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Abstract—In this work we present the first comprehensive
survey of Brain Interface (BI) technology designs published
prior to January 2006. Detailed results from this survey,
which was based on the Brain Interface Design Framework
proposed by Mason and Birch, are presented and discussed
to address the following research questions: (1) which BI
technologies are directly comparable, (2) what technology
designs exist, (3) which application areas (users, activities and
environments) have been targeted in these designs, (4) which
design approaches have received little or no research and are
possible opportunities for new technology, and (5) how well
are designs reported. The results of this work demonstrate
that meta-analysis of high-level BI design attributes is
possible and informative. The survey also produced a
valuable, historical cross-reference where BI technology
designers can identify what types of technology have been
proposed and by whom.
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GLOSSARY

AT acronym for assistive (or
augmentative) technology

Attribute Sub-Class sub-category of a design
attribute. See Design
Attribute. For examples, see
Table 2

Assistive Device the component of a Brain
Interface (BI) that interacts
directly with objects or people
in the environment. For
example, a speech synthesizer
or an FES-based neuropros-
thetic

BI acronym for Brain Interface
BI AT acronym for assistive

(or augmentative) technology
(AT) based on a Brain
Interface (BI)

BI Transducer a component of a Brain Inter-
face that translates a person’s
brain activity into usable con-
trol signals as shown in
Fig. 1b–f. Functionally similar
to other transducers like joy-
sticks and switches

Bio-recording
Technology the class of equipment

(sensors, amplifiers, convert-
ers and filters) used to mea-
sure a person’s brain activity
in a BI Transducer

Continuous (fixed
reference) a signal classification; a signal

of this class is a sequence of
continuous amplitude values
relative to a fixed reference
value-like the adjustable level
produced by an analog
potentiometer. See other
signal classes: Relative
Continuous (no reference),
Discrete (...) and Spatial
Reference

Control Interface a component that is added to
a BI Transducer that
produces a relatively low
dimensional output in order
to expand the control dimen-
sionality to a level required
by an Assistive Device as
depicted in Fig. 1c and f.
See Table 1
for examples.
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Demonstration System an experimental system
(depicted in Fig. 1e and f)
that demonstrates control of
a BI Transducer but does not
otherwise perform any useful
function

Demo Device a device used to test the con-
trollability of a BI technology
in a demonstration system
(see Fig. 1e and f). For
example, a model vehicle or
table-mounted robotic arm

Design Attribute an attribute of a Brain Inter-
face technology design. See
Table 1 for the list of design
attributes

Discrete (with 1
NC state) a signal classification; a signal

of this class is a sequence of
discrete states including one
state that corresponds to the
No Control state in the user.
See No Control

Discrete (all IC states) a signal classification; a signal
of this class is a sequence of
discrete states where all states
corresponds to intentional
control in the user. See
Intentional Control

Discrete (with 1
unknown state) a signal classification; a signal

of this class is a sequence of
discrete states where one state
(the ‘‘unknown’’ state) is
reserved for uncertain
classifications

Endogenous
Transducer a BI Transducer design that

responds to spontaneous
control signals from the user

Exogenous Transducer a BI Transducer design that
responds to control signals
evoked from the user using an
external stimulator

Feature Extractor a component of a BI Trans-
ducer that translates the in-
put brain signal into a
feature vector correlated to a
neurological phenomenon.
This component is sometimes

referred to as noise reduc-
tion, filtering, preprocessing
or spike detection/sorting

Feature Translator a component of a BI
Transducer that translates the
feature vector into a useful
control signal. This component
is sometimes referred to as a
Feature Classifier, Classifier or
‘‘decoding function’’ (or
something similar)

Intentional Control a user state when the user is
attempting to affect the out-
put of the Brain Interface

IC acronym for Intentional
Control

Neurological
Phenomenon the phenomenon (or phe-

nomena) used to control a BI
Transducer. For example, a
P300 response in EEG to an
oddball stimulus is a
well-studied phenomenon
employed in several BI
Transducers. Another well-
known phenomenon is the
increase in neural firing rates
measured in microelectrodes
as neural activity increases

No Control a user state when the user is
not attempting to affect the
output of the Brain Interface.
For example, resting,
monitoring, thinking, and
daydreaming are all possible
No Control states

NC acronym for No Control
Relative Continuous
(no reference) a signal classification; a signal

of this class is a sequence of
changes to previous ampli-
tude values-like the output of
a mouse. See Continuous
(fixed reference)

Spatial Reference a signal classification; a signal
of this class is a sequence of
2-D spatial positions (similar
to signals output by an eye
tracker, a touchscreen or
stylus mechanism)
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INTRODUCTION

The development of Brain-Interface (BI)1 technol-
ogy is a relatively young research field that has grown
substantially over the last decade and continues to
attract new researchers from multiple disciplines. The
aim of this research is to develop an effective and
reliable machine interface that is controlled by signals
measured directly from a person’s brain.107,125,209

This paper presents the results of a comprehensive
survey of all BI technology designs published prior to
January 1, 2006. The first objective of this study was to
gather and classify BI technology design information
in order to (1) determine which designs are directly
comparable and (2) demonstrate that meta-analysis is
possible and valuable to the field. The authors were
motivated by two factors. First, researchers have
identified a critical need for objective methods to
compare BI technologies.108,125,199,208,209 However,
direct comparison of technologies assumes individuals
can identify which designs are directly comparable.
Currently, this does not seem to be the case, as
research groups have had difficulty interpreting the
myriad of reported technology designs and determin-
ing which designs can be compared.108,199,208 This
situation is not surprising given the diversity of per-
spectives and language used by the professions that
comprise this field (including, neuroscience, psychol-
ogy, engineering, computer science, assistive technol-
ogy, rehabilitation and other technical and health-care
disciplines). As direct, objective comparison is neces-
sary for cross-group validation of findings (the only
method to challenge reported performance results), the
ability to identify comparable technologies is critical.
The second motivating factor was the recent publica-
tion of a general framework for high-level BI design
and related alterations and extensions.123,125,129 Prior
to its publication, only simple classification schemes
had been proposed, each based primarily on the neu-
rological phenomenon used to operate the interface,
(e.g., P300 response to an oddball stimulus) or the
particular sensor technology used (e.g., EEG, ECoG or
implanted microelectrode arrays).107,200,209 As such,
these schemes lacked the necessary depth and breadth
to classify the range of design details seen in the liter-

ature. The referential models and taxonomy provided
in the new framework allowed us to describe all
existing BI designs using a common language. Within
this context, we were able to identify which technolo-
gies existed and which system and subsystem designs
could be directly compared. (For readers unfamiliar
with this framework, the principle models and taxon-
omy are reported in the ‘‘Review of Design Frame-
work‘‘ section.) We want to emphasize that this survey
strictly focused on BI technology design and did not
incorporate any aspect of performance evaluation.

The second objective of this project was to provide a
detailed, historical reference where researchers could
(1) determine which design approaches have been
proposed, (2) identify design approaches that have
received little or no attention, (3) determine which
applications areas (users, activities, environments) the
existing technology has been designed for, and (4)
characterize how well designs have been reported in the
literature.

The methods used to conduct this study are detailed
in ‘‘Methods’’ Section and the results are presented in
‘‘Results and Discussion’’ Section. Prior to presenting
this material, we provide a short review of the design
framework that was used as a basis for this survey.

REVIEW OF DESIGN FRAMEWORK

The functional models and taxonomy of the BI
design framework proposed by Mason et al.123,125,129

are presented in Fig. 1 and Table 1.
The framework is based on the model of assistive

technology drawn in Fig. 1a. In this model, a person
with a functional limitation is depicted on the left. This
person desires to perform an activity in his or her
environment, which may be to move their body or
interact with objects, appliances, physical structures,
or other people in the environment. The person’s
functional limitation results in a gap (shown as the
white ‘‘ability gap’’) between the person’s abilities and
those abilities required by the activity. The resulting
inability to perform the desired activity is referred to as
a disability. An assistive (or augmentative) technology
(AT) can provide the additional functionality that the
person requires to bridge the ability gap and perform
the desired activity. Like other AT, BI AT provides
additional functionality to a target population in order
to perform specific (target) activities in certain (target)
environments.

Within this context, BI AT can be modeled as a series
of components: a BI Transducer and an Assistive
Device (as shown in Fig. 1b) or with a Control Interface
(as depicted in Fig. 1c). Each of these design compo-
nents can be represented by a more detailed model. For

1 To date, the terms Brain–Computer Interface (BCI), Brain–

Machine Interface (BMI), Direct Brain Interface (DBI) and Adaptive

Brain Interface (ABI) have all been used to describe human interface

technology controlled by signals measured directly from the brain. In

terms of high-level design, there is essentially no difference between

the technologies referred to by these terms. Even though DBI is the

most generic term, we have chosen to avoid using any of these terms

to reduce interpretation bias in this work. Instead we will us the term

Brain Interface as a collective term for this approach to interface

technology.
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example, the BI Transducer can bemodeled as the series
of components in Fig. 1d that transforms brain activity
into a control signal. According to the framework
documentation, these models can represent all possible
designs. However, readers may be more familiar with
other functional terms, such as noise reduction, filter-
ing, preprocessing or spike detection/sorting (which are
all forms of feature extraction) and classifier or
‘‘decoding method’’ – or something similar – (which are
both terms that describe a specific class of Feature
Translator). In this work, we will use the generic

component names proposed by the framework to avoid
bias toward any design approach.

For many studies, researchers do not employ a full
AT model, but use some reduced system in order to
demonstrate basic control (as depicted in the Demon-
stration System models of Fig. 1e and f). Others test
only BI Transducer designs.

All of these systems, components and subcompo-
nents can be described in terms of design attributes.
The taxonomy listed in Table 1, outlines the principal
design attributes proposed by Mason et al.

FIGURE 1. Functional models of BI technology design: (a) model of person with a functional limitation able to perform desired
activity in the environment with an AT. Icons on the right represent appliances, people or objects in the environment; (b) functional
model of 2-component BI AT; (c) functional model of 3-component BI AT, (d) model of an (endogenous) BI Transducer illustrating
the series of components used to translate spontaneous brain activity into control signals (note, two other models related to
exogenous and modulated-response transducer architectures exist and can be found at Ref. 123); (e) functional model of
2-component demonstration system, where some form of Demo Device (e.g., a cursor or robotic arm) is used to demonstrate
transducer control; (f) functional model of 3-component demonstration system.
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TABLE 1. BI design taxonomy proposed by Mason et al.123,125,129

Design Attribute Description

Target Application

Target Population The target group of people who will use the technology.

