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Abstract—The clinical importance of cerebral autoregulation has
resulted in a significant body of literature that attempts both to
model the underlying physiological processes and to estimate the
mathematical relationships between clinically measurable vari-
ables, the most common of which are Arterial Blood Pressure
and Cerebral Blood Flow Velocity. These approaches have, how-
ever, rarely been used together to interpret clinical data. A simple
model of cerebral autoregulation is thus proposed here, based on a
flow dependent feedback mechanism with gain and time constant
that adjusts arterial compliance. Analysis of this model shows
that it closely approximates a second order system for typical
values of physiological parameters. The model parameters can
be optimally estimated from available experimental data for the
Impulse Response (IR), yielding physiologically reasonable val-
ues, although there is one free parameter that must be fixed. The
effects of changes in feedback gain and time constant are found
to be significant on the predicted IR and can thus be estimated
robustly from experimental data. The effects of elevated baseline
Intracranial Pressure (ICP) are found to be exactly equivalent to a
reduced feedback gain, although the solution is much less sensitive
to the former effect. A transfer function approach can be used to
estimate autoregulation status clinically using a physiologically-
based model, thus providing greater insight into the processes that
govern cerebral autoregulation.
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INTRODUCTION

The supply of nutrients to the brain and the removal of
the waste products of cerebral metabolism are both cru-
cial if cerebral function is to be maintained despite signif-
icant changes in physiological parameters such as Arterial
Blood Pressure (ABP). Cerebral autoregulation has classi-
cally been taken to be the maintenance of Cerebral Blood
Flow (CBF) in the face of varying Cerebral Perfusion Pres-
sure (CPP), where CPP is the difference between ABP and
Intracranial Pressure (ICP).30 A failure of autoregulation
is implicated in a variety of diseases, such as stroke and
trauma.

The most widespread clinical variable is blood flow ve-
locity, normally measured using Doppler Ultrasound over
the middle cerebral artery (VMCA). Since this measures
blood velocity, the cross-sectional area of the vessel has

to be assumed to remain constant for it to be a direct mea-
sure of flow rate.25 It is also a measure of the flow into the
cerebral system, rather than through the microvasculature.

Due to the importance of cerebral autoregulation, there
has been considerable work performed to analyse its be-
haviour. This work can be approximately divided into
two approaches. The former analyses the relationship be-
tween different clinical variables using a purely math-
ematical framework, such as transfer function analysis,
making no physiological assumptions about the system.
The latter relates the different clinical parameters using a
physiologically-based model that can predict a range of
variables, some that can be measured and some that cannot.

The only existing approach to attempt to bridge this
gap is the popular model of autoregulation proposed by
Tiecks.25 It is based on the idea of an AutoRegulation In-
dex (ARI), which can take any value between 0 and 9. 0
denotes no autoregulation, 9 the ‘fastest’ and 5 a ‘normal’
autoregulation. The model is based on a simple set of dis-
crete equations, relating VMCA to ABP, with parameters that
are dependent upon the autoregulation gain, the damping
factor and the time constant. The parameters, however, are
not varied independently and no justification is given for
their values.10

Transfer Function Analysis

Both linear and non-linear approaches have been used
to determine the behaviour of the cerebral system where
ABP and VMCA are considered to be the input and out-
put. Linear techniques characterise the system behaviour
in terms of either the Impulse Response (IR),14,18–20,31

which is equivalent to linear kernel analysis, or the Fre-
quency Response (FR).19,32 The non-linear methods have
all been based on the use of non-linear kernels.13 One of the
advantages of linear kernel analysis is that any additional
non-linear terms do not affect the linear analysis, since the
linear and non-linear kernels are orthogonal.

The IR derived from normal subjects consistently shows
undershoot, occurring at approximately 1–2 sec, of about
one third of the initial value, returning to baseline quickly
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with possible occasional slight overshoot. There is some
difference between the results of individual studies, ex-
amples of which are shown in Fig. 1. A comprehensive
study of seven of the most popular clinical tests, however,
showed that the means of deriving the impulse response is
unimportant.21 The differences between studies thus seem
to indicate a natural variation across the population.

