor (TNS),
pre-term labor (PTLS), and pre-term non-labor
(PTNS).

Statistics

After ANN sorting of patients was performed, the
effectiveness of the resulting patient classification was
estimated by the following:

(1) The percentage of correctly categorized
patients was found by comparing the ANN-
sorted patients to the clinically-determined
patients separately for both the term and
preterm groups, with the following rule:

If a = number of patients in the clinically-
sorted group, and b = number of those same
patients in the associated ANN-sorted group,
then % correctly identified for the patient
group is b/a� 100%.

A correctly-identified patient percentage of
‡65% was considered acceptable, since no
current clinical method can accurately distin-
guish a greater percentage of preterm labor
and non-labor patients.6,13 Any combinations
of ANN input parameters which yielded lower
classification results than this were invalidated.

(2) Comparisons of gestational age and MTD of
the clinically-classified groups were made
(using Student’s t-test, Sigma-Stat software,
SPSS Inc., Chicago, Illinois).

(3) EMG values for TLS and TNS groups, as
classified by ANN, were compared (by Stu-
dent’s t-test, Sigma-Stat software) using means
and standard deviations of their uterine EMG
input variables. EMG values for PTLS and
PTNS groups, as classified by ANN, were also
compared in this way.

A high percentage of correctly classified patients
(above the 65% threshold) would be evidence that the
ANN was successful in properly discerning between
the labor and non-labor patients. Moreover, a signifi-
cant difference in any of the uterine EMG parameters
of the ANN-sorted groups would suggest that those
particular EMG parameters may have some physio-
logical importance for the diagnosis of labor.

RESULTS

The mean gestational age of TL (39.5±1.3 weeks)
was significantly higher (p<0.05) than that of TN
(38.3±1.0 weeks), while the mean gestational age of
PTL (33.8±3.31 weeks) was significantly higher
(p<0.05) than that of PTN (31.0±4.0 weeks). The
mean MTD interval of TL (0.3±0.2 days) was sig-
nificantly shorter (p<0.01) than that of TN
(9.9±6.9 days), and the mean MTD interval of PTL
(6.4±6.8 days) was significantly shorter (p<0.01)
than that of PTN (53.7±30.4 days). These results
suggest that the clinical determination of labor in the
patient sets was well-performed, and thus was a good
standard for this study.

Uterine EMG bursts generally corresponded tem-
porally to contractions as measured by TOCO (Fig. 3).
Again, this was nearly always true for laboring and
term patients, while less-so for non-labor and preterm
patients.

When the average PS peak frequency, the standard
deviation of the burst duration, and the ratio of these
two were used as input parameters for the ANN, the
training set was classified correctly for 30/38 (79%) of
the TL patients, 5/6 (83%) of the PTL patients, 25/30
(83%) of the TN patients, and 14/19 (74%) of the PTN
patients, while the test set was classified correctly for
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29/37 (78%) of the TL patients, 7/7 (100%) of the PTL
patients, 26/29 (90%) of the TN patients, and 13/19
(68%) of the PTN patients. Overall, when both the
training and test classification results were combined,
59/75 (79%) of all TL patients, 12/13 (92%) of all PTL
patients, 51/59 (86%) of all TN patients, and 27/38
(71%) of all PTN patients were correctly classified
(Fig. 4). Consequently the failure rate for classification
of these groups overall was 21%, 8%, 14%, and 29%,
respectively.

Using the combined training and test data, the aver-
age PS peak frequency was significantly higher (p<
0.05) for TLS (0.4371±0.0449 Hz) compared with TNS

(0.3916±0.0223 Hz) and for PTLS (0.4708±
0.0459 Hz) compared with PTNS (0.3982±0.0231 Hz)
(Fig. 5, Table 1). The average standard deviation of the
burst durationwas significantly lower (p<0.05) forTLS

((0.1114±0.0551)(�102) s) compared with TNS

((0.2197±0.1002)� (102) s) and for PTLS ((0.1869±
0.0741)� (102) s) compared with PTNS ((0.3163±
0.1340)� (102) s) (Fig. 6, Table 1). The ratio [(average
PS peak frequency)/(average standard deviation of
burst duration)] was significantly higher (p<0.05) for
TLS ((0.5047±0.2754)(�10)1) Hz/s) compared with
TNS ((0.2259±0.1079)(�10)1) Hz/s) and for PTLS

