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Abstract— In contrast to the lung and the myocardium, the liver is
a relatively homogeneous organ with fewer anatomic constraints
on vascular branching. Hence, we hypothesize that the hepatic
vasculature could more closely follow optimization of branching
geometry than is the case in other organs. The geometrical and
fractal properties of the rat hepatic portal vein tree were investi-
gated, with the aid of three-dimensional micro-computed tomog-
raphy data. Frequency distributions of vessel radii were obtained at
three different voxel resolutions and fitted to a theoretical model of
dichotomous branching. The model predicted an average junction
exponent of 3.09. Hemodynamic model calculations showed that
with generation, relative shear stress decreases. Branching angles
were found to oscillate between those predicted by two optimality
principles of minimum power loss and volume, and of minimum
shear stress and surface. The liver shows a variation in branching
morphology similar to that of other organs. Therefore, we con-
clude that anatomic constraints do not have a major perturbing
impact.

Keywords—Blood flow, Liver, Fractality, Murray’s law, Opti-
mality.

INTRODUCTION

Thorough analysis of blood flow in vascular trees is ide-
ally performed using the measured geometry of intact trees.
A tree synthesized from statistical assumptions of a pop-
ulation of trees is a reasonable interim approach, because
detailed data on the morphology of intact vascular trees
are scarce. Vascular trees have been previously described
in terms of the properties of so-called segments, which are
defined as the vessel parts between two bifurcations in a
tree.4,20 After establishing the geometry of the network of
segments, it can be further analyzed using physical laws
of fluid dynamics to predict distributions of blood flow
and pressure throughout the branching system under in-
vestigation. Such studies may give important insight in the
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mechanisms through which particular organs are reperfused
in normal physiological conditions or during pathology.

To date, a plethora of theoretical and numerical mod-
els on vascular branching has been published.1,2,9,11,15,16

Most of these studies report theoretical analyses of the
relationship between the anatomical structure of the tree
and one or more hemodynamic variables, such as shear
stress,16 drag and power loss,15 and perfusion volume.9

Unfortunately, the bulk of these models are not well sup-
ported by empirical data. Previously, Kassab et al. built
a statistical representation of the morphology of the pig
coronary artery,4,10 which has been used in further studies
in an attempt to explain its design.22 Zamir also used data
on the human coronary arteries to investigate the fractal be-
havior of vascular networks.20,21 A problem with coronary
and pulmonary arterial trees (the most commonly investi-
gated trees) is that their branching structure may well be
constrained by anatomic structures such as the bronchi or
shell-like geometry of the myocardium. Moreover, these
organs cyclically deform over a relatively large range and,
hence, the vascular geometry is also dynamic. This means
that any one ‘snapshot’ may not be representative of the
average behavior of the tree.

The aim of this paper is to quantitatively describe the
branching properties of the rat hepatic portal vein tree.
The liver vascular network was chosen since its branching
morphology is minimally affected by anatomic constraints
or deformations. The three-dimensional (3D) vascular ge-
ometry is most conveniently obtained by 3D tomographic
image methods, such as X-ray computer tomography (CT)
and magnetic resonance imaging (MRI). Although these
imaging methods have limited spatial resolution, actual seg-
ment diameters down to a certain dimension can be used
with confidence. The 3D images were segmented and skele-
tonized. In addition to segment lengths and radii, junction
exponents were calculated at the bifurcations, and a simple
model of dichotomous branching was fitted to the data. As
our 3D µ-CT images of the rat hepatic portal vein tree
were obtained at three different levels of image resolution,
the effect of resolution of the imaging system was also
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investigated. Additionally, we report data on angles at the
bifurcations, which govern the efficacy of volume-filling
and may play a key role in the mechanism of distribution
of blood flow.