The FR is characterised by three parameters: gain,
phase and coherence. The squared coherence is a measure
of the fraction of the output power that can be linearly
related to the input power. Panerai21 found that the gain
increased with frequency in the range 0 to 0.5 Hz, whereas
the phase was positive below 0.35 Hz, becoming slightly
negative at higher frequencies. The coherence was high for
frequencies above 0.2 Hz but low for frequencies below
0.1 Hz. Virtually identical results were obtained by other
authors,31, 32 who divided the frequency spectrum below
0.5 Hz into three regions:

1. Low frequency (<0.07 Hz): Low coherence, low gain
and large phase lead.

2. Intermediate frequency (0.07–0.20 Hz): Increasing co-
herence, increasing gain and decreasing phase.

3. High frequency (>0.20 Hz): High coherence, relatively
large gain and minimal phase lead.

Phase lead, corresponding to positive phase, indicates
that VMCA leads ABP. The only difference found is that
in some studies the gain drops off slightly towards 0.5 Hz
in Zhang’s papers,31,32 but in others it rises slightly.19

However, this trend is small and difficult to identify clearly.
Similar results show a phase lead in the low frequency

region,1,4 as derived using a Cross-Correlation Function
(CCF), calculated separately in each of the three frequency
regions. The phase lead was shown to be greatest at low
frequencies, decreasing as the frequency increased. Results

FIGURE 1. Impulse Responses for VMCA derived by Panerai
et al., 1998, Panerai et al., 2000, Panerai, 2004, and Mitsis et al.,
2002b.

presented by Narayanan16 cover a wider range of frequen-
cies, up to 1.5 Hz. Although the phase lead at low frequen-
cies, decreasing as frequency increases, was again shown,
the coherence was found to be somewhat higher than shown
by Panerai.19 The response of all three was found to be
largely flat after 0.5 Hz up to the Nyquist frequency. A
linear autoregressive with exogenous input (ARX) model
has been found to predict the step response accurately,12

whilst an autoregressive-moving average (ARMA) model
based on the AutoRegulation Index (ARI), outlined above
was used for a group of 14 healthy subjects.22

A more wide-ranging study23 examined the VMCA/ABP
transfer function for both spontaneous oscillations around
0.1 Hz and deep breathing for 168 patients with severe
carotid stenosis or occlusion. The spontaneous oscillations
are thought to be caused by central oscillations in sym-
pathetic nervous outflow15 and are a naturally occurring
feature of ABP. The results presented for the two conditions
exhibit similar characteristics to those described above, al-
though the coherence is very high for frequencies higher
than 0.1 Hz.

There are thus a number of characteristics of the cerebral
autoregulation system that seem to be widely agreed upon.
However, it should be noted that the frequency bands used
by different authors quoted above are very approximate,
being likely to vary widely from subject to subject, and
do not necessarily correlate to underlying physiological
processes, such as respiration. The bands quoted are used
simply to illustrate the characteristic behaviour of the sys-
tem behaviour. In addition, the difficulty with analysing the
FR is that any non-linearities in the signal make it difficult
to interpret: the IR has the advantage that the linear com-
ponent can be estimated independently of the non-linear
components: it is thus a more robust way of examining the
system behaviour.

Physiologically-Based Models

There is a large number of physiologically-based mod-
els available in the literature that attempt to characterise
the behaviour of the cerebral autoregulation system. One
simple model10 assumes that there is a single simple flow-
dependent feedback process with gain and delay. The re-
sulting transfer function provides an accurate simulation of
many of the features shown by the cerebral autoregulation
system, but the phase lead found in experimental data at
low frequencies is missing.

Another very simple physiological model17 combines
all the elements of the autoregulation system into three
equivalent electrical components: two resistors and one ca-
pacitor, with values that vary with time. Although these can
be adjusted to fit the experimental data well, it is difficult
to interpret the parameter values in terms of physiolog-
ical processes. A biphasic response is found, indicating
that there is more than one time constant governing the



Cerebral Autoregulation Modelling and Analysis 849

system behaviour, i.e. that the system is at least second
order.

The model by Czosnyka6 is a more detailed attempt
to provide a hydrodynamic equivalent of the blood flow
through the skull, through an analogous electrical circuit.
Although the model structure is relatively simple, the com-
ponents in the circuit are mostly non-linear and there is little
information on some of the parameters, which makes this
model difficult to use for analysis. Several similar mod-
els have been proposed by Ursino and co-workers.27–29

These models differ in complexity, having either one or
two autoregulating compartments with different feedback
mechanisms, based either on flow or pressure.

Since the aim of this paper is to interpret the avail-
able experimental data and to investigate whether it can be
used to gain information about the behaviour of cerebral
autoregulation, we propose below a very simple model of
autoregulation. The model is analysed and its IR derived
and compared to the available experimental data. The aim
of the work presented in this paper is two-fold: to illus-
trate how the two different approaches to examining the
cerebral autoregulation system, as outlined above, can be
combined by theoretical analysis of a physiologically-based
model, and to use this analysis to investigate whether the
status of autoregulation can be differentiated between sub-
ject groups.