Target Activity The activities that the target population would like to do with the assistive technology.

Target Environment The location(s) where the assistive technology is designed to be used.

BI AT Design Model

System Design Model The general design architecture defining the principle components used in a BI design and their

configuration. All but one of the principal design models are presented in Fig. 1. (The one model not

shown is the BI Transducer Model which is represents a single BI Transducer)

Principle Design Components

BI Transducer The component that translates measured brain activity into basic control signals.

Transducer Design Model The general architecture used for the transducer design. There are three primary design models:

exogenous (an external stimulator in used to evoke response from the user), endogenous (no

stimulator is required as control signals are generate internally) and modulated response (a var-

iation on exogenous designs). The reader is directed to 123 for more detail on these models.

Bio-recording Technology This attribute refers to the class of equipment (sensors, amplifiers, converters and filters) used to

measure a person’s brain activity in a BI Transducer. Researchers have used EEG, ECoG, custom

implanted microelectrode arrays and amplifiers, and functional near infrared. Others have discussed

possible fMRI and MEG solutions, but the practicality of these later approaches is suspect.

Neurological Phenomenon This attribute refers to the phenomenon (or phenomena) used to control a BI Transducer. For

example, a P300 response in EEG to an oddball stimulus is a well-studied phenomenon employed in

several BI Transducers. Another well-known phenomenon is the increase in neural firing rates

measured in microelectrodes as neural activity increases.

Sensor Placement Sensor Placement identifies the general location of bio-sensors used in a BI Transducer.

Artifact Processor A component of a BI Transducer that removes artifact from the input signal. Note, many transducer

designs do not include artifact processing.

Stimulator (and Stimulus
Mechanism)

The Stimulator and its associated Stimulus Mechanism (e.g., strobe lights or flashing areas of a

screen) are used to stimulate the user and evoke a response in exogenous or modulated-response

transducers. A wide variety of stimuli methods have been used and are directly related to the

neurological phenomenon.

Feature Extractor A component of a BI Transducer that translates the (artifact-free) input brain signal into a value

correlated to the neurological phenomenon. The output value is referred to by the Pattern Recog-

nition community as a ‘‘feature vector’’.

The function of this component is sometimes referred to as noise reduction, filtering, prepro-

cessing or spike detection/sorting depending on the background of the investigator. For example,

researchers working with implanted microelectrodes tend to use the terms such as ‘‘spike detection’’

and ‘‘spike sorting’’ instead of Feature Extraction as this tend to be a mores specific description of

the type of feature extraction they are performing.

Feature Translator The component of a BI Transducer that translates the feature vector into a useful control signal.

Researchers working with discrete transducer outputs often refer to this component as a Feature

Classifier or Classifier as these terms are more specific. For similar reasons, researchers working

with implanted microelectrodes use the term ‘‘decoding function’’ (or something similar).

Output The type and dimensionality of a BI Transducer output. For example, 2-state discrete output, or a

one-dimensional, continuous amplitude signal. See BI Transducer – Output in Table 3 for more

examples and ‘‘Which designs are comparable?’’ section for definition of terms.

NC Support This attribute indicates whether the transducer design will support No Control (NC), that is it will

produce a stable output when the person using the transducer is not controlling the transducer (i.e.,

the user is in a ‘‘No Control’’ state). (Note, the opposite of No Control in the taxonomy is Intentional

Control – one or more states where the user is intentionally trying to affect the transducer output.)

Discrete output (endogenous) transducers that support NC will have an output state/value reserved

for No Control. The same is true for exogenous transducers that produce a spatial reference.

Continuous output (endogenous) transducers that support NC will ideally hold their output at the last

output value produced during Intentional Control.
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METHODS

The designs selected for this survey were chosen
from journal and conference papers found in Pubmed,
IEEE Xplore or ISI Web of Science databases that met
the following criteria: (1) the keywords BI, BCI, BMI,
DBI, ABI, or the corresponding descriptions, appeared
in their title, abstract or keyword list; and (2) the paper
described one or more of the principal design compo-

nents listed in Table 1 (minimum technology content
was a BI Transducer). Papers which presented tutori-
als, descriptions of new bio-recording technologies
(such as new sensor and amplifier designs), overviews
of research activities, or neuroanatomy and neuro-
physiology discussions were not considered. In addi-
tion, well-known historical BI-related works such as
Vidal201 and Sutter190 were also included. Each paper
was assigned to a research group using the affiliation of

TABLE 1. Continued.

Design Attribute Description

Control Interface (CI) The Component that is added to a transducer that produces a relatively low dimensional output in

order to expand the control dimensionality to a level required by an Assistive Device. A good

example of a Control Interface is a scanning menu or scanning keyboard where a simple click

(a low-dimensional signal) can be translated into a full set of symbols (letters or command).

Interface Paradigm The type of interface (or interaction style) presented to the user. Examples are menu systems,

virtual keyboards, and icon-based point and click interfaces.

Input The type and dimensionality of the input signals used to operate a Control Interface.

Temporal Control Paradigm This attribute defines the temporal operation characteristics of the interface. In Ref. 126, we char-

acterized the temporal operation as one of four control paradigms. (1) synchronized (periodically

available, no NC support); (2) system-paced (periodically available, NC support); (3) constantly-

engaged (continuously available, no NC support); and (4) self-paced (continuously available, NC

support).

This terminology was proposed in Ref. 126 as an alternative to the overloaded adjectives, asyn-

chronous and synchronous, or cue-based and non-cue-based.

Translation The Translation attribute defines the methodology by which the input signals are translated into

output signals. For example, a 2-state discrete input may be translated into a full alphanumeric set

using an appropriately designed virtual keyboard.

Output The Output of a Control Interface defines the characteristics of the signals produced by the Control

Interface. Generally the output is similar to the type of BI Transducer output although the dimen-

sionality is much higher.

Demo Device (DD) The Demo Device component represents an infinite range of possible devices used to test the

controllability of a BI technology. Devices can provide simple demonstrations of state or level control

or they can allow for much more complex control tasks.

Device Type The Type of Demo Device defines the general class of device being used. For example, a model

vehicle, a robotic arm or a monitor with a pointer/cursor. Other examples can be found under Demo

Device – Device Type in Table 3.

Type of Control This attribute defines the general class of actions that a user can perform with the devices: e.g.,

discrete item selection, moving an object, continuous control of an object.

Dimensionality The Control Dimensionality defines the range of control (e.g., the number of selectable states, the

dimensions of continuous control) the device allows. People sometimes refer to this as the ‘‘degrees

of freedom’’ in the device.

Temporal Control Paradigm Same classes as Temporal Control Paradigm for Control Interfaces (defined above).

Feedback The Feedback attribute defines the type of feedback from a Demo Device to the user (e.g., visual,

aural).

Assistive Device (AD) The apparatus that interacts directly with objects or people in the environment.

Type The Type of Assistive Device defines the general class of device being used. For example, a speech

synthesizer or FES-based neuroprosthetic. Other examples can be found under Assistive Device –

Type in Table 3.

Feedback The Feedback attribute defines the class of feedback from an Assistive Device to the user (e.g.,

visual, aural).
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the first author at the time of publication. A research
group was defined as the individuals working within a
single laboratory or institution or in a group of
laboratories or institutions working on a single project.
(Refer to Appendix A for a list of research groups.)
Papers from a research group that described previously
reported designs were not included to avoid counting
duplicates. For example, if a research group published
two papers that reported different tests with the same
technology design, the later paper was not included in
our test set.

As we were not evaluating the quality of these
designs, that is, how well they worked, but rather
collecting design ideas or strategies, we weighted all
reported designs equally. Thus designs from journal
papers were not stressed more than conference papers
in our frequency analysis. Likewise, designs from
established laboratories with multiple publications did
not carry more weight than those from new researchers
with few publications.

A classification template based on the BI design
taxonomy listed in Table 1 was constructed for this
survey. We extended the taxonomy by adding
sub-categories to each design attribute. The attribute
sub-classes, as these sub-categories were named, were
initially proposed by our team based on our experience
with BI technology and related human–machine
interaction research and then refined after an initial
pass through the selected papers. To illustrate the
concept of attribute sub-class, Table 2 depicts the
attribute sub-classes for BI Transducer – Bio-recording

Technology attribute. This example also defines the
text style used in this paper to identify attribute names.
Specifically, design attribute categories such as BI

Transducer, are written in a bold, italic, sans-serif,
font, design attribute names (like Bio-recording Tech-

nology) are written in a serif, bold type and attribute
sub-classes (e.g., ECoG) are represented in serif, bold-
italic type. The full classification template with all the
design attributes and attribute sub-classes is listed in the
left two columns of Table 3.

Each paper was reviewed by at least two individuals
from a team of five reviewers which included the first
four authors and a contracted medical student.
Reviewers categorized each design by selecting the

closest attribute sub-class for each design attribute
defined in the classification template. Design attributes
that were not reported were recorded as such. For
the papers that reported multiple designs or design
options, multiple classifications were recorded per
paper. The reviewers classified designs based only on
what was reported in each paper or referenced works.
No personal knowledge of an author’s work was used
in the classification.

RESULTS AND DISCUSSION

The detailed classification results of the survey are
summarized in Table 3. The references listed in the
third column represent all the papers that contain
designs with the listed attribute sub-classes. For
instance, all the references listed beside Target Activity
– communication with people (synth. speech, text or
drawing) are papers with technology designs aimed to
help individuals communicate. As such, this table
provides a comprehensive historical reference of all BI
designs up to January 2006, which can be an extremely
valuable resource for technology designers or new
researchers entering the field. For example, if one is
interested in finding all the BI technology designs that
have used movement related potentials in EEG gen-
erated by movement imagery, the references to relevant
journal and conference papers can be found under BI

Transducer – Neurological Phenomenon – movement-
related potentials from imagined movements. Alterna-
tively, if one wants an existing virtual keyboard design,
they can find the Control Interface designs that emu-
late a keyboard under Control Interface-Interface
Paradigms.

In Table 3, papers from the same research group are
collected within square brackets separated by a semi-
colon. Conference papers are displayed in normal type,
e.g., [17] while journal papers are shown in bold type,
e.g. [17]. The column on the right summarizes the
number of research groups, journal papers and con-
ference papers within each attribute sub-class. As this
work covers technology design and not technology
evaluation, there has been no attempt to rate how
reliably or accurately the published designs function;
that is an issue for manuscript reviewers and readers to
interpret once the design details and target applications
are understood.