((0.3285±0.1947)(�10)1) Hz/s) compared with PTNS

((0.1445±0.0624)(�10)1) Hz/s) (Fig. 7, Table 1).
No other significant differences between groups was

seen in any of the other uterine EMG parameters
investigated (i.e., standard deviation of PS frequency,
mean of burst duration, number of bursts in a given
time, as well as mean and standard deviation of total
activity). In fact, inclusion of these other variables in
the ANN classification algorithm actually reduced the
capability of the ANN to properly identify labor
(below the established 65% threshold), likely because
those parameters had little, if any, physiological rele-
vance or predictive usefulness.

CONCLUSIONS

As in previous studies, we established herewith that
non-invasive trans-abdominal uterine EMG measure-
ments can be used to effectively monitor pregnant
patients. Artificial neural networks, in conjunction
with uterine EMG data, seem to be an effective method
for classifying both term and preterm pregnant

FIGURE 3. Correspondence of uterine contractions, as measured mechanically by TOCO belt-transducer (bottom trace), with
uterine electrical bursts, as recorded non-invasively with trans-abdominal surface EMG (top trace). Since the electrical activity is
actually responsible for the muscular-contraction events, monitoring the state and function of the uterus using EMG is a viable
(and perhaps superior) alternative to bulky, unreliable TOCO or invasive intrauterine pressure catheters.

FIGURE 4. The percentage of correctly identified patients
was high for all groups. The number of total patients, and the
fraction of correctly classified patients, is also shown on each
bar. Note the especially high percentage of correctly classi-
fied PTL patients. This demonstrates the capability of ANNs to
identify labor. Even better results are possible if a greater
number of patients could be included, and if a larger number
of physiologically pertinent input parameters are investigated,
giving the ANN more information with which to work.
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patients into those who are in labor versus those who
are not. The high percentage of correctly classified
patients, and the significant difference in values of the
electrical parameters for ANN-sorted groups, is proof
that the method is effective.

The best uterine EMG classification input parame-
ters for the ANN in this study were the PS peak fre-
quency, the standard deviation of burst duration, and
the ratio of these two. These resulted in a sufficiently

high classification rate. The PS peak frequency has
previously been shown to be a useful parameter in
prediction of labor and delivery.22 Because this
parameter has previously been linked to contraction
strength,28 it was not unexpected that this parameter
might also have utility as an input for the ANN.
Similarly, it has been thought for some time that the
duration of individual contractile events, as repre-
sented by uterine EMG bursts, varies from pre-term to
term and from non-labor to labor.28 The variation in
contractile duration appears to be more extreme for
non-labor patients than for labor patients. In many
term and preterm non-labor recordings, both short and
long contractile events were seen, whereas the con-
tractile events in both term and preterm labor patients
generally were more consistent in their durations. This
indicates that the uterus cannot make consistent and
useful contractions in the non-labor state.

The remaining parameters investigated actually
reduced the predictive capability of the ANN when
processed by the classification algorithm. We suppose
that this is because they have little, if any, physiolog-
ical significance, or at least they seem to have little
diagnostic relevance. However, other sophisticated and
perhaps ‘‘less-traditional’’ calculated uterine EMG
parameters not considered in this study (e.g., propa-
gation velocity,17 fractal dimension,23 wavelet energy,
or Lyapunov exponents) should also be investigated
for patient classification capabilities, using them as
input variables for the ANN in future work. Recent
studies, including our own, indicate that such non-
linear variables could be a useful tool for successfully
discerning between labor and non-labor patients.23,26

The inclusion of other non-EMG demographic and
clinical parameters may also be useful if included in
any forthcoming ANN analysis for labor.20

Since, in this study, we were interested only in the
labor vs. non-labor state of patients, the ANN only had
two output nodes, and was used separately on the term
and subsequently on the preterm patients to define two
further subgroups for each – namely labor and non-
labor. In future studies, we may try to use neural net-

TABLE 1. Summarizes the experimental results. The values for the three useful uterine EMG variables (i.e. those that resulted in
>65% successful ANN patient categorization) are shown, along with their p-values (when comparing the labor and non-labor term

and preterm groups).