MODEL

Model Equations

The haemodynamic model proposed here is shown in
Fig. 2, using the well-established system of equivalents
between hydrodynamic and electrical circuits. The arterial
compartment is divided into regulating and non-regulating
compartments: the first segment (Rla) represents the larger
arteries down to, but excluding, the large pial arteries; the
second (Rsa) the smaller arteries and arterioles, this segment
being sub-divided into two as arterial compliance (Ca) is in-
cluded to allow for changes in arterial volume. The division

of the arterial compartment into two represents the fact that
it is primarily the smaller arteries and arterioles that regulate
most actively: the first segment is thus assumed to have a
fixed resistance and blood volume, whereas the second has
varying resistance and volume.

The capillaries are assumed to have a fixed resistance
and volume, whereas the venous compartment is assumed
to change in volume, as shown in Fig. 1, but to have a fixed
resistance to flow for simplicity. The venous compartment
is thus modelled as two resistors with a venous compliance
(Cv) between. To simplify the model, the first of these re-
sistances, representing the smaller veins, is combined with
the capillary resistance to give Rsv, the second segment
(Rlv) representing the larger veins. ICP is assumed constant
here, since the time constants that govern ICP are signif-
icantly different from those of autoregulation. The effects
of changes in baseline ICP are investigated below.

It should be noted that changes in capillary compliance
and resistance can play an important role in certain clinical
conditions. For reasons of simplicity, this effect is not con-
sidered here, but would be a necessary addition to the model
under these conditions, which include stroke and which
can lead to hypoxic foci and cortical spreading depression,
amongst other effects.

The arterial volume is assumed to comprise a fixed quan-
tity, corresponding to the non-regulating vessels, Vla, and
a varying quantity, corresponding to the regulating vessels,
Vsa:

Va = Vla + Vsa. (1)

Since vessel resistance is proportional to the inverse of
radius to the power four and volume is proportional to the
radius squared, for a given vessel length, volume varies
according to the inverse square root of the resistance:

Vsa

Vsa
=

√
Rsa

Rsa
, (2)

if it is assumed that regulating vessels constrict and di-
late uniformly over their length. Vasoconstriction and

FIGURE 2. Schematic of model. Pa, systemic arterial pressure; Rla, resistance of non-regulating arterial compartment; P1, Rsa, and
Ca, pressure, resistance, and compliance of regulating arterial compartment; Rsv, resistance of capillary compartment and small
veins; Cv, venous compliance; P2, venous pressure; Pv and Rlv, venous pressure and resistance of large veins, respectively; Pic,
intracranial pressure.
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vasodilation thus play an important part in the model re-
sponse to changes in ABP. The overbar is used to denote
baseline conditions throughout the paper.

From the definition of compliance, the rate of change
of arterial volume can be related to the compliance and
transmural pressure:

dVa

dt
= d (Ca (P1 − Pic))

dt
. (3)

The key parameter in Eq. (3) is arterial compliance, since
it is assumed that CBF regulation occurs through changes
in arterial compliance, i.e. the properties of the arterial
vessel walls. The equations for the change in venous volume
are taken directly from Ursino,29 where venous volume is
related to changes in transmural pressure:

dVv

dt
= Cv

d

dt
(P2 − Pic), (4)

and venous compliance, Cv, is assumed to be inversely
proportional to transmural pressure:

Cv = 1

kven (P2 − Pic − Po)
, (5)

wherekven andPo are constants.
The pressures and volumes in the haemodynamic model

can be calculated from conservation of volume at the rele-
vant nodes:

dVa

dt
= Pa − P1

Rla + Rsa
/

2
− P1 − P2

Rsa
/

2 + Rsv
, (6)

dVv

dt
= P1 − P2

Rsa
/

2 + Rsv
− P2 − Pv

Rlv
. (7)

The regulation of CBF is assumed to be of the form:

τ
dx

dt
= −x + G

(
q − q

q

)
, (8)

where a change in fractional CBF from its baseline value
acts to stimulate a delayed change in the state variable x,
with feedback gain G and time constant τ . CBF regulation
is assumed to act on the microvascular CBF:

q = P1 − P2

Rsa
/

2 + Rsv
. (9)

The state variable is then assumed to change arterial
compliance as:

Ca = C̄a (1 − x) . (10)

A linear relationship is assumed since only the linear
behaviour of the system, and hence small changes, is ex-
amined here. Although feedback based directly on CBF
is not truly physiologically plausible, it provides a simple
feedback mechanism and has been found to simulate the
expected behaviour of the autoregulation system well.29

To simulate the true mechanisms, a more comprehensive

model would be required, which is beyond the scope of this
analysis.