MATERIALS AND METHODS

Experiments

Specimen Acquisition

Male Sprague-Dawley rats weighing about 250 g were
used. The study was approved by the Institutional Ani-
mal Care and Use Committee. The rats were anesthetized
with an intraperitonial injection of 50 mg/kg Nembutal. A
midline abdominal incision was used to expose the portal
vein and canulated with polyethylene tubing. Heparin was
injected to prevent blood clotting. The suprahepatic portion
of the inferior vena cava was cut to allow exanguination.
The liver venous system was then flushed with heparinized
saline until the liver blanched uniformly. Subsequently ra-
diopaque Microfil� (MV-122; Flow Tech Inc Carver MA,
USA), a Pb containing silicon polymer, was injected man-
ually until the liver was uniformly colored to its edges,
but before the Microfil� emerged from the hepatic vein.
Following this the portal vein and hepatic artery were lig-
ated and the body placed in a refrigerator for two hours to
permit polymerization. The liver was resected, divided into
individual lobes and fixed in 10% neutral buffered formalin.
The liver was then immersed in a sequence of 30, 50, 75
and 100% glycerin solutions, each for 24 h. The liver lobe
was then suspended in a close-fitting thin-walled plastic
tube and immersed in bioplastic (Aldon Corp. Avon, NY,
USA). This set into a hard cylinder. The specimen was then
scanned in the µ-CT scanner.

Image Reconstruction

Specimens were scanned intact at two resolutions by
the Mayo µ-CT system as described previously.3 Briefly, it
consists of a spectroscopy X-ray source with a molybdenum
anode and zirconium foil filter so that the Kalpha radiation
(17.5 keV) photons predominate the emitted X-ray
spectrum. The specimen’s X-ray image was converted to
a light image in a thin Cesium Iodide (Thallium doped)
crystal and this image was recorded on a Charge Coupled
Device (CCD) array, consisting of 1024 × 1024 pixels. The
electronic signal from the CCD was recorded digitally and
stored in a computer. This image was generated at each of
721 equispaced angles of view around 360◦. These digital
data were then used to reconstruct the 3D image using a
modified Feldkamp reconstruction algorithm. The lens that
focused the light image onto the CCD array was adjusted
to generate 20 µm or 5.9 µm on-a-side pixels, and there-by

reduced the volume imaged proportionality. The 20 µm
voxel image was also converted into a 40 µm image.

The resulting 3D images were displayed and regions
of interest were extracted using image analysis software
(Analyze� 7.0; Biomedical Imaging Resource, Mayo
Clinic, Rochester, MN). Subsequently, the images were
segmented and skeletonized with software developed in
collaboration with our group (Tree Analyzer 2.2, The
Multidimensional Image Processing Lab, Penn State
University, University Park, PA). A detailed description
of that model-based vascular tree analysis software was
previously published.18 The obtained information included
the mean cross-sectional area A of the segments, the
segment length L, the segment coordinates, as well as the
connection to the parent segment. The segment radius (r)
was calculated via r = (A/π )

1
2 . Segment volume V was

calculated as V = A · L . The angle θ between two branch
segments with vectors v1 and v2 was computed via:

cos θ = v1 · v2

|v1||v2| . (1)

Effect of Image Resolution

Because of the finite image resolution due to X-ray trans-
mission image blurring and partial volume effects, seg-
ments with radii below a certain cut-off radius rc were re-
moved from the further numerical data analysis. The values
for rc were determined to be that radius at which the max-
imum of the probability histograms of the radii occurred.
Bin sizes equal to 0.5 and 10 times the image resolution
were taken for the segment radii and lengths, respectively.
For the radii, the downslope of the probability histograms
were alligned, to visualize the effect of image resolution
in quantitation of number of segments of different diame-
ters. The probabilities of the segment lengths were normal-
ized with respect to the maximal probability for each data
set.

Analysis

Once the essential geometrical characteristics of the tree
(i.e. radii, lengths and volumes of segments, and branching
angles) are determined, one can analyze the branching mor-
phology in terms of theoretical models. In the following,
we will consider a simple model based on the assumption of
dichotomous branching and characterization by an average
bifurcation index and junction exponent. Furthermore, we
will analyze branching with respect to various optimality
principles as applied to branching angles, and so called
structure-structure relationships22 between cumulative vol-
umes, lengths and the radius of the root segment of the tree.
We will also consider a model for relative shear stress, based
on the resistance determined from Poiseuille’s law. Finally,
we analyze our tree with respect to its fractal dimension as
defined by Zamir.21
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Dichotomous Branching Model