There are many interesting observations or com-
ments which could be made from the results in Table 3.
We will first focus our discussion on which BI designs
can be compared to each other. Then we will specifi-
cally look at what technology designs have been pro-
posed, which target applications have been pursued,

TABLE 2. Example of attribute sub-classes for the BI-
Transducer – Bio-recording Technology design attribute.

Design Attribute Attribute Sub-Class

BI Transducer

Bio-recording Technology EEG
ECoG
Implanted microelectrodes
Near Infrared (scalp)
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TABLE 3. Results of BI technology design survey. Papers from the same research group are grouped within square brackets, [...],
and conference papers are in normal type, e.g., [17], while journal papers are in bold type, e.g., [17]. Design attribute names are
written in bold type and attribute sub-classes will be represented in bold-italic type. The column on the right summarizes the

number of research groups (g), journal papers (jp) and conference papers (cp) within each attribute sub-class.

Design Attribute Attribute Sub-Class Papers with Attribute Sub-Class

Counts

g (jp,cp)

Target Application

Target
Population

Able-bodied individuals [104] [133] 2 (0, 2)

Full paralysis (locked-in) [117, 160] [15, 23, 74, 75, 86, 87, 106, 109, 73] [14] [100, 156]

[64, 65, 69, 71, 149, 151; 165, 173, 68] [52] [118, 176] [91] [

103, 167, 102] [168] [47, 207, 210, 213] [ 185] [26, 93, 94, 25,

95, 96] [98] [48] [190] [134] [21] [39] [77] [81] [99] [172, 171]

23 (44, 9)

Partial paralysis or amputee [164, 162] [122] 2 (2, 1)

Paralysis (unspecified level) [3] [12] [20, 44, 141] [30, 206] [146, 161] [92] [38] [55, 187,

186, 215] [97] [46] [144]

11 (13, 5)

Individuals with disabilities
(multiple categories or
non-specific)

[61] [183] [16, 22, 127, 124, 9, 24, 121] [45, 115, 104] [54, 31]

[105, 143, 145, 163, 170, 179, 181, 50, 83, 89, 169, 180] [57,

58, 59] [7] [82, 194] [138] [139, 140, 198] [41, 157, 175, 192]

[132, 130, 131, 188, 212] [218] [112] [110] [43] [70] [67, 66]

[78, 154] [113] [119] [202]

23 (32, 25)

Not reported [28, 29, 42, 174] [193] [153] [214] [152, 76] [72] [111, 184] [11,

13] [17 , 10, 49] [18, 116, 19, 101] [33, 34, 120, 205, 216, 32,

53, 85, 203, 204] [63, 142, 148, 150, 159, 196, 88, 114, 182]

[60] [79, 80] [5, 6, 36, 4, 35, 37] [136, 137] [1, 2, 166] [191]

[178] [8] [27, 135] [177] [197] [56] [201] [40] [84] [90] [62] [195,

217] [155]

31 (41, 29)

Target
Activity

General communication or
control (non-specific)

[160, 3] [23, 183] [14] [ 22, 127, 124, 9, 24, 49, 121] [18, 20,

45, 115, 44, 101, 141] [120, 216, 31, 53, 85, 203] [64, 65, 69,

71, 105, 142, 146, 145, 163, 173, 179, 181, 50, 169, 180] [60]

[118, 176, 7, 80] [194] [92] [102] [37, 138] [136, 137, 140] [1,

2, 166] [157, 191] [47, 132, 130, 131, 188, 207, 210, 212] [26,

93, 94, 112, 25, 95, 96] [110] [98] [38] [177] [43] [187, 215,

214] [134] [40] [84] [39] [70] [217] [77, 144, 78, 154] [81] [119]

[172, 202]

34 (61, 34)

Communication with people
(synth. speech, text or drawing)

[117] [15, 74, 75, 86, 87, 106, 109, 73] [149, 151, 165, 114]

[52] [57] [91] [103, 167] [213] [185] [48] [190] [67, 66] [113]

13 (18, 7)

Control of

Appliances/devices (e.g., TV,
phone, computer, bed)

[61] [11] [16] [19, 104] [33, 54] [170, 83, 88, 89] [58, 59] [139,

198] [168] [41, 192] [218] [8] [27, 135] [186, 56] [171]

15 (13, 12)

Objects/avatar in virtual envi-
ronment (VR, games)

[13] 1 (1, 0)

Paralyzed limbs (for body posi-
tioning or obj manipulation)

[16] [30, 100, 156, 206] [143, 164, 162, 161, 68] [82, 193]

[153] [122] [55, 186, 56] [97] [21] [46] [99]

11 (16, 5)

Vehicle [133] [197] 2 (1, 1)

Personal mobility (e.g., operating a
wheelchair)

[11, 12] 1 (1, 1)

Not reported [28, 29, 42, 174] [152, 76] [72] [111, 184] [17, 10] [116] [34,

205, 32, 204] [63, 148, 150, 159, 196, 182] [79] [5, 6, 36, 4,

35] [175] [178] [201] [90] [62] [195] [155]

17 (24, 11)

Target
Environment

General living environments/
home

[160] [87] [49] [54] [110] 5 (3, 2)

Other [133] 1 (0, 1)
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TABLE 3. Continued.

Design Attribute Attribute Sub-Class Papers with Attribute Sub-Class

Counts

g (jp,cp)

Not reported [61, 3] [117] [15, 23, 74, 75, 86, 106, 109, 111, 184, 73, 183]

[11, 14, 13, 12] [16, 17, 22, 127, 124, 10, 9, 24, 121] [18, 20,

45, 115, 116, 19, 44, 101, 104, 141] [33, 34, 120, 205, 216,

31, 32, 53, 85, 203, 204] [28, 29, 30, 100, 156, 206, 42, 174]

[63, 64, 65, 69, 71, 105, 143, 142, 146, 145, 148, 149, 150,

151, 159, 164, 162, 163, 165, 161, 170, 173, 179, 181, 196,

50, 68, 83, 88, 89, 114, 169, 180, 182] [52] [57, 58, 59, 60]

[79, 118, 176, 7, 80] [82, 193, 194] [91] [92] [103, 167, 102] [5,

6, 36, 4, 35, 37, 138] [136, 137, 139, 140, 198] [153] [1, 2,

166] [168] [41, 157, 175, 191, 192] [47, 132, 130, 131, 188,

207, 210, 213, 212] [185, 218] [26, 93, 94, 112, 25, 95, 96]

[178] [8] [98] [27, 135] [38] [177] [122] [197] [43, 48] [55, 187,

186, 215, 56, 214] [201] [190] [97] [134] [40] [84] [90] [21]

[152, 76] [39] [70] [72] [46] [62] [67, 66, 195, 217] [77, 144,

155, 78, 154] [81, 113] [99] [119] [172, 171, 202]

55 (129, 67)

System Design Model

System
Design Model

Full AT
2-component (T-AD) [54] [143, 162, 161, 68] [67] 3 (4, 2)

3-component (T-CI-AD) [15, 74, 86, 106] [33] [149, 179] [91] [98] [48] [190] 7 (10, 1)

Demonstration System
2-component (T-DD)

[117] [75, 87, 109, 73, 183] [11, 14, 13, 12] [16, 127, 24, 121]

[31, 203] [28, 29, 30, 206] [69, 71, 105, 142, 146, 148, 150,

164, 163, 165, 170, 114, 180] [52] [59] [193, 194] [103, 167,

102] [136, 139] [1, 2] [132, 130, 131, 188, 207, 210, 213, 212]

[185] [94, 112, 95, 96] [110] [27, 135, 133] [197] [43] [187,

215, 214] [201] [152, 76] [62] [66, 195] [113, 144]

26 (53, 21)

3-component (T-CI-DD) – 0 (0, 0)

Transducer (T) [61, 160, 3] [23, 111, 184] [17, 22, 124, 10, 9, 49] [18, 20, 45,

115, 116, 19, 44, 101, 104, 141] [34, 120, 205, 216, 32, 53,

85, 204] [100, 156, 42, 174] [63, 64, 65, 145, 151, 159, 173,

181, 196, 50, 83, 88, 89, 169, 182] [57, 58, 60] [79, 118, 176,

7, 80] [82] [92] [5, 6, 36, 4, 35, 37, 138] [136, 137, 140, 198]

[153] [166] [168] [41, 157, 175, 191, 192] [47] [218] [26, 93,

25] [178] [8] [38] [177] [122] [55, 186, 56] [97] [134] [ 40] [84]

[90] [21] [39] [70] [72] [46] [62] [217] [77, 155, 78, 154] [81]

[99] [119] [172, 171, 202]

43 (67, 46)

Principle Design Components

BI Transducer
Transducer
Design Model

Endogenous [61, 160, 3] [117] [15, 23, 74, 75, 86, 87, 106, 109, 111, 184,

183] [16, 17, 22, 127, 124, 10, 9, 24, 49, 121] [18, 20, 45, 115,

116, 19, 44, 101, 104, 141] [34, 120, 205, 85] [28, 29, 30, 100,

156, 206, 42, 174] [63, 64, 65, 69, 71, 105, 143, 146, 145,

148, 149, 150, 151, 159, 164, 162, 163, 165, 161, 170, 173,

179, 181, 196, 50, 68, 83, 88, 89, 114, 169, 180, 182] [57, 58,

59, 60] [79, 118, 176, 7, 80] [82, 193, 194] [92] [103, 167, 102]

[5, 6, 36, 4, 35, 37, 138] [136, 137, 139, 140, 198] [153] [166]

[41, 157, 175, 191, 192] [47, 132, 130, 131, 188, 207, 210,

213, 212] [218] [26, 93, 25] [110] [178] [8] [98] [38] [177] [122]

[197] [55, 187, 186, 215, 56, 214] [97] [134] [40] [21] [152, 76]

[39] [70] [72] [46] [62] [217] [77, 144, 155, 78, 154] [81] [99]

[119] [172, 171, 202, 202]

46 (112, 54)

Exogenous [23] [11, 14, 13, 12] [33, 54, 216, 31, 32, 53, 203, 204] [142]

[52] [91] [1, 2] [168] [185] [94, 112, 95, 96] [43, 48] [201] [190]

[84] [90] [62] [67, 66, 195] [113]

18 (21, 14)

Modulated response [73] [27, 135, 133] 2 (2, 2)
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Design Attribute Attribute Sub-Class Papers with Attribute Sub-Class

Counts

g (jp,cp)

