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Abstract—Human motion capture is frequently used to study
musculoskeletal biomechanics and clinical problems, as well as
to provide realistic animation for the entertainment industry. The
most popular technique for human motion capture uses markers
placed on the skin, despite some important drawbacks including
the impediment to the motion by the presence of skin markers and
relative movement between the skin where the markers are placed
and the underlying bone. The latter makes it difficult to estimate
the motion of the underlying bone, which is the variable of interest
for biomechanical and clinical applications. A model-based mark-
erless motion capture system is presented in this study, which does
not require the placement of any markers on the subject’s body.
The described method is based on visual hull reconstruction and
an a priori model of the subject. A custom version of adapted fast
simulated annealing has been developed to match the model to the
visual hull. The tracking capability and a quantitative validation
of the method were evaluated in a virtual environment for a com-
plete gait cycle. The obtained mean errors, for an entire gait cycle,
for knee and hip flexion are respectively 1.5° (£3.9°) and 2.0°
(£ 3.0°), while for knee and hip adduction they are respectively
2.0° (£2.3°) and 1.1° (£ 1.7°). Results for the ankle and shoulder
joints are also presented. Experimental results captured in a gait
laboratory with a real subject are also shown to demonstrate the
effectiveness and potential of the presented method in a clinical
environment.

Keywords—Human motion capture, Musculoskeletal biome-
chanics, Visual hull, Simulated annealing.

INTRODUCTION

Motion capture techniques are used over a very broad
field of applications, ranging from digital animation for
entertainment to biomechanical analysis for sport and clin-
ical applications. Sport and clinical applications require
excellent accuracy and robustness. Two other major re-
quirements for clinical applications are to minimize the
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time for patient preparation and the inter-observer variabil-
ity. At present, using reflective markers on the skin is the
most common technique.’:'>'!3 Despite their precision and
popularity, marker based methods have several limitations:
(i) markers attached to the subject can influence the sub-
ject’s movement, (ii) a controlled environment is required to
acquire high-quality data, (iii) the time required for marker
placement can be excessive, and (iv) the markers on the
skin can move relative to the underlying bone, leading to
what is commonly called skin artifact.* 143 Several recent
review articles have summarized the common shortfalls of
skin based marker techniques.®8-%!

Markerless motion capture offers an attractive solution
to the problems associated with marker based methods.
However, the use of markerless methods to capture human
movement for biomechanical or clinical applications has
been limited by the complexity of acquiring accurate three-
dimensional kinematics using a markerless approach. The
general problem of estimating the free motion of the hu-
man body or more generally of an object without markers,
from multiple camera views, is underconstrained without
the spatial and temporal correspondence that tracked mark-
ers guarantee.

Model based approaches provide methods to address
some of the complexities associated with a markerless ap-
proach. An a priori model of the subject, for example, can
be used to strongly reduce the total number of degrees of
freedom of the problem. Another option is to increase the
number of cameras so that more measured data is available
to solve for a given number of degrees of freedom. Thus
the robustness of a markerless approach can be increased
by increasing the number of cameras and by limiting the
search space of possible body configurations to anatomi-
cally appropriate ones. This last strategy can be pursued by
using a human model to identify the motion of the subject.

Several model based methods have been proposed in
the past, modeling the human body or parts of it with
rigid!-%151829.30 or non rigid segments.'” However, these
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approaches have problems with accurate identification of
three dimensional kinematics of the segments or use a lim-
ited number of body segments.” For what concerns the
mathematical formulation of the model joints, exponential
maps’ is able to provide several advantages to previous
approaches by simplifying the estimation of model pose
and leading to robust identification of body kinematics.

