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Abstract—We constructed a novel physiologically-based phar-
macokinetic (PBPK) model for predicting interactions between
the neonatal Fc receptor (FcRn) and anti-carcinoembryonic anti-
gen (CEA) monoclonal antibodies (mAbs) with varying affinity
for FcRn. Our new model, an integration and extension of sev-
eral previously published models, includes aspects of mAb-FcRn
dynamics within intracellular compartments not represented in
previous PBPK models. We added mechanistic structure that de-
tails internalization of class G immunoglobulins by endothelial
cells, subsequent FcRn binding, recycling into plasma of FcRn-
bound IgG and degradation of free endosomal IgG. Degradation
in liver is explicitly represented along with the FcRn submodel
in skin and muscle. A variable tumor mass submodel is also in-
cluded, used to estimate the growth of an avascular, necrotic tumor
core, providing a more realistic picture of mAb uptake by tumor.
We fitted the new multiscale model to published anti-CEA mAb
biodistribution data, i.e. concentration-time profiles in tumor and
various healthy tissues in mice, providing new estimates of mAb-
FcRn related kinetic parameters. The model was further validated
by successful prediction of F(ab′)2 mAb fragment biodistribution,
providing additional evidence of its potential value in optimizing
intact mAb and mAb fragment dosing for clinical imaging and
immunotherapy applications.

Keywords—Monoclonal Antibodies, Neonatal Fc receptor,
Mathematical model, Animal Models, Pharmacokinetics.

INTRODUCTION

Therapeutic Monoclonal Antibodies11,30

Monoclonal antibodies (mAbs) represent a major ad-
vance in cancer therapy, often allowing a patient to un-
dergo treatment with reduced or minimal impact to healthy
tissues, in contrast to chemotherapy and radiotherapy.
The number of clinical trials related to mAbs increased
sharply during the early 1990s (PubMed literature search,
not shown), culminating with the approval of rituximab
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(RituxanTM) in 1997 (U.S.) for the treatment of non-
Hodgkin’s lymphoma (NHL). Rituximab targets and medi-
ates the destruction of tumor cells via CD20, a transmem-
brane protein present only on lymphoma cells and the B
lymphocytes from which they are derived.37 Trastuzumab
(HerceptinTM) was approved for use in the U.S. the fol-
lowing year, and targets HER-2/neu, a cell surface pro-
tein associated with aggressive tumor growth, overex-
pressed in 20–30% of breast cancers.41 Other mAbs have
since been approved at an increasing rate and include
agents for the treatment of acute myelogenous leukemia
[Gemtuzumab ozogamicin (MylotargTM)], chronic lym-
phocytic leukemia [Alemtuzumab (CampathTM)] and col-
orectal cancer [Cetuximab (ErbituxTM) and Bevacizumab
(AvastinTM)]. Also, additional mAbs used for radioim-
munotherapy of NHL have recently been approved
[Ibritumomab tiuxetan (ZevalinTM) and Tositumomab
(BexxarTM)].

Most currently approved mAbs are only effective against
specific types of cancers, but some show potential as
broader anti-tumor agents. Bevacizumab, approved in
early 2004, targets the vascular endothelial growth factor
(VEGF), a ligand for the VEGF receptor (VEGFR), ex-
pressed by budding endothelial cells during angiogenesis
(blood vessel growth).30 VEGF is released by tumor cells
to stimulate tumor vascularization and growth; some tumor
cells may also express VEGFR in order to receive prolif-
eration signals in an autocrine/paracrine manner,14 so that
blocking VEGF function with Bevacizumab can potentially
inhibit tumor cell growth directly, in addition to blocking
angiogenesis. mAbs also have treatment applications be-
yond cancer, e.g., use of rituximab for treatment of a variety
of autoimmune disorders.35