Neurological
Phenomenon

Changes in cell firing rate
Related to attempted
movement

[28, 29, 30, 100, 156, 206, 42, 174] [82, 193, 194] [153] [98]

[55, 187, 186, 215, 56, 214] [97] [152, 76] [72] [99]

9 (18, 6)

Related to imagined
movement

– 0 (0, 0)

Related to cognitive task [144] 1 (1, 0)

In response to stimuli – 0 (0, 0)

Mu, alpha, beta or other rhythm
power

[117] [109, 111] [10] [18, 115, 116] [34] [105, 161, 50, 89, 114]

[ 103, 167, 102] [166] [47, 132, 130, 131, 188, 207, 210, 213,

212] [110] [8] [197] [134] [119]

14 (23, 8)

ERD or ERS [45, 104, 141] [205, 85] [69, 143, 146, 145, 148, 150, 164,

162; 163, 165, 170, 173, 68, 83, 88, 169, 180] [80] [8] [172,

171, 202]

6 (17, 10)

Movement-related potentials
From attempted movement

[17, 22, 127, 49, 121] [20, 45, 19, 44, 101, 104, 141] [120,

205] [63, 64, 65, 159, 182] [79, 118, 176, 7, 80] [218] [26, 93,

25] [40] [217]

9 (18, 12)

From imagined movements [184] [16, 124, 9, 24] [71, 149, 179, 181, 196] [59, 60] [5, 6,

36, 4, 35, 37] [136] [191] [178] [38] [122] [21] [39] [46] [62] [81]

15 (18, 10)

P300 (or N100) response [23] [11, 14, 13, 12] [216, 53] [52] [91] [1, 2] [168] [ 185] [43,

48] [84] [90] [62] [67, 195]

13 (13, 7)

Slow-cortical potentials (SCPs) [15, 23, 74, 75, 86, 87, 106, 183] [134] 2 (8, 1)

Response to basic cognitive tasks [160, 3] [92] [138] [137, 139, 140, 198] [191, 192] [70] [77, 78,

154]

7 (6, 8)

SSVEP response to visual stimulus [33, 54, 31, 32, 203, 204] [142] [94, 112, 95, 96] [190] [113] 5 (7, 6)

VEP response to visual stimulus [201] [66] 2 (1, 1)

Audio/aural evoked potentials
(AEP)

[73] 1 (0, 1)

Conscious modulation of brain
response to stimuli

[27, 135, 133] 1 (2, 1)

Other phenomena [10] [6] [177] 3 (1, 2)

Multiple phenomena [61] [151] [57, 58] [41, 157, 175] [155] 5 (6, 2)

Bio-recording
Technology

EEG [61, 160, 3] [15, 23, 74, 75, 86, 87, 106, 109, 111, 184, 73,

183] [11, 14, 13, 12] [16, 17, 22, 127, 124, 10, 9, 24, 49, 121]

[18, 20, 45, 115, 116, 19, 44, 101, 104, 141] [33, 34, 54, 120,

205, 216, 31, 32, 53, 85, 203, 204] [69, 71, 105, 143, 142,

146, 145, 148, 149, 150, 151, 159, 164, 162, 163, 165, 161,

170, 173, 179, 181, 196, 50, 68, 83, 88, 89, 114, 169, 180,

182] [52] [57, 58, 59, 60] [91] [92] [103, 167, 102] [5, 6, 36, 4,

35, 37, 138] [136, 137, 139, 140, 198] [1, 2, 166] [168] [41,

157, 175, 191, 192] [47, 132, 130, 131, 188, 207, 210, 213,

212] [185, 218] [26, 93, 94, 112, 25, 95, 96] [110] [178] [8] [27,

135, 133] [38] [177] [122] [197] [43, 48] [201] [ 190] [134] [84]

[90] [21] [39] [70] [46] [62] [67, 66, 195, 217] [77, 155, 78, 154]

[81, 113] [119] [172, 171, 202, 202]

44 (106, 62)

ECoG [117] [63, 64, 65] [79, 118, 17 6, 7, 80] [190] 4 (8, 2)

Implanted microelectrodes [28, 29, 30, 100, 156, 206, 42, 174] [82, 193, 194] [153] [98]

[55, 187, 186, 215, 56, 214] [97] [152, 76] [72] [99, 144]

9 (19, 6)

Near Infrared (scalp) [40] 1 (1, 0)
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Counts

g (jp,cp)

Sensor
Placement

In/over motor cortex [74, 86, 87, 106, 111, 183] [16, 17, 127, 9, 49] [101] [53, 85]

[100] [71, 105, 146, 148, 149, 150, 164, 162, 163, 165, 170,

68, 88, 89, 180, 182] [52] [60] [157, 175] [188] [26, 93, 25] [38]

[152, 76] [39] [72] [217] [99]

17 (30, 16)

In/over somatosensory cortex [22, 24] [116] [205] [30, 206, 42] [63, 143, 161, 179, 114] [79,

118, 176, 7, 80] [82, 193, 194] [153] [130, 131, 213, 212] [98]

[55, 187, 186, 215, 56, 214] [134] [40] [21] [62] [67] [81]

17 (29, 9)

In/over occipital cortex [33, 54, 31, 32] [142] [94, 112, 95] [27, 135, 133] [190] [113] 6 (9, 4)

In/over parietal cortex [43, 48] [84] [144] 3 (4, 0)

In/over temporal cortex – 0 (0, 0)

In/over multiple cortical areas [61, 160, 3] [117] [15, 23, 109, 184, 73] [11, 14, 13, 12] [124,

10, 121] [18, 20, 45, 115, 19, 44, 104, 141] [34, 120, 216, 203,

204] [28, 174] [64, 65, 69, 145, 151, 159, 173, 181, 196, 50,

83, 169] [57, 58, 59] [91] [92] [103, 167, 102] [5, 6, 36, 4, 35,

37, 138] [136, 137, 139, 140] [1, 2, 166] [168] [41, 191, 192]

[47, 132, 207, 210] [185, 218] [96] [110] [178] [8] [177] [122]

[197] [201] [190] [97] [90] [70] [46] [66, 195] [77, 144, 155, 78,

154] [119] [172, 171, 202]

37 (59, 40)

Not reported [75] [198] 2 (1, 1)

Artifact
Processing

OA and EMG removed [13, 12] [163] [93] [81] 4 (4, 1)

OA removed [74, 106] [11, 14] [122] [46] [67, 195] [119] 6 (4, 5)

None [61, 160, 3] [117] [15, 23, 75, 86, 87, 109, 111, 184, 73, 183]

[16,17,22, 127,124,10,9; 24,49,121] [18, 20, 45, 115, 116, 19,

44, 101, 104, 141] [33, 34, 54, 120, 205, 216, 31, 32, 53, 85,

203, 204] [28, 29, 30, 100, 156, 206, 42, 174]

[63,64,65,69,71,105,143,142,146,145; 148,149,150,151,159,

164,162,165,161,170,173,179,181,196,50,68,83,88,89,114,

169,180,182] [52] [57, 58, 59, 60] [79, 118, 176, 7, 80] [82,

193, 194] [91] [92] [103, 167, 102] [5, 6, 36, 4, 35, 37, 138]

[136, 137, 139, 140, 198] [153] [1, 2, 166] [168] [41, 157, 175,

191, 192] [47, 132, 130, 131, 188, 207, 210, 213, 212] [185,

218] [26, 94, 112, 25, 95, 96] [110] [178] [8] [98] [27, 135, 133]

[38] [177] [197] [43, 48] [55, 187, 186, 215, 56, 214] [201]

[190] [97] [134] [40] [84] [90] [21] [152, 76] [39] [70] [72] [62,

62] [66, 217] [77, 144, 155, 78, 154] [113] [99] [172, 171, 202]

52 (125, 64)

Stimulus
Mechanism

Flashing area of a screen [23] [11, 14, 13, 12] [33, 216, 31, 32, 53, 204] [52] [1, 2] [168]

[185] [94, 95, 96] [43, 48] [201] [190] [90] [62] [67, 66, 195]

14 (16, 12)

Strobe lights [54, 203] [142] [91] [27, 135, 133] [177] [113] 6 (5, 4)

Other mechanism [84] 1 (1, 0)

Tones [177] 1 (0, 1)

Feature
Extraction

No feature extraction
(input = feature)

[3] [74] [71] [193] [8] [ 72] [66] 7 (4, 3)

Single observation methods:
Calculation of single cell
neural firing rate

[28, 29, 156, 206, 174] [194] [98] [ 55, 187, 186, 215, 56, 214]

[97] [152, 76] [99]

7 (13, 4)

Power/signal amplitude in
single frequency band

[15, 74, 75, 86, 87, 106, 183] [10] [19, 44, 101, 104, 141] [33,

34, 31, 32, 203] [164, 161, 179, 50, 83, 88, 89, 169] [176]

[102] [166] [47, 132, 130, 131, 188, 213, 212] [93, 94, 95, 96]

[27, 135] [134] [40] [84] [21] [46]

16 (28, 19)
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Coherence or phase
calculation

[70] 1 (1, 0)

Signal amplitude differences [120] 1 (1, 0)

Matched filter (correlation with
template)

[13, 12] [64] [79, 118, 7, 80] [166] 4 (5, 3)

Power/signal amplitude in
multiple frequency bands

[117] [109] [45] [54, 120, 85] [105, 143, 142, 145, 151, 163,

165, 170, 114, 169] [60] [92] [167] [6, 4, 35, 37] [198] [207,

210] [218] [112] [110] [178] [133] [177] [122] [134] [155, 154]

[202]

21 (23, 14)

AR/AAR modeling [61, 3] [111, 184] [45, 141] [65, 146, 148, 149, 159, 162, 165,

181, 68, 180, 182] [80] [92] [103] [198] [157, 175, 191, 192]

[210] [26, 93, 25] [77, 78]

12 (22, 9)

Independent comp. analysis
(ICA)

[73] [13, 12] [216, 53, 204] 3 (2, 4)

Kalman filtering [13, 12] [65] 2 (2, 1)

KL Transform (PCA) [3] [30] [82] [166] [76] [195] 6 (3, 3)

Wavelet transform [23, 74] [116] [63, 64] [52] [80] [91] [198] [84] [62] [144] 10 (8, 4)

Custom/other transform [160, 3] [74] [16, 17, 22, 127, 124, 10, 9, 24, 49, 121] [18, 20,

115, 141, 141] [205] [ 100, 42] [69, 148, 150, 173, 196] [57,

58, 59, 60] [80] [5, 36, 138] [136, 137, 139, 140] [153] [166]