Assuming only bifurcations, the following relationship
between the radius of the mother segment (r0) and the radii
of the daughter segments (r1 and r2) can be established:

rk
0 = rk

1 + rk
2 , (2)

where k is the junction exponent. The above equation is
a generalized formulation of Murray’s cube law, in which
case k = 3. For any combination (r0, r1, r2), such that
r1, r2 < r0, Eq. (2) has a unique solution with respect to k.
To further characterize the bifurcation, one can also use the
bifurcation index λ, defined as:

λ = r2

r1
, r2 ≤ r1. (3)

Using Eqs. (2) and (3), the following relations between
the mother and daughter radii were established:

r1 = (1 + λk)−
1
k r0, (4a)

r2 = λ(1 + λk)−
1
k r0. (4b)

Furthermore, it was assumed that the entire tree could be
represented by an average λ and k. Together with Eqs. (4a)
and (4b), this constitutes a model of a branching tree, which
we will refer to as the (λ, k)-model. Using this model, the
mean radius r̄n of segments belonging to the nth generation
of bifurcations was derived (see Appendix):

r̄n = (1 + λ)n

2n
(1 + λk)−

n
k r0. (5)

Under the assumption that segments continue to branch
into two daughter segments, the number of segments N at
generation n is given by N = 2n . Writing Eq. (5) in terms
of N resulted in:

ln N = β(ln r0 − ln r̄n), (6)

where

β = k ln 2

k ln 2 − k ln(1 + λ) + ln(1 + λk)
. (7)

Equation (6) was fitted to the experimental data to obtain
parameter β.

Branching Angles

At each bifurcation, the angle θ0 between the two daugh-
ters was computed. In addition, the angles between mother
and daughter segments were calculated. These were de-
noted as θ1 and θ2, where θ1 ≤ θ2. Based on the definitions
of k (Eq. (2)), and λ (Eq. (3)), optimal values for the branch-
ing angles at the bifurcations can be calculated.15 Minimiza-
tion of lumen volume and pumping power results in:

cos θ0 = (1 + λk)4/k − λ4 − 1

2λ2
, (8)

whereas minimization of lumen surface and total shear
force on the endothelium gives:

cos θ0 = (1 + λk)2/k − λ2 − 1

2λ
. (9)

These angles were calculated and validated using the
experimental data.

Structure-Structure Relationships

Murray derived his cube law (k = 3 in Eq. (2)) via
minimization of a cost function consisting of a term for
viscous power dissipation and a term for metabolic power
dissipation. In an effort to generalize Murray’s law for an
entire vascular tree, Zhou et al. (1999) proposed an empiri-
cal relation for the equivalent resistance to flow in a subtree.
In their model, this resistance is dependent on the cumula-
tive volume Vc and cumulative length Lc of a subtree. After
subsequent minimization of the energy cost function, the
model predicted the following structure-structure relation-
ships:

Vc

Vc,max
=

(
Lc

Lc,max

) 5
ε′+1

(10a)

Vc

Vc,max
=

(
r0

r0,max

) 20
3ε′−2

. (10b)

Here Vc,max and Lc,max are volume and length of the total
tree under consideration, whereas r0,max is the radius of the
root segment of the entire tree. The parameter ε′ is the ratio
of metabolic (i.e. cost of making and maintaining blood
volume) to viscous power loss.8

A relation between the cumulative volume Vc of a sub-
tree and the radius of the root segment r0 was also derived
from the proposed (λ, k)-model. Assuming λ = 1 and k =
3, the number of branches N at generation n equals:

Nr3
n = r3

0 , (11)

Under the assumption that segment length is proportional
to the segment radius with proportionality constant α (Ln =
αrn), the total volume Vn of a generation of segments is
given by:

Vn = Nπr2
n Ln = απ Nr3

n = απr3
0 . (12)

Hence, Eq. (12) implies the total volume in each generation
is the same. Since there are n = log2 N generations, the
total volume of a subtree is given by:

Vc = nVn = 3απr3
0 log2

r0

rn
. (13)

We subsituted rn by the minimal resolvable radius, and
tested Eq. (13) against the experimental data.
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Relative Shear Stress

Fluid shear stress acting on the vascular wall has been
proposed to be a major determinant of vascular structural
adaptation. Therefore, we investigated the distribution of
relative wall shear stress in the network using previously
published flow simulations.6,12 For this analysis, it was
assumed that the conductance Gi j in a segment between
nodes i and j is given by Poiseuille’s law:

Gi j = πr4
i j

8µLi j
, (14)

where µ is the blood viscosity. The pressure difference over
the segment (�Pi j = Pi − Pj ) is related to the flowQi j via
the conductance:

�Pi j Gi j = Qi j . (15)

The flow into a node was considered to be positive,
whereas the flow out of a node was considered to be nega-
tive. By the law of conservation of mass, the sum of flows
through the M nodes i must be equal to zero:

3∑
j=1

Qi j = 0, (i = 1, 2, . . . , M) (16)

Furthermore, it was assumed that the terminal branches
were all at the same pressure. Given an inlet pressure,
Eqs. (15) and (16) form a set of linear equations with the
nodal pressures as unknowns:

GP = GPb, (17)

where G is an M × M matrix containing the segment
conductances, P is a 1 × M vector with unknown pressures,
and GPb is a 1 × M column vector of conductances times
pressures at the boundaries (terminals and root). This matrix
equation was solved using singular value decomposition.
The relative shear stress τi j in each segment was calculated
from the obtained pressure differences:

τi j = �Pi jri j

2Li j
. (18)

The computed shear stress was then averaged for each
generation.

Fractal Dimension

Zamir (2001) proposed a definition of fractal dimension
based on purely hemodynamic grounds. When the area ratio
at a bifurcation γ is defined as:

γ = r2
1 + r2

2

r2
0

, (19)

a fractal dimension D can be formulated for the magnifica-
tion of the vessel cross-sectional area from one bifurcation

to the next:

D = ln 2

ln 2 − ln γ
. (20)

Using the definitions of k (Eq. (2)) and λ (Eq. (3)), D can
be written as:

D = ln 2

ln 2 − ln (1 + λ2) + ln (1 + λk)
2
k

. (21)

RESULTS

A maximum intensity projection of the 40 µm voxel
resolution image is shown in Fig. 1. Figure 2A shows the
probability histograms of the segment radii and lengths for
the three data sets. The number of segments, radius of the
root segment and the cut-off radius rc are summarized in
Table 1 for each resolution. The correlation between seg-
ment length (L) and segment radius (r) is shown in Fig. 2B.
Despite the considerable scatter about the regression, the
slope of that regression is close to unity on a logarithmic
scale. Figure 3 shows the distributions of segment radius,
number and length with respect to the generation number
(i.e. number of bifurcations from the root segment) for the
20 µm data set.

The probability distributions of the bifurcation index λ

and the junction exponent k are shown in Fig. 4A. Mean
and standard deviation found were: λ = 0.83 ± 0.14; k =
2.97 ± 2.87. The mean value for k was also calculated
from the (λ, k)-model. Linear regression of Eq. (6) resulted
in β = 2.97 (see Fig. 4B). Based on λ = 0.83, Eq. (7)
gives k = 3.09.

The dispersion of the branching angles is shown in
Fig. 5A. When the mother and two daughter segments lie
within the same plane, θ1 + θ2 = θ0. We found that in 82%
of the segments, the difference |θ1 + θ2 − θ0| was less than
15◦. This difference was less than 5◦ in 59% of the segments.
Based on the mean λ = 0.83 and k = 2.97, θ0 would be
74.5◦ using Eq. (8) and 101.5◦ using Eq. (9). Interestingly,
we found a mean θ0 = 88.3◦, which lies halfway between
the angles based on the two proposed optimality principles
(see Fig. 5A). The evolution of θ0 along a representative
pathway in the tree is shown in Fig. 4B. Note that θ0 is
oscillating between the values for the minimum surface
and minimum volume models.

In regard to structure-structure relationships, the follow-
ing numerical results were obtained. The ratio of metabolic
to viscous power loss ε′ was obtained from the relationship
between normalized cumulative volume and normalized
cumulative length (ε′ = 3.63, R2 = 0.94, see top panel
Fig. 6A). This ratio has been determined in several other
species and organs as recently summarized7 and ranged
from 2.47 in rabbit omentum veins to 3.51 in human pul-
monary artery. Linear regression of normalized cumulative
volume vs. normalized radius of the root segment resulted



1424 BUIJS et al.

FIGURE 1. Maximum intensity projection of the 3D µm-CT image of a rat hepatic portal vein tree (opacified with Microfil�), obtained
at a voxel resolution of 40 µm.