Neonatal Fc Receptor (FcRn)19,45

In 1964, Brambell and coworkers proposed that class
G immunoglobulin (IgG) elimination is mediated by a
saturable rescue mechanism.8 They based this idea on
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FIGURE 1. PBPK model of monoclonal antibody biodistribution. Schematic of our augmented PBPK model used to both describe
intact mAb biodistribution (Model B) and predict F(ab′)2 biodistribution (Model C). Flux arrows labeled with a single letter represent
linear, time-invariant mass transfer via: a: Arterial blood flow; v: Venous blood flow; L: Lymph flow; e: Elimination from body; i:
Internalization by endothelial cells; r: Recycling from endothelial cell back into plasma and d: Dissociation from FcRn or CEA.
The subscript TV indicates linear, time-varying mass transfer. Nonlinear mass fluxes include mass action based antibody binding
(- - -) and antibody extravasation described by the two-pore macromolecule extravasation submodel38 (– · –) shown in Fig. 2. See
Appendix for model equations and parameter values.

experimental data showing that the apparent half-life of
IgG decreased as total IgG concentration increased,15

and proposed a simple, empirical model describing the
effect of this hypothetical Brambell receptor on IgG
half-life kinetics in mice: t1/2 = C ln 2/(a(C − b)), where
a = 0.34, b = 2.5 and C is total IgG concentration in
mg/ml.

In 1972, an Fc receptor was identified that mediates the
transfer of IgG from mother’s milk to intestinal blood in
neonatal rats26 via the immunoglobulin Fc region, thereafter
called the neonatal Fc receptor (FcRn). FcRn was later char-
acterized as a dimer that transports IgG via a pH-dependent
mechanism of association and dissociation,39 and was also
shown to mediate materno-fetal transfer of IgG across the
placenta in pregnant mice.23 The X-ray crystallographic
structure of the molecule revealed that FcRn is similar to
the MHC class-I molecule, consisting of a three-domain al-
pha subunit coupled with β-2-microglobulin;10 the portion
of FcRn analogous to the MHC I peptide-binding groove is
occluded by an α-helix.

In 1996, FcRn was identified as the hypothetical
Brambell receptor,18,24,27 and further studies identified key
residues in both the Fc region of IgG29 and FcRn47 capa-
ble of attenuating Fc–FcRn binding when mutated. Direct
evidence of the role of FcRn in perinatal IgG transport and
FcRn-mediated IgG degradation was recently reported in

FcRn knockout mice.40 It is believed that FcRn is expressed
primarily within muscle and skin endothelium7,18 of adult
mice and humans, and rescues IgGs from degradation by
diverting intracellular, FcRn bound IgG away from the lyso-
somal degradation pathway.34

Physiologically Based Pharmacokinetic Models17,33,46

Mathematical biomodels structured according to phys-
iological connectivity are common in many areas of life
science.28,36 This approach has recently been applied to
drug kinetics with the designation ‘physiologically-based
pharmacokinetic (PBPK) modeling.’

PBPK models typically include physiological parame-
ters, such as blood flow rates and organ volumes, along with
drug-dependent parameters, such as rates of drug binding
and metabolism. Organs are typically represented by in-
teracting pools (with linear or nonlinear components), rep-
resenting vascular, interstitial and/or intracellular spaces,
among others, as in Fig. 1. The lungs are usually included,
with efferent organ plasma flux of drug flowing to the sys-
temic circulation (central plasma pool) via the pulmonary
circulation (lungs). Pharmacodynamic components, mech-
anistic or otherwise, may also be included. Physiologically
based modeling has been facilitated by a concerted effort
to amass measured physiological parameters from various
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mammalian species (especially mouse, rat and human) for
use in the construction of PBPK models.9

Application of PBPK Modeling to Monoclonal
Antibody Kinetics

The PBPK modeling approach has previously been
applied to studies of the biodistribution of intact anti-
carcinoembryonic antigen (CEA) mAbs and their fragments
[Fab, F(ab′)2] in mice4 (designated Model A here). Based
on an earlier model,12 Model A was initially developed
from mouse data, and allometric scaling13 yielded specific
parameters for a human PBPK model.3 The two-pore theory
of macromolecule extravasation38 is a key feature of both
models3,4 and is used to describe the flux of immunoglob-
ulins from capillary to interstitial space (see Fig. 2).