[41] [38] [197] [201] [84] [21] [39] [67, 217] [81] [119] [172,

171]

24 (31, 22)

Multi-observation methods:
Correlation of temporal
average of stimulus locked
response with template

[43, 48] [190] [90] [113] 4 (5, 0)

Size of temporal average of
stimulus locked response

[11, 14] [1, 2] [168] [185] [48] 5 (6, 1)

Feature
Translation

Linear classifiers:
Thresholding [74, 75, 86, 87, 106] [11, 13, 12] [17] [101] [33, 54, 31, 32, 53,

203] [63, 64, 65, 161, 196] [79, 118, 176, 7, 80] [91] [102]

[153] [1, 2, 166] [168] [130, 131, 212] [185] [94] [27, 135, 133]

[43, 48] [190] [40] [84] [113] [172, 171, 202]

22 (37, 13)

Baysean [116] [157, 175, 192] [201] [76] [72] [144] 6 (7, 1)

LDA [61] [23, 74] [18, 20, 45, 115, 19, 44, 104, 141] [120, 85] [69,

143, 142, 146, 149, 164, 162, 165, 179, 181, 68, 114, 180,

182] [52] [60] [80] [5, 36] [47] [26, 93, 112, 25, 95, 96] [134]

[21] [39] [67] [81]

16 (28, 16)

Other [74] [14] [34, 216] [173] [6, 36, 4, 35] [136, 137] [41, 191] [186] 8 (11, 3)

Nonlinear classifiers
k-Nearest Neighbours (LVQ) [16, 22, 127, 124, 9, 24, 121] [19] [145, 163, 165, 170, 181,

50, 88, 89, 169] [82] [36, 37] [178]

6 (11, 10)

ART, ARTMap, fuzzy ART [155] 1 (1, 0)

Hidden Markov Model [42] [148, 150, 151] [37] 3 (3, 2)

Neural Network (NN) [61, 3] [205, 204] [30, 206] [71, 159] [52] [58] [194] [103, 167]

[37, 138] [136, 137, 139, 140, 198] [8] [38] [177] [122] [21] [46]

[77, 78, 154]

17 (13, 16)

Support Vector Machines [61, 160] [111, 184, 73, 183] [19] [181] [57, 59, 60] [218] [197]

[90] [152] [70] [62] [66, 195, 217]

12 (11, 9)

Other nonlinear classifier [83] [92] [41] 3 (2, 1)

Linear continuous
transformation

[117] [15, 109] [10] [28, 29, 100, 156, 174] [105] [132, 188,

207, 210, 213] [110] [197] [55, 187, 215, 56, 214] [97] [72] [99]

[119]

13 (20, 6)

Nonlinear continuous
transformation

[98] [56] [72] 3 (2, 1)

Other [193] 1 (1, 0)

MASON et al.148



TABLE 3. Continued.

Design Attribute Attribute Sub-Class Papers with Attribute Sub-Class

Counts

g (jp,cp)

Output Discrete (all IC states)
2 -state [160, 3] [23, 111, 184, 73] [18, 20, 45, 115, 116, 44, 101, 104,

141] [205, 85] [69, 71, 143, 145, 162, 163, 165, 170, 173, 50,

68, 88, 89, 114, 169, 180, 182] [59, 60] [92] [5, 6, 36, 4, 35, 37]

[166] [41, 192] [185, 218] [26, 93, 112, 25] [178] [8] [38] [177]

[186] [134] [40] [21] [152, 76] [39] [46] [62] [217] [81] [172,

171, 202]

27 (43, 27)

3-state [44] [151, 159, 169] [198] [47] [122] [155] 6 (4, 4)

4-state [34, 120, 203] [181, 83] [197] [186] [144] 5 (6, 2)

5-state [61] [77, 144, 78, 154] 2 (3, 2)

6-state [144] 1 (1, 0)

8-state [193] [186] [72] [144] 4 (4, 0)

Discrete (with 1 unknown state)
3-state [57, 58] [136, 137] [157, 175, 191] [70] 4 (5, 3)

4-state [138] [136, 139, 140] 2 (1, 3)

Discrete (with 1 No Control state)
2-state [16, 17, 22, 127, 124, 9, 24, 49, 121] [19] [30, 42] [63, 64, 65,

164, 161, 179, 196] [79, 118, 176, 7, 80] [82] [153]

7 (17, 9)

3-state [27] 1 (1, 0)

Discrete (1 state = unknown and 1
state = No Control)
Continuous – fixed reference
1-D (like a stereo volume
control)

[10] [146, 148, 149, 150] [197] 3 (5, 1)

2-D (like a joystick) [55, 187, 186, 215, 56, 214] 1 (4, 2)

3-D (like a 3-D joystick) – 0 (0, 0)

Relative continuous - no reference
1-D (like the wheel on a wheel
mouse)

[117] [15, 74, 75, 86, 87, 106, 109, 183] [105] [103, 167, 102]

[132, 130, 131, 188, 210, 212] [110] [98] [135, 133] [97] [119]

10 (20, 5)

2-D (like a mouse position
control)

[29, 156, 174] [103] [207, 213] [72] [99] 5 (7, 1)

3-D (like a 3-D mouse position
control)

[100, 206] [194] 2 (3, 0)

2-D spatial reference – point or
region

[13, 12] [84] 2 (2, 1)

1 region [13, 12] [84] 2 (2, 1)

2 regions [185] [94, 112, 95, 96] 2 (3, 2)

4 regions [31] [142] [201] 3 (2, 1)

5 regions [11, 14] [91] 2 (2, 1)

10 regions [204] 1 (0, 1)

13 regions [33] 1 (1, 0)

16 regions [1] 1 (1, 0)

24 regions [32] 1 (0, 1)

26 regions [66] 1 (0, 1)

36 regions [23] [216, 53] [52] [168] [43, 48] [90] [62] [67, 195] 8 (6, 5)

48 regions [54] 1 (1, 0)

64 regions [1, 2] [190] [113] 3 (4, 0)

144 regions [1] 1 (1, 0)

Multiple – discrete outputs – 0 (0, 0)

Multiple – continuous outputs [28] 1 (1, 0)

Multiple – hybrid outputs – 0 (0, 0)
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NC Support NC supported [16, 17, 22, 124, 9, 24, 49, 121] [19] [30, 42] [63, 64, 65, 161,

179, 196] [79, 118, 176, 7, 80] [82] [27]

7 (16, 8)

NC not supported [2] 1 (1, 0)

Not reported [61, 160, 3] [117] [15, 23, 74, 75, 86, 87, 106, 109, 111, 184,

73, 183] [11, 14, 13, 12] [127, 10] [18, 20, 45, 115, 116, 44,

101, 104, 141] [33, 34, 54, 120, 205, 216, 31, 32, 53, 85, 203,

204] [ 28, 29, 100, 156, 206, 174] [69, 71, 105, 143, 142, 146,

145, 148, 149, 150, 151, 159, 164, 162, 163, 165, 170, 173,

181, 50, 68, 83, 88, 89, 114, 169, 180, 182] [52] [57, 58, 59,

60] [193, 194] [91] [92] [103, 167, 102] [5, 6, 36, 4, 35, 37,

138] [136, 137, 139, 140, 198] [153] [1, 166] [168] [41, 157,

175, 191, 192] [47, 132, 130, 131, 188, 207, 210, 213, 212]

[185, 218] [26, 93, 112, 25, 95, 96] [110] [178] [8] [98] [135,

133] [38] [177] [122] [197] [43, 48] [55, 187, 186, 215, 56, 214]

[201] [190] [97] [134] [40] [84] [90] [21] [152, 76] [39] [70] [72]

[46] [62] [67, 66, 195, 217] [77, 144, 155, 78, 154] [81, 113]

[99] [119] [172, 171, 202]

55 (114, 62)

Control Interface
Interface
Paradigm

Virtual keyboard
Single direct selection – 0 (0, 0)

Single indirect (pointer-based)
selection

[98] 1 (1, 0)

Multiple direct selections [149, 179] 1 (2, 0)

Multiple indirect (pointer-
based) selections

[15, 74, 106] 1 (3, 0)

Menu system
Single direct selection [33] [91] [48] [190] [67] 5 (3, 2)

Single indirect (pointer-based)
selection

[98] 1 (1, 0)

Multiple direct selections – 0 (0, 0)

Multiple indirect (pointer-
based) selections

[86] 1 (1, 0)

Icon based point and click – 0 (0, 0)

CI Input Discrete (1 NC state) 2 -state [179] 1 (1, 0)

1-D continuous – fixed reference [149] 1 (1, 0)

1-D relative continuous – no ref-
erence

[15, 74, 86, 106] [98] 2 (5, 0)

2D spatial reference – point or
region
5 regions [91] 1 (0, 1)

13 regions [33] 1 (1, 0)

36 regions [48] [67] 2 (1, 1)

64 regions [190] 1 (1, 0)

Temporal
Control
Paradigm

Synchronized [15, 74, 86, 106] [33] [149, 179] [91] [48] [190] [67] 7 (9, 2)

Constantly engaged – 0 (0, 0)

System-paced – 0 (0, 0)

Self-paced [98] 1 (1, 0)

CI Output Discrete N-state input (all IC
states)

[15, 74, 86, 106] [33] [149, 179] [91] [98] [48] [190] [67] 8 (10, 2)

Continuous – 0 (0, 0)

Spatial reference – 0 (0, 0)
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TABLE 3. Continued.