Another important consideration in choosing an ap-
proach for markerless motion capture is the formulation
of the cost function used to match the representation of the
subject (2D silhouette, 3D visual hull, 2D features, etc.) to
the model. While approaches utilizing only 2D information
have been used,’ most biomechanical applications require
a 3D model. In the approach that we pursued we built
the subject’s 3D representation using shape-from-silhouette
technique. Our group has developed several methods in the
past to reconstruct the outer surface of the body.'%-2% In this
study the 3D representation has been obtained using the
algorithm described in.?®

The other important consideration in designing an ap-
proach involves the choice of an optimization algorithm that
will successfully minimize the cost function to allow the
calculation of the subject’s kinematics. This optimization
is difficult because the cost function has many local minima
and the search space has very high dimensionality, but it can
be accomplished through the simulated annealing matching
algorithm running on an exponential maps geometry for-
mulation. Simulated annealing is a statistical computational
method based on Boltzmann Sampling and the Metropolis
Monte Carlo method.?* In standard Monte Carlo simula-
tion, the state of a system is randomly changed by sampling
the search space. All such changes are accepted, whether or
not the new state results in a reduction of the cost function.
Thus the system may be in a high-cost state much of the
time, and the simulation has to run for a very long time to
properly sample all low-cost regions of the search space.
The modification made by Metropolis and co-workers is
that there should be a probabilistic acceptance of a Monte
Carlo step. This modified algorithm is known as Metropo-
lis Monte Carlo simulation, and it further evolved into the
method known as simulated annealing. Simulated anneal-
ing has the capability to identify states defined by many
degrees of freedom while consistently reducing the risk of
getting trapped into local minima. Thus the integration of
a method that includes a subject’s model, visual hulls and
simulated annealing as described above offers a potential
framework for a markerless motion caption system.

The purpose of this study was to describe the devel-
opment and to validate such a markerless motion capture
system. The goals of this system are to have the advantage
of not requiring the placement of markers or the design of
an acquisition protocol, and to be potentially usable in any
possible environment where a large number of synchro-
nized calibrated cameras are available. From these multiple
views the geometric representation of the human body is

reconstructed based on a visual hull concept, which was
first described in.?° Simulated annealing is used to match
an a priori 3D model to the visual hull, and the subsequently
calculated kinematics of the matched model are validated
against ground truth in a virtual environment.

METHODS

The developed method, described in the following sec-
tions, is used to track the motion of a human subject in both
a virtual and a real environment. 16 cameras in the virtual
environment and eight cameras in the experimental setup
(same resolution 640 by 480 pixels) were used to obtain the
subject’s 3D representation. Tracking the 3D representation
using the described matching algorithm leads to the extrac-
tion of the subject’s kinematics. The following subsections
describe the several steps required to achieve this goal.

Reconstruction of the Subject’s Visual Hull

The visual hull of an object, first extensively described
in,'” can be defined as the locally convex (over) approxima-
tion of the volume occupied by an object. The 3D represen-
tation of the motion of the subject across the motion capture
volume consists of one visual hull for each instant in time
captured by the camera system. The visual hull construction
process, diagrammed in Fig. 1, consisted of the projection
of the subject’s silhouette from each of the camera planes
back to the 3D volume. The intersection of the resulting
cones in 3D space generated the subject’s visual hull. The
2D silhouettes in the camera planes were obtained by fore-
ground/background separation for every captured frame. In
general, previously-described shape-from-silhouette meth-
ods reconstruct the subject’s visual hull by dividing the 3D
space into cubic voxels whose size is inversely proportional
with the desired resolution.!!!8:23:28.33 The method used in
the present work belongs to the same family of algorithms
and its detailed description can be found in.?%-?%:33 An ex-
tensive study on the influence of camera number, resolution
and placement on reconstructed visual hull quality can be
found in.?® Its applicability in the typical in vivo experimen-
tal setup of a gait analysis laboratory was demonstrated.

Exponential Maps Formulation

The adopted exponential maps formulation?’ guaran-
tees a simple linear representation of the motion with the
posture uniquely defined, avoiding the nonlinearities and
singularities common to the Euler angles formulation. The
exponential map for a twist describes the relative motion of
two coordinate frames in space, and in the same way, every
rigid transformation can be represented by a combination
of twists. The exponential map formulation allows the rep-
resentation of multiple twists by simply multiplying the
exponentials of the transformation matrices together (1).
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FIGURE 1. Visual hull reconstruction concept. The silhouettes of the subject from different camera planes are back projected
in space. Their intersection generates the visual hull, a locally convex over-approximation of the volume occupied by the

subject’s body.