FIGURE 2. (A) Probability histograms of the segment radii
(top two panels) and segment lengths (lower panel) with voxel
resolutions of 40 µm, 20 µm and 5.9 µm. (B) Log-log plot of
segment length vs. segment radii of the three datasets com-
bined. Segments with radii below a certain cut-off radius were
discarded (see text for Effect of image resolution).

in ε′ = 3.07 (R2 = 0.59, see lower panel Fig. 6A). In
Fig. 6B, the relationship between Vc and r0 as given by the
(λ, k)-model (Eq. (13)) was compared with the three data
sets (α = 2.13, R2 = 0.71).

The distribution of relative wall shear stress in the net-
work is shown as a function of the number of bifurcations
from the root in Fig. 7 for the 20 µm data set. The calculated
wall shear stress was found to decrease about two to three
orders of magnitude in the vascular network.

The fractal dimension D was plotted against the branch-
ing parameters k and λ (see Fig. 8). Theoretical curves are
shown for the mean λ = 0.83 (top panel), and for k = 1
and k = 5 (lower panel; 73% of the junction exponents are
between these values). The mean and standard deviation of
D was found to be 1.37 ± 1.14.

DISCUSSION

In this study, we provided an overview of the distibu-
tions and correlations of morphological and topological
parameters of the rat hepatic portal vein tree. The liver
was studied, because it is a relatively homogeneous or-
gan with fewer anatomic constraints than e.g. the my-
ocardium or the lung. Data of complete vascular trees were
obtained through µ-CT imaging at three different voxel
resolutions.

TABLE 1. Statistical information of the three data sets.

Voxel resolution
(µm)

Number of
segments

Root radius
r0 (µm)

Cut-off radius
rc (µm)

40 1189 677 100
20 339 292 70
5.9 422 102 26.5
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FIGURE 3. Segment radius (top panel), number of segments
(middle panel) and segment length (lower panel) with respect
to generation. Data shown for the 20 µm data set.

Because of the fractal, hierarchical nature of vascular
trees, which span three orders of magnitude in scale, anal-
ysis of an entire tree at high resolution is computationally
very intensive. In an attempt to deal with this problem,
we used images obtained at different voxel resolutions and
concatenated the data sets. Because of blurring and partial
volume effects in the µ-CT data, the different data sets were
pruned by discarding segments with radii below a certain
cut-off radius. The results indicate that concatenation of the
data sets results in a smooth transition.

Whereas segment radius is often used as an ordering pa-
rameter based on hemodynamic grounds, branching level
provides a measure of the position of the segment along a
pathway. The data were analyzed using both parameters.
As shown in Fig. 3, the average segment radius clearly de-
creases with increasing generation. Our results indicate that
segment length and branching level are less well correlated,
which may be related to the high degree of scatter in the rela-
tion between segment length and segment radius (Fig. 2B).
In agreement with measurements in the rat mesentery,12 the
frequency distribution of generation numbers demonstrates
the topological heterogeneity in the vascular tree.

A simple mathematical model of dichotomous branch-
ing of the vascular tree was established and applied to the
experimental data. This so-called (λ, k)-model describes
the relation between segment radius and the number of
segments. Linear regression of the model equation resulted
in an average junction exponent close to 3.0. Calculation of
the junction exponents directly from the individual bifurca-

FIGURE 4. (A) Frequency histogram of the bifurcation index
λ (top two panels) and junction exponent k (lower panel). (B)
Plot of ln N vs. ln r0 − ln rn for the combination of the three im-
age resolutions (40 µm, 20 µm and 5.9 µm). Linear regression
resulted in a slope of β = 2.97 with correlation R2 = 0.94.

tions yielded a relatively wide range of exponents, which
is consistent with findings for the human coronary artery 20

and the pulmonary arterial tree.2 An average value of 3 is
in agreement with Murray’s cube law and is consistent with
uniform shear stress throughout the tree. Using a junction
exponent of 3, the (λ, k)-model was able to predict a rela-
tion between the radius of a segment, and the total vascular
volume distal to that particular segment (see Fig. 6B).