Model Analysis

Since the experimentally derived IR of the cerebral sys-
tem is obtained using small signal analysis, the model equa-
tions can be linearized about the baseline conditions to de-
termine the predicted system behaviour. An outline of the
derivation is given in Appendix A. The resulting system
can be expressed in terms of the transfer functions relating
either CBF or VMCA to ABP. For the latter transfer function
it is assumed that the vessel cross-sectional area is invariant
with ABP and hence velocity fluctuations are solely related
to change in flow. These transfer functions are expressed
in terms of the Laplace transform variable, s, where CBF,
VMCA and ABP are given as fractional changes relative to
their basal values:

�q
/

q

�pa
/

pa

= H (s) , (11)

�VMCA
/

V̄MCA

�pa
/

p̄a
= J (s) , (12)

where:

H (s) = 1 + α1

β1 (1 + α1) −
(
β2 + β3

1+sτv

)
(1 − α1 − sα1τa ) + (

α2
1+sτ

)
(2 − sα1τa )

,

(13)

J (s) = 1

β1

β1 (1 + α1) + sα1τa

(
β2 + β3

1+sτv

)
+ (

α2
1+sτ

)
(−sα1τa )

β1 (1 + α1) −
(
β2 + β3

1+sτv

)
(1 − α1 − sα1τa ) + (

α2
1+sτ

)
(2 − sα1τa )

,

(14)

and the relevant non-dimensional parameters and time con-
stants are:

α1 = V̄a
/

q̄

R̄saC̄a
, (15)

α2 = G

[(
p̄a − p̄ic

p̄a − pv

)
− β1

]
, (16)

β1 = Rla + R̄sa
/

2

Rtotal
, (17)

β2 = R̄sa
/

2 + Rsv

Rtotal
, (18)

β3 = Rlv

Rtotal
, (19)

τa = (
Rla + R̄sa

/
2
)

C̄a, (20)

τv = RlvC̄v . (21)
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The first parameter is a ratio of time constants, the second
a measure of feedback gain, the third to fifth the resistance
fractions of the different parts of the compartmental model
and the sixth and seventh are time constants related to the
arterial and venous compartments respectively. ICP and ve-
nous outflow pressure are assumed constant. Although there
are five non-dimensional parameters in the model, one is
redundant, since β1 + β2 + β3 = 1 and the total resistance
is simply the sum of all the resistances in the model, relating
the baseline values of blood pressure drop and flow rate.

The CBF transfer function has numerator and denom-
inator of order 2 and 3 respectively, but that of the VMCA

has numerator and denominator both of order 3. The fact
that they are of the same order is in agreement with Giller
and Mueller.9 The IR and FR will thus be different in shape
as well as in magnitude, particularly at high frequencies,
where the CBF transfer function will roll-off at 90◦ lag,
whereas the VMCA transfer function will plateau at zero
phase. Note that the transfer functions for VMCA and CBF
are different, i.e. the former is not an exact marker for the
latter.

Before comparing the transfer function with experimen-
tal data, it is helpful to consider whether the transfer func-
tions can be simplified further, given typical values of the
model parameters. It is known that the majority of the re-
sistance to flow occurs in the arteries and arterioles, with
the venous vessels presenting very little resistance to flow.
If β3 can thus be assumed to be close to zero, the transfer
functions approximate to:

H (s) = 1 + α1

β1 (1 + α1) − (1 − β1) (1 − α1 − sα1τa) + (
α2

1+sτ

)
(2 − sα1τa)

,

(22)

J (s) = 1

β1

β1 (1 + α1) + sα1τa (1 − β1) + (
α2

1+sτ

)
(−sα1τa )

β1 (1 + α1) − (1 − β1) (1 − α1 − sα1τa) + (
α2

1+sτ

)
(2 − sα1τa )

.

(23)

The transfer functions are reduced in order by 1 in both
numerator and denominator, making both systems second
order. The number of parameters in the transfer function is
also reduced to five (α1, α2, β1, τa, τ ). These five parame-
ters uniquely define the coefficients of the VMCA and CBF
transfer functions.

Model Validation

To derive the VMCA IR, the transfer function, J(s), is
written in a slightly different form:

J (s) = 1

β1

[
1 + (1 − β1) (1 − α1) − 2

( α2
1+sτ

)
β1 (1 + α1) − (1 − β1) (1 − α1 − sα1τa ) + ( α2

1+sτ

)
(2 − sα1τa )

]
.

(24)

This is done to reduce the second term to one with nu-
merator of order one less than the denominator: the first
term is then a constant, giving an impulse at the origin
in the time series. Since the first term is not considered in
the experimentally-derived response, it is the second term

that is fitted to the experimental data. There are thus only
four free coefficients (due to arbitrary scaling between the
numerator and denominator) that can be estimated from ex-
perimental data. Since there are five parameters in the model
that determine the IR, there is one degree of redundancy in
the model, which cannot be determined experimentally.