For example, for the lower limb, the rigid movement
of the thigh with respect to the pelvis can be written as a
single screw transformation (also known as a finite helical
axis transformation) or as a combination of three twists.
Going from the pelvis (defined in Eq. (1) as segment (a) all
the way down to the foot (defined in Eq. (1) as segment (b),
the final position of a point on the foot can be expressed
as a function of the articular parameters of hip, knee and
ankle joints through the multiplication of twists, as shown
in Eq. (1). The pelvic coordinate system is in this case the
reference,

Zap(®) = gap(0) [ [ *” (1)

i=1

¥ = (¥4, ...,0s) is the state vector (scalar angles) for a
kinematic chain with eight degrees of freedom and #n is
the number of degrees of freedom, in this case equal to

8.(91, ¥, ¥3) represents the three rotational degrees of free-
dom of the thigh with respect to the pelvis, (¥4, 95, U%)
represent the three rotational degrees of freedom of the
shank with respect to the thigh, and(¢;, ¥s) represent the
two rotational degrees of freedom of the foot with respect
to the shank. g,,(0) represents the transformation matrix
from a to b coordinate frame in the initial configuration,
i.e. with all state variables equal to zero. The general twist
matrixes & are defined for each joint relative to the parent
segment, following the formulation described in.?’

The final transformation from one body configuration to
another one is given by a matrix T defined as follows:

g1 0..0

, 0 82 ... 0

px4N = Kp><4NT = Kp><4N g (2)
0 0 . &N AN x4N

FIGURE 2. (a) Poser model in the reference pose, (b) 33 DOF full body model. Points in highly deformable regions have been

removed, as most clearly seen at the hips.
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FIGURE 3. Results of the matching algorithm (colored points) applied to the virtual environment sequence superimposed over the

virtual character (gray surface).

where g; is the 4 x 4 matrix representing the generic rigid
transformation for segment / with respect to the parent seg-
ment. T is a 4N x 4N square matrix in which N is the total
number of segments in the human body model. K matrices
contain the p visual hull points in homogeneous coordi-
nates.

Full Body Model

The model contains morphological information (surface
with 1600 points) and kinematics information about how
the model can move. The morphological information came
from a reference pose (Fig. 2a). Then the model was seg-
mented into the different parts corresponding to the 12 main
anatomical segments shown in Fig. (2b): pelvis, thighs,
shanks, feet, arms, forearms, and combined torso and head.
For the real application with human subjects, the morpho-
logical information was obtained from a laser scan of the
subject, providing an accurate description of the body’s
outer surface that was then manually segmented.

The kinematic model (depicted by the lines connect-
ing joints in Fig. 2b) includes the full body and has 33
degrees of freedom (DOF). Joints were modeled as ball-

socket joints or as simple hinge joints. In particular, for the
lower limbs, the hip and knee were modeled as spherical
joints with three degrees of freedom in rotation (flexion-
extension, adduction-abduction, internal-external rotation),
while the ankle was modeled as a double hinge joint having
two rotational DOF (plantar-dorsi flexion, in-eversion). For
the upper body the movement between the torso and the
pelvis was modeled as a simple hinge-joint with one rota-
tional DOF (flexion at the 5th lumbar), the shoulder was
modeled as a spherical joint (flexion-extension, internal-
external rotation, adduction-abduction) and the elbow was
modeled as a double hinge joint having two rotational DOF
(flexion-extension and pronation-supination). The remain-
ing six degrees of freedom described the rigid body trans-
lation and rotation in space of the root segment, the pelvis.
The geometrical formulation of the model is open in the
sense that any joint model can be modified independently
without the need to readjust the others. More complex joint
models may take into account both rotational and trans-
lational behavior using the same mathematical structure,
by using the appropriate formulation of a particular joint
that allows the translation along the particular twist axis.
The completed model was created by rigidly joining the
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FIGURE 4. Results of the matching algorithm applied to the virtual environment sequence. Points visual hull (top, in blue) and

matched model (bottom) for a gait cycle, in the sagittal plane.

morphological representations of each segment (each a set
of points describing a surface) to the corresponding rigid
segments of the underlying kinematic model. Motion was
constrained to anatomically consistent ranges.

Surface points close to the joints in the model were
removed to minimize the influence of tissue deformation
that occurs around the joints during movement.