Design Attribute Attribute Sub-Class Papers with Attribute Sub-Class

Counts

g (jp,cp)

On
Mechanism

Automated [86] [33] 2 (2, 0)

Manual (assumed if not
reported)

[15, 74, 106] [10] [149, 179] [91] [5] [98] [48] [190] [67] 9 (9, 3)

Demo Device
Type Computer monitor with:

Bar or level indicator [71, 146, 148, 150] [110] [135] 3 (5, 1)

Discrete indicator [73] [163, 165, 170, 180] [95, 96] [144] 4 (4, 4)

Cursor + discrete functions
(like a mouse)

[113] 1 (1, 0)

Cursor [117] [75, 87, 109, 183] [28, 29, 206] [105] [193, 194] [103,

167, 102] [132, 130, 131, 188, 207, 210, 213, 212] [187, 186,

215, 214]

8 (23, 3)

Menu system [52] [1, 2] [185] [43] [62] [66] 6 (4, 3)

Object(s) in virtual world
(video game or VR)

[11, 14, 13, 12] [16, 127, 24, 121] [31] [69, 142, 114] [59] [112]

[201]

7 (9, 6)

Other virtual device used to
demonstrate direct brain
control

[105, 182] 1 (1, 1)

Model vehicle [136, 139] 1 (1, 1)

Robotic arm / hand [206] [194] 2 (2, 0)

Vehicle simulator [27, 135, 133] 1 (2, 1)

Other device used to demonstrate
direct brain control

[203] [30] [152, 76] 3 (2, 2)

Type of
Control

Object selection – direct item/
(parameter) value/action
selection

[73] [11, 14, 13, 12] [ 16, 127, 24, 121] [203] [30] [ 69, 105,

142, 163, 165, 170, 114, 180, 182] [52] [136] [1, 2] [185] [112,

95, 96] [27] [43] [152, 76] [62] [66] [144]

17 (21, 14)

Object selection – indirect (pointer
based) item/(parameter) value/ac-
tion selection

[113] 1 (1, 0)

Continuous value adjustment [28] [71, 146, 148, 150] [110] 3 (5, 1)

Object positioning
Move object from fixed
starting point(s) to 1 target per
trial

[117] [75, 109, 183] [31] [105] [103, 167, 102] [132, 131, 188,

207, 210, 213, 212]

6 (13, 3)

Move object from fixed
starting point(s) to 1 of N
possible targets

[87] [193, 194] [130] [133] 4 (4, 1)

Continuous positioning (path
not important)

[28, 29, 206] [59] [139] [135] [186, 215, 214] [201] 6 (7, 3)

Continuous path following/
navigation /drawing (where
path is important)

[187] 1 (1, 0)

Dimensionality 1 of 1 item (or value) selected - hit
or time out

[13, 12] [16, 127, 24, 121] [30] 3 (4, 3)

1 of 2 items selected [73] [69, 105, 163, 165, 170, 114, 180, 182] [112, 95, 96] [27]

[152, 76]

5 (8, 7)

1 of 3–10 items selected [11, 14] [142] [52] [136] [144] 5 (5, 1)

1 of more than 10 items selected [203] [1, 2] [185] [43] [62] [66] [113] 7 (5, 3)

In 1-D (object positioning or con-
tinuous value adjustment)

[117] [75, 87, 109, 183] [28] [71, 105, 146, 148, 150] [103,

167, 102] [132, 130, 131, 188, 210, 212] [110] [135, 133]

8 (19, 4)
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which design approaches have received little or no
attention and, finally, how well designs are reported.
Each of these topics is presented in a separate sub-
section below.

Which Designs Are Comparable?

The main goal of this work was to identify which BI
designs can be directly compared to each other.
Researchers may choose to compare BI technology
designs in terms of many potential factors; Accuracy,
response time, throughput, the amount of mental
attention required, ease of use or other usability factors
such as, physical size and sensor application require-
ments are a few factors of interest to researchers. Since
only technology that performs the same function can

be directly compared, we will first discuss compara-
bility of function.

Within the context of the chosen framework, tech-
nology comparisons can be made at various levels. BI
Transducer designs that produce the same output are
directly comparable (regardless of other factors such as
bio-recording technology, neurological phenomenon
or feature extraction and feature translation methods).
For example, all transducer designs producing the
same type of 2-state, discrete output can be compared.
This principle also applies for direct comparisons of BI
technology to non-BI technology like chin switches or
eye tracking systems. Likewise, BI Transducer and
Control Interface (CI) combinations producing the
same output are directly comparable, and could be
compared with BI Transducers that produce similar

TABLE 3. Continued.

Design Attribute Attribute Sub-Class Papers with Attribute Sub-Class

Counts

g (jp,cp)

In 2-D [31] [28, 29] [59] [103] [139] [207, 213] [187, 186, 215, 214]

[201]

8 (9, 4)

In 3-D [206] [193, 194] 2 (3, 0)

Temporal
Control
Paradigm

Synchronized [117] [75, 87, 109, 73, 183] [11, 14, 13, 12] [31] [69, 105, 105,

142, 163; 165, 170, 114, 180, 182] [52] [193, 194] [103, 167,

102] [1, 2] [ 132, 130, 131, 188, 207; 210, 213, 212] [185]

[112, 95, 96] [133] [43] [152, 76] [62] [66] [144]

18 (33, 15)

Constantly-engaged [203] [136, 139] [186] [113] 4 (3, 2)

System-paced – 0 (0, 0)

Self-paced [16, 127, 24, 121] [28, 29, 30, 206] [71, 146, 148, 150] [59]

[110] [27, 135] [187, 215, 214] [201]

8 (15, 5)

Device State
Feedback

Visual [117] [75, 87, 109, 183] [11, 14, 13, 12] [16, 127, 24, 121] [31,

203] [28, 29, 30, 206] [69, 71, 105, 105, 142, 146, 148, 150,

163, 165, 170, 114, 180, 182] [52] [59] [193, 194] [103, 167,

102] [136, 139] [1, 2] [132, 130, 131, 188, 207, 210, 213, 212]

[185] [112,95; 96] [110] [133] [43] [187, 186, 215, 214] [201]

[152, 76] [62] [66] [113, 144]

25 (49, 21)

Auditory [75, 73] 1 (1, 1)

Multi-modal sensory [27, 135] 1 (2, 0)

Assistive Device
Type Visual text display [15, 74, 87, 106] [149, 179] [91] [ 98] [48] [190] [67] 7 (9, 2)

Speech synthesizer [86] [91] [98] 3 (2, 1)

Appliance interface / remote con-
trol (wireless, IR, X10 to external
devices)

[33, 54] 1 (2, 0)

Limb control neuroprosthetic
(FES system)

[143, 142, 164, 162, 68, 161] 1 (5, 1)

Device State
Feedback

Visual [15, 74, 86, 87, 106] [33] [149, 164, 162, 179, 68] [193] [91]

[98] [48] [190] [67]

9 (14, 3)

Auditory [91] [98] 2 (1, 1)

Multi-modal sensory [54] [143, 142, 161] 2 (4, 0)
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high-dimensional outputs. Systems with Assistive
Devices (AD) that perform the same function are
directly comparable, where function may be strictly
defined as communication via a text display for
example, or more broadly defined as communication
(or information transfer) in general whether through a
text display, drawing tablet, or speech synthesizer for
instance. Now what may not be obvious to all readers
is that BI technologies can only be compared if they
produce the same output (i.e., perform the same
function at some level). The focus here is on output
and not the other design attributes. As stated above,
this could be the BI Transducer output, the Control
Interface output, the Demo Device output or the
Assistive Device output. The other design attributes are
not important in determining comparability (assuming
that the designs are suitable for the target application-
an issue that is discussed in the next section). As an
example, even though many BI researchers tend to
group technology by the bio-recording technology or
sensor design (e.g., EEG, ECoG, implanted arrays, or
more generally as invasive/non-invasive), the bio-
recording technology is irrelevant in determining if two
technologies can be compared at a functional level. For
instance, an EEG-based transducer can be directly
compared with one based on an implanted microelec-
trode array if the signal processing produces the same
type of output.

Within our results we encountered certain types of
transducer outputs that are not seen in common
interface technologies like keyboards, mice and joy-
sticks. These differences are important to this discus-
sion so we will elaborate on them here. In general,
there are three types of transducer output: discrete,
continuous and spatial reference – these categories
apply to all interface technologies. For brain inter-

faces, we have recognized that researchers use three
types of discrete output, two types of continuous out-
put and ranges of spatial reference output, all of which
are unique and thus cannot be directly compared. The
first type of discrete output we encountered was in line
with our expectation of discrete transducer output.
That is, the output signal had one or more states that
corresponded to when the user is intentionally con-
trolling the transducer plus a ‘‘do nothing’’ or ‘‘idle’’
state that corresponded to when the person was in a
No Control (NC) state.22,128 This is the behavior one
would expect from standard interface devices such as
keyboards and switches. We created the attribute sub-
class discrete (with 1 NC state) to refer to this type of
output signal. The second type of transducer produced
a discrete output that corresponded only to Intentional
Control (IC) states, i.e., there was no output state that
corresponded to the user’s NC state. These transducers
assumed that another mechanism would handle the
time periods when a user was in an NC state. This type
of output is not seen in normal interface devices. We
referred to this type of output signal as discrete (all IC
states). The third class of discrete transducer produced
an ‘‘unknown state’’ in the output to represent periods
where the transducer lacked enough evidence (or
confidence) to generate an output state classification
corresponding to an IC or NC state. We used the
attribute sub-class discrete (with 1 unknown state) if
there was no NC output state or discrete (with 1 un-
known and 1 NC state) if there was an NC output state.
Note, none of the later class was found in the survey
set.

For transducers that produce continuous control,
there were two general classes of output signal: con-
tinuous control relative to a fixed reference (like a
volume control on a stereo or a joystick) and contin-
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uous control relative to previous values (like the wheel
on a wheel mouse or the two-dimensional mouse
position control). The first class, which we called con-
tinuous (fixed reference), produces a sequence of
absolute continuous amplitude values while the sec-
ond, which we referred to as relative continuous (no
reference), produces a sequence of relative amplitude
changes.

The transducers that produced a spatial reference
(similar to eye tracking, a touchscreen or stylus
mechanism), either produced a small number of
selectable regions ( £ 5) or a large number of regions
(>10). As such, we arbitrarily grouped these types of
transducers into devices that could reference five or less
regions and those that could reference more than five
regions.

A summary of the number of journal papers, con-
ference papers and research groups related to compa-
rable BI Transducer designs is presented in Fig. 2.
From this figure we can see that 27 groups produced 68
designs for 2-state, discrete (all IC states) – 41 of these
designs were reported in journals and 27 in conference
proceedings. The specific papers are cited in Table 3
under BI Transducer – Output – discrete (all IC
states)-2-state. All designs in this category are directly
comparable. As another example, all 25 transducer
designs that produced a 1-D relative continuous (no
reference) output are directly comparable. Direct
comparison between the transducer designs in the
different output categories is either not possible (e.g.,
discrete versus continuous versus spatial reference) or
difficult to test and interpret, such as comparing the
designs classified as 3-state discrete (with 1 unknown
state) and 2-state discrete (all IC states).

When we switched focus to Control Interface out-
puts, we observed that all 12 of the designs surveyed
produced discrete symbols (alphanumeric characters or
commands) and thus are directly comparable even
though the underlying transducer, interface paradigm
orCI translationmethods are different.We also see that
within the Control Interface – Interface Paradigm

attribute, five designs (36%) were based on a single,

direct selection (as in Farwell and Donchin’s P300 sys-
tem menu48), three (22%) were single, indirect (pointer-
based) selections (like a point and dwell interface), two
(14%) were multiple, direct selections (e.g., the multi-
level menu system proposed by Scherer et al.179) and
four (28%) were multiple, indirect (pointer-based)
selections (like the binary keyboard in Birbaumer’s
Thought Translation Device107).