The IR in Eq. (24) was optimally fitted using least
squares error to the experimental data of Mitsis.14 This
study was chosen as the intra-subject variation in exper-
imental IR is small and it was based entirely on healthy
subjects. This is also the case for other studies, which have
slightly different IR, as shown in Fig. 1, but they all exhibit
the same fundamental style of behaviour and the results
obtained below are relatively insensitive to which data set
is used.

The data of Mitsis was taken from 5 young healthy sub-
jects. ABP was measured by finger photoplethysmography
(Finapres, Ohmeda) and VMCA by trans-cranial Doppler at
2 MHz for a period of 2 hr following 30 min of supine
rest. Following sampling at 100 Hz, the waveforms were
integrated over the cardiac cycle to give beat-to-beat values,
which were finally resampled at 1 Hz.

The optimisation was performed using the ‘fminsearch’
routine in MATLAB, as this is based on the Nelder-Mead
Simplex method and is highly robust. The optimisation
routine was run many times for a wide range of initial values
and convergence to the same error minimum was found
every time, indicating the algorithm found the true global
error minimum. In addition, following this optimisation,
white noise was added to the values taken from Mitsis14

to test the robustness of the parameter values calculated by
the algorithm to small variations in the experimental IR:
the results are presented below. Only the robustness of the
algorithm in fitting the IR is considered here: the robustness
of the method of determining the IR is not considered since
it is a separate issue.

A range of fixed values of β1 was used sequentially to
investigate whether the quality of the model fit was strongly
dependent upon the value of this parameter. The resulting
optimal fit and experimental IR is shown in Fig. 3a, with
the variation of the optimal values of the other model pa-
rameters withβ1 shown in Fig. 3b. The RMSE (0.0145) is
very low, indicating a very good fit to the data, and is the
same for all fits. There is thus just one degree of freedom in
the model, which determines all the other model parameters
uniquely. The use of fixedβ1 here is governed by the fact
that the arterioles that control blood flow comprise most of
the resistance to flow: it is thus likely to be very close to 0.5,
since the remainder of the vascular resistance is relatively
small. If a value of 0.5 is chosen, then the optimal values
of the other parameters are:

α1 = 0.5613, α2 = 0.2858, τa = 1.2424s, τ = 2.9974s.

White noise was added to the IR, as described above, 50
times with standard deviation 0.02 and the values of the
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FIGURE 3. (a) Optimal model fit to experimental data for VMCA IR from Mitsis et al., 2002b; (b) Variation of the optimal values of the
other model parameters with β1 for optimal model fit.

parameters recalculated each time. 0.02 was chosen for the
standard deviation since this gave a signal to noise ratio
in the IR of approximately 1%. The standard deviations in
the four parameter values were found to be 1.6, 6.6, 4.7
and 9.0% respectively. There is thus more robustness in the
estimation of some of the model parameters than in others:
in particular, α1 is a robust estimate, whereas the others
are somewhat less so. For higher values of noise on the
IR, the variation in the estimate of the model parameters
will clearly be larger. However, estimating the IR is a well-
established technique and the algorithm used by Mitsis14 is
designed to be highly robust to noise, so the levels of noise
on the IR should be very low.

The first calculated parameter, α1, is the ratio of the
arterial transit time to the time constant associated with the
regulating arterial compartment. From experimental data,11

baseline CBF and CBV are approximately 58 ml/100 g/min
and 3.74 ml/100 g respectively, with arterial CBV approxi-
mately 23% of the total CBV at baseline. The arterial transit
time is thus estimated to be 0.9 sec and the regulating arterial
time constant can be estimated at 1.6 sec fromα1. The value
of τa of 1.24 sec can be used to estimate the ratio of non-
regulating to regulating arterial resistance as 27.5:72.5%.
This is a reasonable estimate, since the regulating arterioles
comprise most of the arterial resistance, although it is
difficult to compare its value to experimental data. Since
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the non-dimensional gain term, α2, contains a number of
different variables, estimating the value of the feedback
gain is difficult. In addition, since the feedback mechanism
incorporated in the model here is very simple, attempting to
characterise a number of processes within a single variable
with gain and time constant, it is difficult to compare it
directly to available data. However, more importantly,
the effects of raised or lowered feedback gain can be
examined, relative to the estimated baseline value, which
will provide an insight into whether changes in the feedback
processes for different subject groups can be determined
experimentally.