Matching Process by Simulated Annealing

The matching process consisted of the minimization of a
cost function in a continuous domain describing the quality
of matching between the model and the visual hull cloud of
points (made of about 2500 points). This matching was done
for each time frame in order to identify the whole motion
of the subject. Since all degrees of freedom were matched
simultaneously the search space was 33-dimensional (num-
ber of DOF in the kinematic model). Gradient-based meth-
ods were not appropriate to solve such a high-dimensional
problem due to the large number of local minima in which
the algorithm could get trapped. Instead, we adopted a

stochastic approach called simulated annealing that is an
extension of the original Metropolis Monte Carlo method.
This class of methods has been refined during last decades
and has the capability of climbing up local minima until the
desired matching accuracy is achieved.!6:17-31.34

Simulated Annealing

The implemented simulated annealing method uses the
acceptance function (3) proposed by Metropolis,>* which
is a function of the parameter T and of the value of the cost
function f. The parameter 7, commonly called temperature
due to the analogy of the optimization process with the
chemical process of annealing, is a function that decreases
as the iteration number increases.

Ax,y,T) = min{l,efy;h} 3)

Moving from current state x; to next state x;, the step is
accepted or not depending on (4) where p is sampled from
a uniform distribution [0, 1] and the value k;; is a state
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FIGURE 5. Comparison between ground truth provided by the virtual environment model and the results from the matching
algorithm (gray shaded area indicates + one standard deviation) for (a) knee flexion, (b) knee adduction, (c) hip flexion, and (d)

knee adduction.

sampled from a chosen distribution (see next paragraph).
- _yvinn=xit ki iftp < A, i1, T)
i = {xi otherwise @)

Since the parameter 7 plays an important role in the accep-
tance function, several authors have proposed different for-
mulations for its decreasing function (cooling schedule) and
the corresponding sampling distribution for k;;, in order
to improve the performances of the algorithm that normally
has a high computational cost.'6:17:24:31.34 The formulation
used in this work is described in** which samples ;| from
a Cauchy distribution. Sampling in this way allows the algo-
rithm to visit each region with positive Lebesgue measure
infinitely often when a cooling schedule proportional to
To/i is adopted, where Ty is a large enough constant and i
is the number of iterations. To assure better capabilities for
climbing up local minima (as demonstrated in simulated tri-
als'?), in this work the parameter 7T is not decreased linearly
with respect to the number of iterations but depends also on
the value of the cost function. An extensive and complete
description of the general simulated annealing method can
be found in.?

The Cost Function

An appropriate choice of the cost function is one of the
core requirements for successful and robust matching. Two
clouds of points need to be matched, one that is articulated
using a kinematic model and the other coming from visual
hull reconstruction. The latter has in general a non constant
number of points through the sequence frames, and there is
no correspondence between points in different time frames
even though they are equally spaced in a 3D voxel structure.
The chosen cost function for this work (5) was a variation
on the Hausdorff distance and has been shown to be very
robust even if computationally demanding.

COST(A, B) = ) min {Ila - bll} 5)
Vaed VbeB

The cost function used here differs from the original formu-
lation of the Hausdorff distance since it sums every single
contribution, instead of taking just the maximum between
the minimal distances between pairs of points. This modi-
fication increases robustness to possible outliers. As is the
case for the original Hausdorff distance, this cost function
is not commutative. Intuitively, one could state that a low
value of COST(A, B) guarantees that all the points of set A
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FIGURE 6. Comparison between ground truth provided by the virtual environment model and the results from the matching
algorithm (gray shaded area indicates + one standard deviation) for (a) ankle dorsiflexion, (b) ankle inversion, (c) shoulder flexion,

and (d) shoulder abduction.

are not very far from their closest point of set B. However,
it does not guarantee that all points of set B are not very far
from their closest point of set A. In the first frame of the
sequence, the visual hull points are set A, while the model
points are set B, since the two sets may not be close to
each other (visual hull-to-model formulation). For subse-
quent frames the next visual hull frame is always very close
to the previous matched model state, so the cost function
is changed to the model-to-visual hull formulation, which
guarantees better accuracy because it is less sensitive to
phantom volumes in the visual hull. Phantom volumes are
defined as a large local deviation from the real subject’s
outer body surface resulting from the use of too few cam-
eras. In our case phantom volumes generate points of set
B (visual hull) far from their closest point of set A (model)
that are neglected since the cost function—based on COST
(A, B)—only accounts for the distance between points of set
A from their closest point of set B (model-to-visual hull).