The Full AT system designs reported in Table 3
made use of the following Assistive Devices (AD): 11
papers (55%) from seven groups reported a visual text
display, three papers (17%) from three groups had a
speech synthesizer, two papers (11%) from one group
presented an appliance interface/remote control, and
six papers (17%) from one group reported various
designs using a limb control neuroprosthetic. The
designs within each of these AD categories can be
compared and possibly the text display systems could
be compared with those that employed a speech
synthesizer on a higher-level study of communication
ability.

What Technology Designs Have Been Proposed?

From the survey data we can determine what tech-
nology designs have been proposed up to January
2006. Due to space limitations, we will restrict the
discussion on overall trends with specific examples.

From Fig. 3 we can see that the majority of publi-
cations (56%) reported only a BI Transducer design.
Of the remainder, 36% reported a Demonstration Sys-
tem to demonstrate control with feedback, and only
8% have proposed Full AT solutions – 11 (5%) of
which used a 3-component system (Transducer-CI-AD
combination) and three (3%) used a 2-component
system (Transducer-AD). Refer to Fig. 1 for system
definitions if required.

We can also see from Fig. 4a and b, 166 endoge-
nous transducer designs (those driven from internally
generated brain activity) were reported by 46 groups.
This corresponded to 81% of the BI Transducer –
Transducer Design Model attribute sub-class. The
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remainder was 35 exogenous transducer designs (those
driven from external stimuli to evoke a brain re-
sponse) from 18 groups contributing 17%, and four
modulated-response transducers designs (those designs
where the user modulated their brain response to
external stimuli) from two groups representing the
last 2%. None of these design architectures is inher-
ently better than the others. Each has its own merits
and the choice of architecture depends on the target
application and the type of interactive control re-
quired (e.g., direct selection, object positioning or
spatial navigation). For instance, exogenous trans-
ducers have the benefit that no user training is
required43 and they are the only design architecture
that offers direct spatial referencing, which is a
powerful interaction modality.129 The down side is
they require a constant commitment of a sensory
modality200 and repetitive sensory stimulation (where
the long-term tolerance and safety are not yet estab-
lished). They also must be paired with a Control
Interface (such as a menu system) in order to produce
a discrete or continuous output which may not be
appropriate for many target applications. Endogenous
transducers can produce discrete or continuous con-
trol and do not require an external sensory stimula-
tor. Both are desirable features for many applications.
However, the use of spontaneous components of the
EEG entails the need to recognize when control is
intended and when it is not. These designs also re-
quire a certain degree of user training which can
range from a few sessions to many sessions spanning

several weeks. Certain target applications, such as
those with dedicated users, may tolerate long training
periods, others, like short term use for out patient
rehabilitation, will not. The design architecture used
in modulated-response transducers provides discrete or
continuous control but requires an external stimulator
to produce a steady state response in the user’s brain
which the user modulates to generate control. As
these types of output can be provided by endogenous
designs without an external stimulator, the benefit of
this approach remains to be demonstrated.

As displayed in Fig. 4b, the BI Transducer –

Bio-recording Technology attribute is heavily biased
towards EEG (83%) with only 5% on ECoG, 12% on
implanted microelectrode arrays, and fraction of 1%
on functional Near Infrared. (fNI). When we analyzed
this data over time as in Fig. 5, we get a clear view of
the predominance of EEG in the context of the field’s
relatively short history. The relatively large proportion
of EEG-based designs compared to more invasive
designs and fNI does not represent superior quality of
control but rather reflects the relatively low barrier to
entry for this older technology (e.g., bio-recording
equipment is commercially produced, costs are rea-
sonable and consenting subjects are readily available).
The recent increase in more invasive methods, which
seem to promise higher-dimensional control, are
expected to continue as these technologies are proven
to be stable, tolerant and safe and eventually become
commercially available. The presence of fNI illustrates
how future BI solutions may not be based solely on the
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measurement of electrical signals, but may include
other signals such as metabolic, magnetic, chemical,
thermal or mechanical changes related to brain activity
as discussed in Ref. 199.

As with the design architectures discussed above, it
is impossible to say that a bio-recording approach is
superior to another without considering the target
application. For example, some researchers may
question the practical value of an EEG-based neuro-
prosthetic that uses external FES device to restores
hand grasp function. We would concur if the target
application was for permanent functional replacement
in a parapalegic with a complete spinal lesion, but not
so if the application was to use BI technology to assist
the rehabilitation of out patients who were recovering
from a stroke.108 From our perspective, EEG or other
externally applied technologies seem the most appro-
priate choice when the target application is for short-
term use (such as the rehabilitation example given
above) or where the user, their medical insurer and/or
government will not tolerate the costs and risks of
implantation. Implanted technologies seem the most
appropriate for individuals who require permanent or
prolonged functional replacement or augmentation.
But there are always special cases and the opinion that
really matters is not ours but the end user, their
insurer, governments and society in general. This later
point was emphasized in many discussions at the
BCI2005 workshop on clinical issues and applications
summarized in Ref. 108. This group viewed the
appropriateness of a bio-recording technology as a
cost–benefit analysis; one that needs to be performed
on a case by case basis and will probably change in the
future. To illustrate, the costs of implantation (equip-
ment, surgery, user impact, and social impact) are
currently large, but imagine if the cost of a technology
reduces to a relatively inexpensive day surgery with
minimal recovery and the technology is proven to be
stable and safe for one’s life time. This type of change
would shift what people consider appropriate and

ethical. Note, our comments assume that researchers
will be able to resolve the outstanding technical issues
identified by the BI community.199,211 For EEG, two
key issues are user discomfort and application time
related to ‘‘wet’’ electrodes. For implanted technology
the main issues relate to the stability, tolerance and
safety of the recording and transmission electronics.

When we analyzed BI Transducer – Output

versus Neurological Phenomenon (and the related
Bio-recording Technology), as depicted in Fig. 6, we
can see that overall the most predominant endogenous
transducer designs are discrete (all IC states) based
on movement related activity (whether temporal
movement-related potentials (MRPs), shown as
MRP–IM and MRP–AM, or power changes in par-
ticular frequency bands, shown as ERD/ERS or
rhythm power). Since these observations are biased
towards EEG as there were significantly more EEG-
based designs in our review set, we can alternatively
look within each bio-recording category. Here we see
that the EEG, ECoG and fNI designs were predom-
inantly discrete output (which is relatively easier to
manifest and qualify) and the few continuous control
designs predominantly offered only one-dimensional
control. Within the Implanted category, the technol-
ogy is more uniformly distributed across output type.
A few of these papers claimed their continuous
control technology produced an absolute continuous
value (i.e., a continuous (fixed reference) output).
However, this type of control is more difficult to
manifest, and because many authors did not specifi-
cally demonstrate this ability, it was impossible to
substantiate the authors’ claims. Only the exogenous
transducers produced a spatial reference output as
seen in Fig. 7. These designs were predominately
related to a P300 response or steady-state visual
evoked potential (SSVEP) response in EEG.
Although we cannot predict which neurological phe-
nomenon will be most suitable for a person or activity
in general, characteristics such as response time, the
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customization (system training) process and the
amount of user training required for a design (attri-
butes not included in the current design taxonomy) all
affect the practical usefulness of an approach. For
instance, one could not use the current fNI system to
control a vehicle as their response time is in the order
of 10s of seconds.

The majority of published Control Interface
designs, were either multiple-selection virtual keyboards
driven by a one-dimensional pointer (36%) like
the binary keyboard in Birbaumer’s TTD, or single-
selection menu systems with a spatial reference input
(27%) like the menu used in Farwell and Donchin’s
P300 system. All produced an N-state, discrete output
(translating continuous control or spatial reference in-
puts into N-state, discrete output values). There is a
wide variation in Control Interface design and most
designs do not seem based on existing interface design
principles.51,147,189 This issue requires further atten-
tion. Also, only a few research groups have proposed a
method for an On mechanism33,86 or discuss the use of
error correction158,194 – both of which are important
issues for real world BI AT.

Within the Demo Device category, we see in Fig. 8
that the majority of papers employed a computer
monitor with a range of virtual objects under
control: 40% with cursor (eight groups), 1% with
cursor + discrete functions (similar to a mouse)
(1 group), 23% with virtual world (seven groups), 12%
with discrete indicator (four groups), 10% with menu
system (six groups), 9% with level indicator (three
groups), and 3% with some other type of device (one
group). The rest presented some form of physical
device: 27% with vehicle simulator (one group), 18%
with model vehicle (one group), 18% with robotic arm/
hand (two groups), and 36% with some other type of
device (three groups). The dominance of cursor con-
trol as a demonstration was not unexpected as many
groups are looking to develop a computer interface.
The observed Demo Device – Type of Control attri-
bute broke down into 47% direct selection, 8% con-
tinuous value adjustment, 1% indirect selection and
44% object positioning. We found the breakdown of
object positioning informative. We had identified four
main types of object positioning, defined with increas-
ing difficulty: (1) move object from fixed starting
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task, IC = Intentional Control, NC = No Control state. All other terms are defined in the text.
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point(s) to 1 target per trial (in 1, 2 or 3D), (2)
move object from fixed starting point(s) to 1 of N
possible targets, (3) continuous positioning (path not
important), and (4) continuous path following/ naviga-
tion /drawing (where path is important). The first
type, which was used in the majority (50%) of these
types of demonstration systems, exhibits basic con-
trol, but the reported error rates are optimistically
exaggerated as there is no potential for moving to a
wrong target. Also there is no practical use for this
type of interaction, thus these types of demonstra-
tions should be limited to initial proof of concept
studies.

To conclude this discussion, we will say a few words
on which of these technologies are compatible. For
components to be compatible, the input of one com-
ponent must match the output of another. As an
example, all five of the Control Interface designs
require an input signal of type 1-D relative continuous
(no reference). These are compatible with the 25 BI
Transducer designs that produce the same type of

output. Many other examples can be extracted from
Table 3. This ability to identify compatible technology
has the potential to increase cross-fertilization of
technology between research groups.

Which Target Applications Have Been Pursued?