To test this, the data of Panerai18 for both a normal
subject and a head injured patient was analysed using our
proposed model. Since no information is given by Panerai
about the data or its processing, only a comparison be-
tween the two IR is given, rather than the absolute values
to illustrate the value of the proposed model. The value
of α1 is found to increase by 59% and the values ofα2,τa

andτ to decrease by 62, 69, 66% respectively. The large
decrease in the non-dimensional gain term, α2, is exactly
as expected, since it has been shown by Ursino29 that the
feedback gain reduces in head injured patients. Impaired
autoregulation can thus clearly be seen in the experimental
IR.

The decrease in the time constants is perhaps somewhat
surprising. The increase in the non-dimensional term, α1,
implies either a larger arterial transit time and/or a smaller
time constant associated with the regulating arterial com-
partment. This non-dimensional approach does illustrate
the difficulty of directly interpreting the results clinically,
but the proposed model does provide substantially more
information than has been previously available, by relating

the parameters within a physiological model to the experi-
mental IR.

Since the VMCA IR has been modelled and optimally fit-
ted to the experimental data, the CBF IR can directly be cal-
culated, as shown in Fig. 4a (CBF IR is scaled to a maximum
value of 1 for easier comparison: actual maximum value
4.4776). There are only very slight differences between the
derived CBF IR as the parameters are optimised for differ-
ent values of β1, Fig. 4b: the CBF IR can thus be robustly
estimated from the VMCA IR. The CBF IR is noticeably
different from the VMCA IR, indicating that although VMCA

is a useful surrogate for microvascular CBF, there are signif-
icant differences in their behaviour. In particular, the CBF
IR has a much higher initial value but much less undershoot,
indicating that it is more heavily damped than the VMCA IR.

The FR for both VMCA and CBF are shown in Fig. 5.
These both show that there is a flat response at low frequen-
cies, slight resonance in the range approximately 0.01–1 Hz,
where autoregulation is less effective, and then roll-off at
high frequencies, like a low pass filter, for CBF, but a second
plateau for VMCA. The phase lead agrees with experimental
data, which is only acquired at low frequencies, for which
CBF leads ABP. At very low frequencies, the phase lead
is predicted to drop back to zero: however, there are very
few studies that have recordings of sufficient duration to
explore these low frequencies. One of the few32 seems to
show that the phase lead drops at low frequencies, but the
coherence also drops at these frequencies, making com-
parisons difficult. More detailed experimental data would
be valuable in interpreting the frequency response in more
detail. However, the proposed model seems to provide a
good agreement with the available experimental data. It
can thus be used to examine the effects of changes in the

FIGURE 4. (a) CBF IR calculated from optimal model fit for VMCA IR (scaled to a maximum value of 1 for easier comparison: actual
maximum value 4.4776); (b) Variation in CBF IR for different β1, each optimised separately.
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FIGURE 5. Frequency Response for both VMCA and CBF, opti-
mal model parameters.

system behaviour on the VMCA IR, which will be important
if the IR is to be of clinical use in investigating the status
of cerebral autoregulation.

Model Predictions

The change in VMCA IR as both the feedback gain and
time constant are varied is shown in Figs. 6a and 6b re-
spectively, assuming a value for β1 of 0.5. As the feed-
back gain is elevated, the response becomes increasingly
oscillatory, with a deeper trough occurring at a reducing
time: the response is thus speeding up, but becoming less
stable, as examined below. As the feedback time constant
is elevated, the reverse response occurs, i.e. the response
becomes faster as the time constant is reduced, as expected.
The initial value of the IR is, however, invariant with feed-

back gain and time constant. This is a significant difference
from the model of Tiecks,25 Fig. 7, where the initial value
decreases as autoregulation is impaired. From the initial
value theorem and Eq. (24), this initial value is predicted
here to be equal to(1 − α1)

/
α1β1τa = 1.2582. Since the

effects of variations in feedback gain and time constant are
different, they can be estimated independently: the status
of cerebral autoregulation can thus be estimated robustly
from the available experimental data. The model of Tiecks,
does predict that the magnitude of undershoot increases as
ARI is raised, similar to the model proposed here: however,
the advantage of our model is that the IR is directly related
back to the feedback mechanisms through both feedback
gain and time constant.

However, it is only strictly the non-dimensional gain
parameter, α2, that can be estimated from the experimental
data, rather than the actual feedback gain, Eq. (16). The
feedback gain is scaled by both a pressure and resistance
ratio. If ICP is close to venous pressure, then the pressure
ratio is close to one: however, if ICP is elevated, the non-
dimensional parameter, α2, is reduced. Conversely, if the
feedback gain is estimated from the data but with an incor-
rect ICP, the actual gain, G, will be slightly inaccurate: a
higher than expected ICP will result in an over-prediction of
the gain and vice versa. The effects of changes in baseline
ICP will thus be similar to those of changes in feedback
gain, Fig. 6a. However, the parameter α2 is much less sen-
sitive to changes in ICP than feedback gain: an increase
of 10% in feedback gain gives an IR exactly equivalent to
one with an increase of 39% in ICP, using typical values
of baseline pressure. Although the system response is thus
determined by both the feedback gain and ICP, neither of
which can be independently determined, since the response
is much less sensitive to ICP, it is reasonable to take α2 as
a measure of feedback gain, except in subjects where ICP
is known to be significantly altered.