We augment Model A4 in several ways. First, our
new model, designated Model B, includes an FcRn sub-
model based on experimental data that suggests inclu-
sion of intracellular compartments within skin and muscle
endothelium7,18,34 for representing mAb half-life regulation
via FcRn. The FcRn submodel can be used to predict the
kinetic properties and biodistribution of different mAbs and
mAb fragments with varying affinities for FcRn. Second,
we removed the kidney leak utilized in Model A4 as the
sole site of mAb elimination, since very little mAb elimi-
nation is believed to occur there,48 and added a first-order
leak to the liver pool, where a significant amount of mAb
degradation takes place.16,48 Finally, we developed a vari-
able tumor mass submodel that describes growth of both
vascular and avascular (necrotic) regions of the tumor over
time (see Methods), based on studies reported by Williams

FIGURE 2. Two-pore model of antibody extravasation.38 The
capillary is modeled as having two pore types, large and small.
A large number of small pores (∼10 nm) exist in the capillary
along with a lesser number of large pores (∼50 nm), through
which macromolecules can pass by either convection or dif-
fusion. Fluid recirculation occurs at a rate Jiso, with the small
pores acting as a filter, trapping large molecules in the inter-
stitial space. Excess fluid flux into the interstitial space oc-
curs at a rate Jv and is taken up by the lymphatic system
at a rate L (which is equal to Jv). αL and αS are the frac-
tions of bulk fluid passing through large and small pores, re-
spectively (αL + αS = 1). See Appendix for the two-pore model
equations.

et al.49 that suggest a necrotic tumor core develops in the
animal/tumor model used to produce data utilized in our
study, reducing the fraction of total tumor accessible to
blood and mAbs.

We compare Model B, first with Model A, plus two
variants: Model Bconstant tumor mass—same as Model B, but
with a constant tumor mass in place of the variable tumor
mass submodel; and Model Blinear leaks—same as Model B,
but with first-order (linear) leaks emanating from the vas-
cular compartments of skin and muscle in place of the 2-
compartment FcRn submodels. Finally, we extend Model
B to Model C—our novel PBPK model for the F(ab′)2

fragment, which also includes the FcRn submodel and vari-
able tumor mass submodel; kon,FcRn is set to zero within
the FcRn submodel, effectively removing compartment Eb

(Fig. 1). Table 1 summarizes the models and their attributes.

METHODS

Model Simulations and Parameter Estimation Methods

Parameter values for our new model were ob-
tained as follows, 51 were available from the original
model4 and 13 others were gathered from additional
literature.6,9,22,32,38,47,49,50 The remaining 15 were esti-
mated (see Results) from experimental data.50 These are
given in the Appendix and in Table 2.

Models were implemented and parameters were es-
timated using SAAM II,2 fitting each model simul-
taneously to all biodistribution data using weighted
least squares optimization, first using the relative data
weighting scheme5 provided in SAAM II. Plasma data
weights were then increased by an order of magni-
tude, since plasma measurements are more precise than
raw organ tissue measurements, providing better overall
fits.

Biological Data for Fitting the Models

Model B was fitted to mouse biodistribution data re-
ported in50 and residual carcass data generously provided by
Larry Williams, City of Hope. Briefly, the authors studied
the pharmacokinetics and biodistribution in tumor, blood,
liver, spleen, kidney, lung, stomach, bowel, bone and car-
cass of a chimeric anti-CEA IgG1 monoclonal antibody
(cT84.66), plus four of its fragments: 120 kDa F(ab′)2,
80 kDa minibody, 55 kDa diabody, 28 kDa scFv. Female
nude mice were flank injected with human colorectal tumor
LS174T (ATCC CL 188) cells. The tumor cell population
was allowed to grow for 10 days prior to a second injection,
antibody labeled with 123I, 125I or 131I. Between four and
nine mice were killed at each of the following timed data
points: 0, 2, 3, 6, 12, 18, 24, 48, 72 h (F(ab′)2) and 0, 6,
13, 24, 48, 72, 96, 120, 168 h (intact mAb). The organs
noted were excised, weighed and counted for remaining
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TABLE 1. Mathematical models used in this study.

Variable tumor FcRn
Model mass submodel submodel mAb described

Model A (Baxter et al., 1994) No No Intact mAb
Model B Yes Yes Intact mAb
Model Blinear leaks Yes No Intact mAb
Model Bconstant tumor mass No Yes Intact mAb
Model C Yes Yes F(ab′)2 mAb fragment

radioactivity. We used only 131I-labeled intact mAb biodis-
tribution data from these assays for fitting Model B, and
F(ab′)2 fragment data was compared to our predictions us-
ing Model C.