The two branching angles between mother and daughter
segments at a bifurcation were found to be asymmetric. This
may reflect a distinction between vessels with a distributing
function and vessels with a delivering function. A classifi-
cation between delivering and distributing paths in vascular
trees was earlier made for the human heart, 19 although no
branching angles were reported in that study. In addition,
we used our data to test two optimality principles,15 relat-
ing the branching angles at the bifurcations to the junction
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FIGURE 5. (A) Top two panels: Frequency histogram of the
maximum (θ1) and minimum (θ2) branching angles at a bifur-
cation. Means are 71.2◦ for θ1 and 28.4◦ for θ2. Lower panel:
Frequency histogram of the angle θ0 between daughter seg-
ments at a bifurcation. Mean θ0: 88.3◦. This value is in between
theoretical angles computed from the minimum surface and
minimum volume models. (B) Evolution of θ0 along a represen-
tative path in the tree. Optimum values from the minimum sur-
face and volume models are indicated. Data shown obtained
from image with 40 µm voxel resolution.

exponent and the bifurcation index. One principle min-
imizes lumen volume and pumping power, whereas the
other principle minimizes lumen surface and total shear
force on the endothelial tissue. We found that the mean
branching angle was in between the optimal angles for
minimum power loss and minimum drag. Along a pathway,
the branching angle was found to be oscillating between the
two angles. Therefore, it may be speculated that the design
of the hepatic portal vein tree is based on a simultaneous
optimization of volume, pumping power, lumen surface and
shear force.

Murray’s law of minimum pumping power and vessel
lumen volume was generalized to be applicable to subtrees
containing multiple generations of bifurcations by Zhou
et al. (1999).22 Based on an empirical equation for the

FIGURE 6. (A) Top two panels: Relationship between
normalized cumulative volume (Vc/Vc,max) and normalized
cumulative length (L c/L c,max). Lower panel: Relationship
betweenVc/Vc,max and normalized root radius (r0/r0,max). (B)
Relationship between cumulative volumeVc and radius of the
root r0, based on the (λ, k)-model with λ = 1 and k = 3. Param-
eter rn is the minimal resolvable radius.

equivalent resistance to blood flow in an entire subtree,
they derived power law relationships between cumulative
tree volume, cumulative tree length, and radius of the root
segment. The exponent of these structure-structure rela-
tionships (Eqs. (10a) and (10b)) depended on the ratio of
metabolic to viscous power loss ε′. In the rat hepatic portal
vein tree, we calculated ε′ to be 3.07 for the volume-radius
relationship and 3.63 for the volume-length relationship.
Compared to the recently published range of 2.47–3.51,8

these values are on the high side. A possible explanation
could be that viscous power losses in the portal vein tree
are lower than in anatomically constrained trees, such as
the pulmonary arterial tree and the coronary arteries.

Murray’s concept of minimal work predicts a volume
flow proportional to the vessel radius cubed and is con-
sistent with constant shear stress throughout the vascular
network. In favor of this theory, the (λ, k)-model predicts
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FIGURE 7. Distribution of relative shear stress through the
nextwork as calculated from the flow simulation model. Data
shown are for the 20 µm data set.

that, on average, the junction exponent is close to 3. In
contrast, the hemodynamic model calculations by us and
others12 show that with increasing generation number, rel-
ative shear stress decreases and can vary over about two
orders of magnitude, consistent with previously published
measurements in a microvessel network of the rat mesen-
tery.14 Although this may be partially explained by the
fact that we assumed a constant blood viscosity in our
calculations, it has been pointed out previously by Pries
et al.13 that vessels are exposed not only to shear stress, but
also to transmural pressure. Design of vascular beds may
therefore in part be based on a simultaneous optimization of
both variables, i.e. local wall shear stress is maintained at a

FIGURE 8. Self-similarity of the vessel cross-sectional area
upon branching. Top panel: Fractal dimension D vs. junction
exponent k. Theoretical curve for λ = 0.83 is shown. Lower
panel: Fractal dimension D vs. bifurcation index λ. Theoretical
curves for k = 1 and k = 5 are shown.

level dependent on the transmural pressure. The extension
of Murray’s original cost-function by a factor for smooth-
muscle tone appears to harmonize Murray’s law with the
pressure-shear hypothesis.17 In addition, high-generation
vessels typically lie on relatively long flow pathways, which
experience low pressure gradients, and hence low wall shear
stresses.