Motion Data: Virtual Environment

In order to provide data with a real ground truth, a
virtual character was animated with known kinematics

using Poser® software (by Curious Labs, CA—USA). In
the virtual sequence a male subject walks along a straight
line mimicking a gait analysis sequence. Since the anima-
tion software uses Euler angles formulation, the internal-
external rotations of each joint were set to zero to avoid
cross talk between rotations along different axes. Sixteen
virtual cameras were uniformly distributed in a most fa-
vorable hemispherical configuration®® around the virtual
character. Images from each camera were taken at every
frame of the gait sequence. Silhouettes were extracted from
each camera image and then processed to create the visual
hulls that feed the matching algorithm presented in the
previous sections.

Motion Data: Experimental

To demonstrate the effectiveness and potential of
the method for biomechanical applications, a running
sequence of a human subject was captured using 8 color
video cameras with a resolution of 640 by 480 pixels and
a frame rate of 75 frames/s. A running sequence is more
challenging than gait analysis for the tracking algorithm
since it involves higher velocities and accelerations of
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the anatomical segments. The acquisition was done in
a standard gait analysis laboratory environment, i.e.
without altering the background or lightning conditions.
The sequence was processed with the same algorithms
described in this section. The subject’s model was created
using a 3D laser scan (Whole Body 3D scanner Model
WBX by Cyberware—USA, accuracy within lmm and
about 15 seconds scanning time). The 11 joint centers of
a 33 degree of freedom model were manually identified on
the model obtained from the laser scanner.

The described method was validated in a virtual envi-
ronment and qualitatively tested in experimental conditions.
Using the virtual environment permitted the evaluation of
the accuracy of extracting human body kinematics while
excluding errors due to experimental artifacts (e.g. due to
camera calibration errors, errors in background subtraction,
etc.), thus obtaining the true potential of the method with
the given camera setup (16 cameras, 640 x 480 pixel res-
olution). A Kalman filter was used to smooth results and
improve the quality of derivatives.

RESULTS

The motion obtained in the virtual environment for the
model (colored points) and the original character compared
favorably (Fig. 3). In Fig. 4 the visual hulls and the matched
model in the sagittal plane are shown as point clouds. The
joint angles for the walking sequence are known and are
compared with the ones obtained from the matching algo-
rithm. Motions at the hip, knee, ankle and shoulder show
good agreement between the virtual character kinematics
and the matched model results (Figs. 5 and 6). Moreover,
the algorithm does not drift, as shown by the fact that the
errors do not increase with frame number.

The errors for the hip, knee, ankle and shoulder joints
through the entire gait sequence are reported in Table 1.
Good results are obtained in terms of mean absolute errors
for flexion and adduction of hip, knee and shoulder. Errors
are slightly bigger for the ankle joint, mainly due to the poor
ratio between camera resolution and dimensions of the foot.
The high degree of axial symmetry of the thighs and shanks
makes it difficult for the algorithm to track internal-external
rotation, leading to lower accuracy. This symmetry results
in mean errors of 3.9° (£4.1°) and 2.7° (+=4.7°) for hip
and knee internal-external rotations, respectively.

Unlike most other tracking algorithms, the presented
method does not require accurate initialization of the model
to match the first frame. A rough rigid body positioning (as
shown in Fig. 7, left) of the model in a reference frame is
enough to have a consistent matching of the first frame of the
sequence (Fig. 7, right). The computational time for solving
for the entire sequence in this non-optimized version is
on the order of few hours, since no specific hardware or
optimized software has been used.

Table 1. Summary of the validation results for joint angles at
the hip, knee, ankle and shoulder.

Mean Standard RMS
error (°)  deviation (°)  error (°)

Hip flexion/ext 2.0 3.0 3.6
Hip adduction/abd 1.1 1.7 2.0
Knee flexion/ext 15 3.9 4.2
Knee adduction/abd 2.0 2.3 3.1
Ankle plantar/dorsifl 3.5 8.2 9.0
Ankle inversion/ev 4.7 2.8 5.9
Shoulder flexion/ext 1.2 4.2 4.4
Shoulder adduction/abd 3.8 1.2 4.0

The experimental results relative to a running sequence
of a male subject are presented in Fig. 8. The sequence was
processed with the algorithms described in the methods
section. The effectiveness of the tracking results on the
visual hull are shown in Fig. 8 where the point clouds
representing the different anatomic segments consistently
overlay the visual hull of the subject (shown in gray).