FcRn Submodel

The FcRn mechanism is depicted as a nonlinear 2-
compartment model, with state variables Ef (unbound
mAb) and Eb (FcRn-bound mAb) within endothelial cells
in Fig. 1. Flux i represents linear transfer of mAb from
organ vascular space to endosomes via nonspecific bulk
fluid uptake by endothelial cells. Flux e represents linear
degradation of unbound mAb. The dashed line represents
binding of mAb to FcRn (Eqs. A.9(a)–A.9(c), Appendix).
Flux d represents linear dissociation of mAb from FcRn
and flux r represents transport of FcRn-bound mAb from
the endosome back into plasma.

Estimation of Unbound FcRn Concentration

The concentration of unbound FcRn was estimated
from the aforementioned study,8 where IgG half-life
was measured at increasing total IgG concentrations
in BALB/c mice and plotted as t1/2,IgG vs. [IgG].
We fitted this data (not shown) using the program
W3DIMSUM (http://biocyb.cs.ucla.edu/dimsum), an ex-
pert system for multiexponential modeling that fits 1-, 2-,
3- and 4-exponential functions to any data set. The fit-
ted 2-exponential function, t1/2,IgG,fast = 6.76 e−0.507[IgG] +
4.00 e−0.0244[IgG], had the best fit with a weighted residual
sum of squares (WRSS) of 12.7, compared to WRSS val-
ues of 20.1, 46.1, and 22.1 for the 1-, 3- and 4–exponential
model fits. We assume that the fast component of the 2–
exponential curve (6.76 e−0.507[IgG]) represents FcRn satura-
tion and the slow component (4.00 e−0.0244[IgG]) represents
other mechanisms of IgG kinetic regulation. The fast com-
ponent indicates that FcRn is saturated at a total IgG concen-
tration of ≈7 mg/ml. Since the basal concentration of total
IgG in 6 week old nude mice is reported to be ≈1 mg/ml,32

we estimated that the FcRn binding sites will saturate at
an IgG concentration of about 6 mg/ml (4 × 10−8 mol/ml);
this number is used as the effective concentration of
free FcRn binding sites prior to injection of the intact
mAb.

Estimation of Total Tumor Antigen Concentration

Assume CEA density6 ≈ 5 × 105 CEA/cell. As-
sume cell density ≈108 cells/g. CEA density × cell
density ≈5 × 1013 CEA/g = 8.30 × 10−11 mol/g ∼= 8.30 ×
10−11 mol/ ml.

Estimation of Total Endosomal Volume

Endothelial cell endosomes are treated as an extension of
the organ microvasculature such that the total concentration
of IgG (FcRn-bound and unbound) within the endosome
is always equal to the concentration of IgG in the organ
microvasculature (Eq. A.9(c)).

Variable Tumor Mass Submodel

The variable tumor mass submodel is based on in vivo
measurements of total tumor mass (provided by Larry
Williams, City of Hope), which were fitted with the
Gompertz equation,42 (Fig. 3, solid lines) using Prism
(GraphPad Software for Science, San Diego, CA). The
equation was attenuated based on studies of perfus-
able tumor mass as a function of total tumor size in
mice, where the authors49 parameterize a power func-
tion (uptake = B × massA) that relates antibody uptake
by tumor (%ID/g) to total tumor mass. Based on in vivo
data, using the same antibody-tumor system described in
Williams et al.,50 the authors estimate that the power func-
tion has values of B = 18.1 and A = −0.38. We used the
parameterized power function to estimate perfusable tu-
mor mass as a function of total tumor mass (Eqs. A.8(b)
and A.8(c)).

Estimation of Hepatic Degradation Rate

A liver degradation rate was chosen that allows liver
to account for approximately 40% of total degraded intact
mAb.48 Since we are neglecting degradation in other organs
(spleen, tumor, etc), the 40% value accounts for liver plus
all other degradation sites not located in skin or muscle.