Of the papers that reported Target Population, 99%
of the designs were targeted at individuals with some
form of severe motor disabilities, some reports being
more specific, e.g., 56% were targeted at individuals
with paralysis (40% specified full paralysis, 2%, partial
paralysis and 14% unspecified). Less than 1% of designs
were aimed at able-bodied individuals (viz., pilots).

The papers that reported a specific Target Activity

were focused on communication with people (15%),
control of appliances (15%), control of paralyzed limbs
(12%), control of vehicle (1%), personal mobility (1%) or
control of objects in virtual reality (<1%). The
majority (56%) of papers were particularly vague
about their target activity. Most papers simply
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included wording such as ‘‘BCIs are a device for
communication and/or control’’ and did not indicate a
specific activity. Although we have recorded all these
papers as if they are targeting a general solution, we
suspect that several of the authors have not given this
aspect much consideration and treat the development
of BI technology as an academic challenge with no real
connection to their target community. This is a
vulnerable position for this research community as
funders have limited patience and may eventually
withdraw support if real, practical solutions that
address people’s needs do not begin to emerge.108,199

Which Design Approaches Have Received Little
or No Attention?

Several of the attribute sub-classes shown in the
above figures or tables had few or no observations.
These approaches are potentially opportunities for
technology advancement.

One of the most notable opportunities is the use of
implanted technologies for exogenous transducers.
Exogenous transducers produce a valuable mode of
interaction: direct spatial referencing. Given the rela-
tive success with EEG-based exogenous transducers,
one would expect greater accuracy and resolution from
an implanted system as seen in Ref. 190. Combining
this with a switch (discrete transducer) with NC
support one could have a powerful point-and-click
interface.

Within EEG-based exogenous transducers, there are
many configurations of stimulation mechanism
parameters that have not been tried. Alternative de-
signs may provide increased response to a stimulus,
resulting in higher recognition accuracy. The reader is
directed to Ref.129 for a more detailed discussion of
stimulation mechanism configuration and examples.

Another important area that has not received much
attention is the development of transducer designs that
support No Control (NC) (the times when a user is not
intentionally controlling the BI). This is a critical
design feature as lack of NC support precludes self-
paced (or asynchronous) AT operation, which is the
most natural mode of interaction. Although the num-
ber of BI Transducer designs with NC support has
grown modestly over recent years, more effort is
required before we can claim to have useful, self-paced
operation.128

In designs using field potentials, artifacts, particu-
larly ocular, movement and muscular (electromyo-
graphic, EMG), can often disrupt or confuse a
transducer. Given that this is a recognized problem in
signals from externally applied sensors,199 it is sur-
prising that less than 8% of the reported articles utilize
some form of artifact processing and fewer actually
demonstrate how well their artifact processing meth-
odologies work. The lack of artifact processing or the
use of a particular processing method is a major issue
that may render a particular transducer design useless
in real-world settings, and as such this issue deserves
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more attention from those working with externally
applied sensors.

Although a few people have demonstrated 2-D or
3-D continuous control (where the movement path is
not important), no one has reported continuous path
following (where the path is important). This type of
control is needed for drawing and navigation, which
are powerful, highly desirable abilities, and should be
attainable given the reported abilities of some of the 2-
and 3-D continuous controllers. All that seems to be
missing is for researchers with this technology to
demonstrate this ability.

One last item would be the On mechanism. Only
two groups have attempted to build an On mechanism
into their AT. Much more work is needed in this area if
the community is to realize useful, unsupervised
assistive technology.

Many additional areas have not been pursued, and
will probably be pursued only if the current
approaches prove to be fruitful. Examples include (1)
more complex Demo Devices and Control Interfaces,
(2) targeting individuals with inconsistent motor con-
trol, such as cerebral palsy (CP) or multiple sclerosis
MS, (3) targeting activities such as body control
(posture, bladder), and (4) building BI Transducers
that produce higher dimension outputs.

How Well Are Designs Reported?

The majority of the papers reviewed were found in
journals and conference proceedings of a technical
nature. This was not an unexpected result considering
that much of the research in the BI area is still in an
early technological development stage.

Overall, we were able to interpret the general tech-
nical characteristics of a design most reports, enough
to categorize the designs using our classification tem-
plate. However, many of the papers lacked significant
detail on the signal processing methods that precludes
replication of their work. This was not an issue of lack
of common vocabulary and methods but rather a lack
of full reporting. It is a serious scientific issue that the
BI community needs to address quickly in order to
establish and maintain rigor within this maturing field.

In general, the Target Application attributes
(Target Population, Target Activity and Target Envi-

ronment) were not well reported: 34% of Target Pop-
ulation, 17% of Target Activity, and 97% of Target

Environment were not reported. The relatively poor
reporting of targets is an important oversight in these
works since the usefulness of a design cannot be
interpreted or challenged without an explicit definition
of the target application.

BI Transducer – NC Support was also poorly
reported – 88% of papers did not report this attribute.

Most of these papers were testing BI Transducer –

Outputs in a synchronized test environment and as such
overlooked the need to test and report how well their
transducer designs functioned when a user was in the
No Control (NC) state. Many may dismiss this as
unimportant, but even in synchronized control envi-
ronments one can not guarantee the user will always be
in an Intentional Control (IC) state during the system-
defined windows of control, especially in real-world
(unsupervised) settings. As such, all BI Transducers
should be evaluated and their response to NC reported
in order to understand what types of errors can be
expected from a proposed design.

Finally, there was confusion around the use of the
terms ‘‘motor imagery’’ and ‘‘imagined movements’’ in
the literature. From the surveyed papers, ‘‘motor
imagery’’ or ‘‘imagined movements’’ was used on one
hand to describe a type of mental activity in able-
bodied subjects. In these cases, the subjects were likely
using some form of motor imagery – although the
experimental protocols rarely reported the specific
controls (such as structured questionnaires) to ensure
that the subjects were doing as requested. These terms
were also used to describe a mental activity in indi-
viduals with severe movement disabilities, although
with the lack of reported controls, it was possible that
these people were actually using attempted movements
instead of imagery. As attempted movements are
different neurological mechanisms then imagining
movement, it would help if the field could clarify the
use of these terms and use appropriate controls to
ensure subjects are using the neurological mechanism
requested.

CONCLUSIONS

We have completed the first comprehensive survey
of BI technology designs published up to January
2006. The results of this survey form a valuable, his-
torical cross-reference from which we have discussed
the following points: (1) which technologies are com-
parable, (2) which technology designs have been pro-
posed, (3) the application areas (users, activities and
environments) targeted by researchers, 4) the design
approaches which have received little or no attention,
which are possible opportunities for new technology,
and 5) how well designs are reported. We have also
demonstrated that this type of meta-analysis of BI
design is possible and produces information that is
valuable to the field.

This work directly addresses the need for methods
to identify comparable technology. Like other AT,
typical studies of BI technology cannot be evaluated
using classical means with a ‘‘no treatment’’ control
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group due to factors such as high subject variability,
small number of subjects, uncontrolled experimental
factors (unbalanced subject groups); and functional
limitations of the target population. As such, identi-
fying superior technology can only be achieved by
directly comparing BI technologies to each other
within the same test environment. The presented re-
sults not only allow researchers to determine which BI
technologies can be directly compared in this way, but
it also illuminates which non-BI technologies may be
compared as well.

In many ways, the discussion of the results pre-
sented is a sample of the type of analysis that can be
performed. There are many other types of analysis that
could be conducted, particularly analysis across mul-
tiple attributes, attribute development over time, and
technology developed within a specific research group.
A possible extension of this work may include an
on-line design database that would allow the commu-
nity to directly access these survey results and perform
their own analysis.

One of our hopes is that this study will spawn
further discussion of theoretical formalisms, leading
to improved (and possibly multiple) models and
taxonomies for BI technology. The attribute sub-
classes defined in Table 3, for instance, represents a
proposal of subcategories, not a final set, and we
encourage others to revise or expand this initial set.
For example, we have previously mentioned the
opportunities to add design attributes related to cus-
tomization, user training and response timing to the

design taxonomy. Other examples include adding
attribute sub-classes to more clearly delineate target
populations or expanding the Feature Extraction and
Feature Extraction design attributes to capture the
increasing diversity of signal processing methods
being reported.
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APPENDIX A: IDENTIFIED RESEARCH GROUPS

Table 4 lists the research groups used in this study
identified by the last name of one principal investi-
gator (PIs) from each group. For multi-institution
projects, multiple PIs were listed. PIs were selected
based on our knowledge or, for groups that were
unfamiliar (marked with an * in the table), the last au-
thor from the reviewed papers was used. Affiliated

TABLE 4. Research groups used in this study. IDs marked with a * indicate research groups that were unknown to the authors
and the principal investigator ID was assumed to be last author from reviewed paper(s).

ID Affiliation/Project

Anderson, C Department of Computer Science, Colorado State University, Fort Collins, CO, USA.

Andersen, R. Division of Biology, California Institute of Technology, Pasadena, CA, USA.

Aunon Department of Electrical Engineering, Colorado State University, Fort Collins, CO, USA.

Babiloni Human Physiology Institute, University ‘‘La Sapienza’’, Rome, Italy.

Bayliss Rochester Institute of Technology, Rochester, NY, USA.

Birbaumer Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.

Birch Neil Squire Society, Vancouver, BC, Canada.

Borkowski* Applied Science and Engineering Laboratories, A.I. duPont Institute, Wilmington, DE, USA.

Cabral* Department Telecommunications and Control, Escola Politécnica, São Paulo University, São Paulo, SP, Brazil.

Donchin Department of Psychology, University of South Florida, FL, USA

Donoghue Cyberkinetics Neurotechnology Systems, Inc., Foxborough, Massachusetts, and Department of Neuroscience,

Brown University, Providence, RI, USA.

Erfanian* Department of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran.

Gao, S. Department Electrical Engineering, Tsinghua University, Beijing, China.

Garcia Swiss Federal Institute of Technology, Lausanne, Switzerland.

Glassman* Department of Electrical Engineering, Massachusetts Institute of Technology

Huang* Institute of Biomedical Information and Control, Huazhong University of Science and Technology, Wuhan, China

Hsieh Department Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan.

Inokuchi Graduate School of Engineering Science, Osaka University, Osaka, Japan.

Kennedy Deparment of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.

Kipke Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.

Kostov Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada.
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institutions or projects are listed as the PIs latest pub-
lished affiliation. (Our intent here is to provide a quick
reference identifier for each group and this list is not
meant as an accurate representation of principal inves-
tigators for these institutions or projects. We recognize
that over time, researchers may change institutions from
the ones listed).
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