DISCUSSION

The proposed method has been quantitatively validated
for several joints. An effective tracking capability has been
shown even for smaller body segments like the feet, which
are normally neglected by other approaches. The results
with this data also demonstrate the robustness of the ap-
proach, since the performance of the matching process did
not deteriorate with frame number, a common problem for
most feature-tracking based approaches.'? Unlike in those
approaches, a bad initial guess will only increase the com-
putational time necessary to obtain the desired matching
because in each frame the model is being matched to the
absolute position of the visual hull rather than to the change
in the video images from the previous frame to the current
one.

In the kinematic model 33 degrees of freedom have been
modeled, including 3 rotational degrees of freedom for the
hip, knee and shoulder together with 2 degrees of freedom
for the ankle (dorsi-plantarflexion, in-eversion). This set of
degrees of freedom is appropriate for most biomechanical
studies of the lower limb. In fact, having for example 3
DOF at the knee is important in order to investigate the
secondary rotations which are a crucial point in under-
standing injury and disease mechanisms. One critical as-
pect of developing a successful algorithm for biomechani-
cal analysis of many different activities is the measurement
of internal-external rotation of the hip and the knee, which
is quite noisy due to the almost cylindrical symmetry of the
thigh and shank. This aspect represents the main limitation
of the presented method that remains to be addressed in
the future. Nevertheless, an increase in camera resolution
alone would provide more accurate 3D reconstruction of the
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FIGURE 7. Matching of the first frame. The visual hull point cloud is shown in blue, while the different segments of the model
are shown in other colors. The algorithm does not require a good initialization of the model in order to achieve the first matching

(right).

FIGURE 8. Result of the matching algorithm (color points) applied to an experimental data sequence (gray surface). On the bottom
the corresponding video images of the running sequence from one camera are shown.
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subject.”> This increase would improve the overall track-

ing accuracy and reduce the problem of internal-external
rotation of the hip and knee because the existing axial
asymmetries in the thigh and shank would be better rep-
resented. This is one of the major challenges that will need
to be addressed in the future since assessing true motions in
transverse plane can be very relevant from a biomechanical
point of view. The described algorithm, being based on the
entire shape instead of a small number of single points,
shows good performance even with camera resolutions of
an order of magnitude lower than current stereophotogram-
metric systems for marker-based motion analysis. This ap-
proach also offers a great potential for the reduction of skin
artifact error. Instead of relying on just a few markers it is
based on the tracking of few hundred points per segment,
naturally averaging the skin artifact phenomenon across the
segment during the matching process.

Markerless motion capture also guarantees a great re-
duction of the amount of time for subject preparation com-
pared to marker based methods since no time for marker
placement is required. Moreover inter-operator variability
is eliminated since no trained operator is needed to accu-
rately place markers. On the other hand, the processing
time is longer since the creation of the model is required.
Future work must automate the setting up of the model and
address how foreground/background separation and cam-
era calibration affect the accuracy of the results, which
have not been directly addressed in the virtual environ-
ment validation. However, the experimental data presented
already show good qualitative results, demonstrating the ef-
fectiveness and potential of the method for use in a clinical
environment such as a gait laboratory. Moreover, tracking
a running sequence, which is in general more challenging
than walking due to increased velocities of the subject,
demonstrated the robustness of the method. Overall, in the
authors’ opinion, the system can provide sufficient accu-
racy for biomechanical research and has great potential for
future improvements, both in the creation of the model
and in the matching algorithm. It is our intention to pro-
vide in the future an experimental comparison/validation
against currently available techniques such as marker based
methods.

Two further extremely valuable advantages of the pre-
sented algorithm are: (i) apart from a rough rigid body
positioning, it does not need to be initialized at all, being
able to go from a reference pose to the first frame pose
consistently, as shown in Fig. 7; (ii) it directly provides
joints centers and segment volume information during mo-
tion that can be used for a more accurate calculation of the
subject’s kinetics.
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