RESULTS

As a preliminary validation of our model implementa-
tion, we first successfully reproduced the primary blood
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TABLE 2. Model parameters and fitted parameter estimates.

Parameter Units Description Source Value ×10−4 %CV

Physiological parameters
Jiso, organ, sp ml min−1 g−1 Fluid recirculation flow

rate for each organ
Fitted tumor: 6.8 4

Gl tract: 3.0 317
bone: 0.52 31
kidney: 2.3 59
liver: 13.1 866
lung: 6.6 25

Qorgan and Qtumor, sp ml min−1 ml min−1 g−1 Plasma flow rate to
organ and tumor

Baxter et al. (1994)

Massorgan g Mass of organ Baxter et al. (1994)
Masstumor g Mass of tumor Williams et al. (2001)
Masstumor, perfuasble g Perfusable tumor mass Williams et al. (1988)
kon, CEA mol mol−1 min−1 Association rate for

antibody/antigen
binding

Hefta et al. (1998)

koff, CEA min−1 Dissociation rate for
antibody/antigen
binding

Hefta et al. (1998)

Lorgan, sp ml min−1 g−1 Lymph flow rate for
each organ

Fitted Gl tract: 23 307

spleen: 1.1 19
bone: 3.0 32
liver: 65 827
kidney: 14 64
lung: 8.5 29

Vplasma ml Plasma volume Brown et al. (1997)
Vv, organ and Vv, tumor, sp ml ml g−1 Volume of organ and

tumor vascular space
Baxter et al. (1994)

Vi,organ and V i, tumor, sp ml ml g−1 Volume of organ and
tumor interstitial
space

Baxter et al. (1994)

αL and αS — Fraction of
extravasation
occuring via large
and small pores

Rippe and
Haraldsson (1994)

FcRntot mol ml−1 Total FcRn
concentration

Estimated from
Brambell et al.
(1964)

Bmax, sp mol ml−1 Tumor antigen
concentration

Berk et al. (1997)

kdeg, liver ml min−1 Degradation rate of
mAb in liver

Estimated from
Waldmann et al.
(1969)

Drug dependent parameters
σL and σS — Osmotic reflection

coefficient for large
and small pores

Baxter et al. (1994)

PSL, organ·PSs, organ ml min−1 g−1 Permeability-surface
area product (large
and small pores)

Baxter et al. (1994)

kon, FcRn ml mol−1 min−1 Binding constant for
IgG-FcRn interaction

Vaughn and
Bjorkman (1997)

koff, FcRn min−1 Dissociation constant
for IgG-FcRn
interaction

Vaughn and
Bjorkman (1997)

FcRn submodel parameters
kint, FcRn min−1 Nonspecific

internalization rate of
free mAb

Fitted 96 12

krec, FcRn min−1 Recycling rate of FcRn
bound mAb

Fitted 35 14
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TABLE 2. Continued.

Parameter Units Description Source Value ×10−4 %CV

kdeg, FcRn min−1 Degradation rate of
unbound endosomal
mAb

Fitted 6127 4

Note. Best estimates and percent coefficients of variation (%CV) are shown for unknown parameters. Remaining parameters were obtained
from the literature, as noted, and are given in the Appendix. Each organ has a different best estimate value for Jiso and L, shown in the two
rightmost columns. Best estimates for kint, kdeg and krec are also shown. For organs with no experimental data available, Jiso and L values
from Baxter et al.4 were used. Lymph flow rate for tumor is assumed to be zero.25 Jiso, spleen is most likely unidentifiable and was set to
2 × 10−7.

and tumor simulation results from,4 by stripping Model B
of all augmentations (resulting in Model A) and using their
published parameter values.4 We then explored the new
model and its variants.