FIGURE 6. Variation in VMCA IR for changes in: (a) feedback gain; and (b) feedback time constant.
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FIGURE 7. VMCA IR predicted by model of Tiecks et al., 1995.

One of the advantages of the simple model presented
here is that the stability of the system can be examined
analytically. Using a standard analysis7 yields the following
stability criterion in non-dimensional form:

α2 ≤ (1 − β1) + τ

τa

(
1 −

(
1 − 2β1

α1

))
. (25)

Since β1 ≈ 1
/

2, this reduces to:

α2 ≤ 1

2
+ τ

τa
. (26)

For the values calculated earlier from the experimental
data, the left hand side is equal to 0.56, whereas the right
hand side is equal to 2.91. The model is thus well within the
stable region, as would be expected. However, it can be seen
that both the feedback gain and time constant determine
the stability of the system. Changes in ICP will affect the
stability, but significantly less than changes in feedback
gain or time constant.

A similar model to the one here was proposed by
Ursino29 and used to fit experimental data recorded from 44
tracings from 13 different patients, all of whom had severe
head injuries. If the components of the model that deal with
the response to CO2 challenges are neglected, only three
model parameters were considered: CSF outflow resistance,
intracranial elastance coefficient and autoregulation gain.
The first two are not directly included in this model, as CSF
flow and ICP dynamics are neglected, whereas the effect
of the third on the model behaviour has already been con-
sidered in detail. However, in the Ursino model, baseline
ICP is adjusted by changing CSF outflow resistance, which
was found to vary widely across the patient group. The
feedback gain also varied over an order of magnitude, with
some subjects showing significantly impaired autoregula-
tion. The effects of changes in ICP and feedback gain have

been shown above not to have an independent effect on the
system IR, so it is not possible to determine both of these
directly from the IR unless ICP is measured. In addition,
Ursino26,29 did not consider the autoregulation time con-
stant, which has been shown here strongly to influence the
system behaviour.

It is somewhat surprising that the choice of feedback
time constant has such an effect on the IR: the influence of
feedback gain might be expected, but the influence of the
time constant is less expected. A value of 20 sec was chosen
by Ursino and Lodi,27 since “the brain vessel autoregulation
is quite fast, completing its action within 0.5–1 min from
the beginning of a perfusion pressure change.” The value
of feedback gain is chosen by Ursino and Lodi27 to “ensure
that CBF remains quite constant within the autoregulation
range.” The values derived here are somewhat smaller, but
the values quoted are somewhat of a compromise, attempt-
ing to encompass a number of different mechanisms within
a single value. The excellent agreement that the model pre-
dictions have with the available experimental data indicates
that the model is a reasonable one and that the estimates are
of the correct magnitude under normal conditions: however,
the impact on these feedback parameters of different patho-
logical states cannot be assessed with the existing model.
It would thus be highly worthwhile to attempt to relate the
values of feedback gain and time constant to more detailed
physiological models of the autoregulatory processes, since
they have both been shown here to have a very significant
effect on the system behaviour.

The effects of ageing or different pathological states on
the IR have only been investigated by a few authors. One
study18 found that the IR had a smaller and earlier dip
in a patient with severe head injuries in comparison with
a normal subject. From Fig. 6, this would imply a larger
feedback gain or a smaller time constant, neither of which
is likely: however, since only one subject is considered, it
is difficult to draw definite conclusions. The initial value
of the IR was, however, found to be very similar, which
would support the model proposed here, rather than that
of Tiecks, although again this cannot be concluded with
certainty since there is only one subject.

The dynamic behaviour of the cerebral autoregulation
system as assessed through the use of ARI has been shown
to be unaffected by ageing.2 However, dynamic cerebral
autoregulation was found to be impaired in patients with
acute ischaemic stroke, using the ARI.8 Interpreting this
result in terms of the underlying pathology is difficult,
given the nature of the ARI: the use of the model proposed
here would enable more information to be gained from
the experimental data. Also using the ARI, cerebral
autoregulation has been shown to be preserved in both
controls and in patients with recurrent vasovagal syncope
only in the initial period after head-up tilt, declining in the
syncopal group immediately before syncope.3 However,
using the frequency response, the cerebral autoregulation
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of patients with neurally mediated syncope has been found
to be preserved during the whole of the head-up tilt test,
which lasted up to one hour.24 By assessing the above
experimental data with the model proposed here, however,
more information could be learnt about the status of
autoregulation than can be gained solely from the ARI.