Term patients Preterm patients

EMG Parameter Labor Non-labor p Labor Non-labor

PDS frequency (Hz) 0.4371 ± 0.0449 0.3916 ± 0.0223 <0.05 0.4708 ± 0.0459 0.3982 ± 0.0231

SD of Burst Duration

(�102 s)

0.1114�102

± 0.0551�102
0.2197� 102

± 0.1002� 102
<0.05 0.1869�102 ± 0.0741� 102 0.3163�102 ± 0.1340�102

Ratio (Hz/�102 s) 0.5047�10)1

± 0.2754�10)1
0.2259� 10)1

± 0.1079� 10)1
<0.05 0.3285�10)1 ± 0.1947�10)1 0.1445�10)1 ± 0.0624�10)1

Mean ± SD shown

FIGURE 5. (a) Average PS peak frequency was signifi-
cantly higher for TLS (0.4371 ± 0.0449 Hz) compared with TNS

(0.3916 ± 0.0223 Hz) and (b) for PTLS (0.4708 ± 0.0459 Hz)
compared with PTNS (0.3982 ± 0.0231 Hz). Mean ± SD is shown.
p < 0.05 was used for significance.
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works to classify non-labor patients or labor patients
into more than 2 sub-classes in order to identify
abnormal conditions. Unfortunately, we really did not
yet have enough patients for that type of investigation.

The present study concentrated on patients that
could be clearly identified clinically as being in labor or
not in labor. This is reflected in the fact that the
average time from measurement to delivery for the
labor patients (as determined clinically) was statisti-
cally lower than that for the non-labor patients in both
the term and preterm groups. The MTD cutoff for our
labor patients was set at 24 h, based on results of
previous work.22 With this rather broad criterion,
patients were classified using a Kohonen neural net-
work simply as either ‘‘in labor’’ or ‘‘not in labor.’’
Prediction of the exact time of labor onset for each
patient, however, was not investigated here. We

anticipate that in order to be able to discern between,
for example, those patients who will enter labor 8 h
after assessment, as opposed to those patients who will
begin labor 18 h after assessment, a much greater
number of individuals will have to be included in the
analysis (and a very great number of ANN inputs will
undoubtedly be required, too). It must be mentioned
that other techniques being utilized for diagnosing
preterm labor, although currently not sufficiently
effective at predicting preterm labor, have been scru-
tinized in a number of subgroups from the overall
patient population. By including a larger patient
aggregate and by using a greater number of physio-
logically meaningful input parameters (if they can be
determined), we hope the approach that we have
developed here will prove to be as reliable in the gen-
eral patient population as it was for this study.

This would give practitioners the capability to better
manage patients and to provide better health care for
them and their unborn children. In turn, it could
reduce resulting pregnancy complications and improve

FIGURE 6. (a) The average standard deviation of the uterine
electrical burst duration was significantly lower for TLS

((0.1114 ± 0.0551)(�102) s) compared with TNS ((0.2197 ±
0.1002)(�102) s) and (B) for PTLS ((0.1869 ± 0.0741)(�102) s)
compared with PTNS ((0.3163 ± 0.1340)(�102) s). Mean ± SD is
shown. Note that this value is the mean and standard devia-
tion (as calculated over the group of patients) of the electrical
burst duration standard deviation values (as calculated for
individual patients using multiple bursts). p < 0.05 was used
for significance. It is worth emphasizing that the average
mean of the burst duration did not show a significant differ-
ence between the groups.

FIGURE 7. (A) The ratio of the (PS peak frequency)/(standard
deviation of burst duration) was significantly higher for TLS

((0.5047 ± 0.2754)(�10)1) Hz/s) compared with TNS ((0.2259 ±
0.1079)(�10)1) Hz/s) and (B) for PTLS ((0.3285 ± 0.1947)
(�10)1) Hz/s) compared with PTNS ((0.1445 ± 0.0624)(�10)1)
Hz/s). Mean ± SD is shown. p < 0.05 was used for significance.
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delivery outcomes associated with both term and
preterm labor.
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