Model B Fitted to Intact mAb Biodistribution Data
and Model B Parameter Estimates

We estimated 15 unknown model parameters
(Jiso, tumor, sp, Jiso, GI, sp, Jiso, bone, sp, Jiso, kidney, sp, Jiso, liver, sp,
Jiso, lung, sp, LGI, sp, Lspleen, sp, Lbone, sp, Lliver, sp, Lkidney, sp,

FIGURE 3. Variable tumor mass submodel for Model B,
Blinear leaks and Model C. Tumor growth models based on un-
published data (provided by L. Williams) from the intact mAb
(used in Model B) and F(ab′)2 (used in Model C) experiments
reported in Williams et al.50 Each graph compares total tu-
mor mass, described by the fitted Gompertz equation (—), to
estimated perfusable tumor mass (· · ·), which was calculated
based on data from a previous study by Williams et al.49

Llung, sp, kint, kdeg and krec) from the data, with model B
fitting the experimental data as shown in Fig. 4. The dot-
ted line represents the fitted simulation results for each
organ, shown with the corresponding experimental data50

(open circles). Table 2 provides optimized parameter es-
timates and their percent coefficients of variation (%CV),
which range from 4–866%. The parameter estimates for the
FcRn submodel are among those with the lowest variability:
kint ≈ 0.01 ± 0.001 (±SD), kdeg ≈ 0.6 ± 0.03 and krec ≈
0.003 ± 0.0005 min−1; these correspond to fluxes i, d
and r, respectively, in the skin and muscle pools of
Fig. 1.

Prediction of F(ab′)2 Fragment Biodistribution
Using Model C

To exercise our new model, we predicted the biodistri-
bution of cT84.66 F(ab′)2 antibody fragments, after mak-
ing the following changes to the parameters of Model B.
First, the on-rate (kon, FcRn) for the IgG-FcRn interaction
was set to zero based on the assumption that the F(ab′)2

fragment does not bind FcRn, due to absence of an Fc re-
gion. The osmotic reflection coefficients and permeability-
surface area coefficients (σ S, σ L, PSS and PSL), which
characterize resistance to drug extravasation via diffusion
and convection, were changed from intact mAb values to
F(ab′)2 values4 (see Appendix). The tumor growth data
from the F(ab′)2 biodistribution experiments50 was used.
In Fig. 4, the solid line represents F(ab′)2 biodistribution
predicted by Model C, shown with the corresponding ex-
perimental data50 (solid circles). Visually, the matches be-
tween predictions and data are quite good for all 9 data
sets.

Model B Fits the Data Better than Model A, Model
Blinear leaks and Model Bconstant tumor mass

We also fitted Model A4 simultaneously to all of the
cT84.66 intact mAb biodistribution data,50 to obtain an
objective measure of the quality of the two models, A and
B, fitted in the same manner to the same set of data. The
Akaike information criterion (AIC),1 a metric used in model
discrimination, was 19.4 for Model A and 6.1 for Model B,
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FIGURE 4. Fitted and predicted Model B and C simulations for intact mAb and the F(ab′)2 fragment (%ID/g vs. time). The dotted lines
in each panel represent Model B fitted to biodistribution data50 (open circles, mean ± SD of four mice) of an intact anti-CEA mAb
in tumor bearing nude mice. The solid lines represent Model C predictions of the biodistribution of the F(ab′)2 antibody fragment
data (solid circles, mean ± SD of four to nine mice). Model C was simulated by altering the parameters of Model B based on known
differences in the kinetics of the two molecules (see Appendix for drug specific parameters).

computed over tumor and all organs. A lower AIC indicates
a better fit of model to data.

Model Bconstant tumor mass fitted the tumor curve poorly
(Fig. 5), resulting in an overall AIC value of 8.4. Model
Blinear leaks fitted the tumor data better, but not as well over-
all, resulting in an AIC of 33.7 computed over all organs.
The same data weighting scheme was used for all fits.

Tumor Growth and FcRn Submodels Improve Fit
to Tumor and Residual Carcass Data

As clearly illustrated in Fig. 5, the two models that
assume a constant tumor mass in place of the variable
tumor mass submodel [Model A (AICtumor = 2.2) and
Model Bconstant tumor mass (AICtumor = 2.4)] did not fit the
tumor data as well as the two models that utilize the tu-
mor growth model [Model B (AICtumor = 1.6) and Model
Blinear leaks (AICtumor = 1.1)]. Similarly, the two models
that lack the FcRn submodel [Model A (AICcarcass = 4.8)
and Model Blinear leaks (AICcarcass = 8.1)] did not fit resid-
ual carcass data as well as the two models that include

the FcRn submodel [Model B (AICcarcass = 0.71) and
Model Bconstant tumor mass (AICcarcass = 0.58)] (see Fig. 5 and
Table 1).