It should be noted that the cerebral autoregulation sys-
tem is more complicated than presented in this analysis:
in particular only the linear dynamic behaviour has been
examined here and experimental data presented by other
authors14 has seemed to indicate that the response may be
heavily non-linear, especially in the low frequency range.
The experimental data has been used to estimate more
mathematically abstract models of the autoregulation, us-
ing first, second and third order kernels5,14: although the
first order kernel has now been related to a physiologically-
based model to provide a physiological interpretation, this
is missing for the higher order kernels.

The presence of the one remaining degree of freedom
in the model, however, means that it is not possible to
determine all the necessary model parameters from just
the IR. It would be valuable to find a means of obtaining
more information experimentally to eliminate this degree of
freedom. Since only non-invasive measurements are likely
to be practical in most subjects, there are few extra exper-
imental parameters available. However, one measurement
technique that might have potential is Near Infra-Red Spec-
troscopy (NIRS), which can be used to measure changes in
oxyhaemoglobin and deoxyhaemoglobin, both of which are
flow dependent. Since there appears not to be any available
experimental data for the transfer function between these
two parameters and ABP, it is difficult to tell whether this
is feasible. However, the model presented here could easily
be extended to include the transport of haemoglobin and a
theoretical analysis of this model would enable the potential
of these measurements to be determined in assessing cere-
bral autoregulation, either on their own or in conjunction
with VMCA measurements. This will be the subject of future
work.

CONCLUSIONS

In this paper the linear dynamic behaviour of the cerebral
autoregulation system has been examined in detail, using a
physiologically-based model which is analysed and com-
pared to experimental data taken from the literature. The
physiological model is based on a feedback mechanism
with gain and time constant and is found to approximate
very closely to a second order feedback system for the
VMCA/ABP transfer function. This shows very good agree-
ment with experimental data and can thus be used to esti-
mate the model parameters. A key advantage of this model
is that the number of parameters to be estimated is close

to the number of free variables. It is thus a compact model
and its parameters can be derived robustly: a more complex
model would have more degrees of freedom and would
be harder to interpret from experimental data, whereas a
simpler model would have too few degrees of freedom and
provide less physiological insight.

Clearly the model is still an approximation to the under-
lying processes, but enables valuable clinical information
to be gained from experimental data. The approach pre-
sented here is similar to that proposed by Tiecks,25 but
starting from a physiologically-based model, that enables
the status of autoregulation to be interpreted in terms of a
feedback gain and time constant, rather than a somewhat
arbitrary difference equation. It would be extremely valu-
able to perform the parameter estimation process outlined
here on a wide range of patient groups to examine whether
the autoregulation status is different between the separate
groups.

APPENDIX

To derive the linear transfer function, small changes
about the basal conditions are assumed using a Taylor series
expansion. Since the resulting equations will all be linear,
the Laplace transform is used to convert the differential
equations into a transfer function.
Equation (2) becomes:

�Rsa = −2
�Vsa

Vsa
Rsa. (A1)

Equation (3) becomes:

s�Vsa = sCa�p1 + s�Ca (p1 − pic) . (A2)

Equations (4) and (7) combine to give:

sCv�p2 = �p1 − �p2(
Rsa

/
2 + Rsv

) − q
�Rsa

/
2(

Rsa
/

2 + Rsv
) − �p2

Rlv
.

(A3)
Equation (6) becomes:

s�Vsa = �pa − �p1(
Rla + Rsa

/
2
) − q

�Rsa
/

2(
Rla + Rsa

/
2
) − �q. (A4)

Equations (8) and (10) combine to give:

�Ca = −CaG
�q

q (1 + sτ )
. (A5)

Equation (9) becomes:

�q = �p1 − �p2(
Rsa

/
2 + Rsv

) − q
�Rsa

/
2(

Rsa
/

2 + Rsv
) . (A6)

The six Eqs. (A1)/(A6), can be used to eliminate the un-
wanted variables (�Vsa, �Rsa, �Ca, �p1, �p2) to derive
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the expression in Eq. (11). The transfer function for VMCA

can be found from the flow rate:

VMCA = 1

A

pa − p1(
Rla + Rsa

/
2
) . (A7)

Hence for small changes:

�VMCA

VMCA
= �pa − �p1

(pa − p1)
− �Rsa

/
2(

Rla + Rsa
/

2
) , (A8)

since area is assumed constant. This can then be calculated
from the expressions in Eqs. (27)–(32).
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