Besides reaching every part of the tissue or organ it
serves, the vascular tree has to bring the flow velocity down
by about three orders of magnitude, to facilitate oxygen
exchange in the capillaries. Based on this hemodynamic
function, it was hypothesized by Zamir that the distribu-
tion of segment cross-sectional area follows a fractal pat-
tern.21 Analysis of the hepatic portal vein data showed
a wide scatter in the distribution of this fractal dimen-
sion of hemodynamic function. Since the magnification
of the cross-sectional area depends on the degree of as-
symetry of the bifurcation, the variability in D is related
to the degree of variability of the bifurcation index and the
junction exponent (Fig. 8). Zamir showed that, in human
coronary arteries, the spectrum of fractal dimensions could
be partially explained by the existence of a multi-fractal
pattern.21

That the branching structure of vascular trees does not
closely follow a simple, fixed pattern has been noted by
investigators over many decades. One plausible reason for
this observation is that measurements of the vascular trees
are either insufficiently accurate, or the measurements are
performed on a distorted representation of the vascular tree.
These two possibilities would seem to have been reduced
considerably by the use of high resolution µ-CT of intact
rodent organs, or intact portions of large organs. Another
plausible cause, which is the one we address in this current
study, is the anatomic constraints placed on vascular tree
branching, such as caused by the bronchi in the lung or
the multi-layered shell-like structure of the myocardium,
as well as their periodic distortion due to breathing and
cardiac contraction. As the liver would appear to be the
least affected by such constraints, we studied it, but it too
shows a very similar variation to that observed in those
other organs. This suggests that local anatomic constraints
are not a major perturbing influence.

One variable that has not been well addressed is the
fact that each organ has resting flow and increased flow to
match the functional stress it occasionally experiences. The
magnitude and duty-cycle of that modulation may have an
impact such that a single snapshot of its vascular anatomy
does not adequately reflect the functional optimization that
it accomodates over time. That this modulation may be of
importance is suggested by the fact that the femoral and
renal arteries are of similar diameters, but that renal artery
flow is relatively constant with little modulation, whereas
the femoral artery accommodates a fivefold range of flow
to accommodate intermittent exercise. Perhaps this means
that we need to look for patterns in the branching geometry
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of the in situ vessels as they operate over the ususal range
and duty-cycle of flows.

APPENDIX: CALCULATION OF THE MEAN
RADIUS r̄n

When applying the (λ, k) model to a dichotomous
branching tree, we can calculate the radii of each individ-
ual segment after i generations of bifurcations from the root
segment. We denote by ri j , i = 0, . . . , n, j = 1, 2, . . . , 2i

the radius of the segment (i, j), and by r̄i the average radius
of the segments belonging to generation i. Since radii of
daughter branches are given by Eq. (4) we can express the
radius of any segment via λ, k and radius of the root r01.
Radii of branches (1, 1) and (1, 2) are given by:

r11 = (1 + λk)−
1
k r01, r12 = λ(1 + λk)−

1
k r01. (A.1)

Hence, the mean radius of the first generation (r̄1) is:

r̄1 = (λ + 1)

2
(1 + λk)−

1
k r01. (A.2)

Similarly, the segment radii for the second generation in
the tree are:

r21 = (1 + λk)−
1
k r11 = (1 + λk)−

2
k r01,

r22 = λ(1 + λk)−
1
k r11 = λ(1 + λk)−

2
k r01,

r23 = (1 + λk)−
1
k r12 = λ(1 + λk)−

2
k r01,

r24 = λ(1 + λk)−
1
k r12 = λ2(1 + λk)−

2
k r01.

(A.3)

The mean radius of the second generation is:

r̄2 = (λ2 + 2λ + 1)

4
(1 + λk)−

1
k r01

= (λ + 1)2

22
(1 + λk)−

2
k r01. (A.4)

By using mathematical induction, we found that the mean
radius after n generations of bifurcations is:

r̄n = (λ + 1)n

2n
(1 + λk)−

n
k r01. (A.5)
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