Model B Drug Distribution Predictions Within Organ
Pool Compartments

Using Model B, the predicted concentration-time pro-
files for experimentally unmeasured individual compart-
ments within muscle, tumor and kidney submodels are
shown in Fig. 6. These simulations predict that about half
of intact antibody within muscle is bound to FcRn within
endothelial cell endosomes, while virtually all antibody
within tumor is bound to the tumor marker CEA. Antibody
within the two-compartment organ pools (kidney, heart,
bone, liver, spleen, lung and GI tract) is predicted to have
an approximate 2:1 vascular:interstitial distribution after
reaching maximum interstitial antibody concentration at
about 11 h, coinciding with previously published experi-
mental results showing that vascular—interstitial equilib-
rium of antibody requires 12–24 h.44
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FIGURE 5. Comparison of tumor and carcass concentration-
time profiles generated by Models A, B, Blinear leaks and
Bconstant tumor mass. Illustrates improved fit to tumor data via
incorporation of the variable tumor mass submodel (Models
B and Blinear leaks vs. Models A and Bconstant tumor mass) and the
improved fit to residual carcass data when the FcRn submodel
is utilized (Models B and Bconstant tumor mass vs. Models A and
Blinear leaks). See Table 1 for model descriptions.

DISCUSSION

Our model modifies and extends the previously pub-
lished model structure4 in several ways. First, we added
two compartments to the skin and muscle pools, where a
significant number of Fc-FcRn interactions are believed
to occur.7,18 We believe these newer developments are
needed in the model, to further understanding of IgG reg-
ulation. Second, we removed the kidney leak utilized in4

as the sole site of mAb elimination, since very little mAb
elimination is believed to occur there,48 and added a first
order leak to the liver pool, where a significant amount
of mAb degradation takes place.16,48 Finally, because tu-
mor mass increased sevenfold during the 168 h study,50 we
also included a variable tumor mass submodel based on
measurements of tumor mass at each biodistribution time
point.

As illustrated by Fig. 5 and Table 1, the model that con-
tains the variable tumor mass submodel without the FcRn
submodel (Model Blinear leaks) fits tumor data much better
than the model that contains the FcRn submodel without the

FIGURE 6. Predicted mAb distributions within compartments
of muscle, tumor and spleen (total mAb (mol) vs. time). For
tumor, virtually all antibody is predicted to be CEA-bound (Tb).
For muscle, free endosomal antibody (Ef ) is approximately
zero. The amount of drug present in the vascular (Vo) space
is roughly double the amount predicted to be in the interstitial
(io) space in kidney and other two compartment organs. Eb
represents endosomal, FcRn bound mAb. All predictions are
made using Model B.

variable tumor mass submodel (Model Bconstant tumor mass),
indicating that the improved tumor data fit is the result of
a more accurate mechanistic description of mAb uptake
by tumor rather than added dynamics from both the tumor
and FcRn submodels. Likewise, Model Bconstant tumor mass

fits carcass data much better than Model Blinear leaks, sug-
gesting that the improved fit to carcass data is the result of
a more accurate mechanistic description of mAb kinetics in
skin, muscle and bone via the FcRn submodel. Our simula-
tions predict that perfusable tumor mass remains relatively
constant over the course of the experiment (Fig. 2), even
when total tumor mass increases considerably. However,
our variable tumor mass submodel provides a more ac-
curate description of antibody-tumor kinetics (Fig. 5), by
enhancing the tumor measurement model, which depicts
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the concentration of mAb in total tumor (necrotic core plus
perfusable mass).

We have shown that our new model can be used to de-
scribe the biodistribution of intact anti-CEA mAbs, as well
as predict the biodistribution of F(ab′)2 mAb fragments in
mice. Addition of the FcRn and variable tumor mass sub-
models to Model A4 resulted in an improved fit to the intact
mAb data (Model B), with estimates of FcRn submodel
parameters having %CV <14%, thereby permitting predic-
tion of concentration-time profiles based on changes in IgG-
FcRn binding rates. A lower %CV indicates that model out-
put is more sensitive to changes in the associated parameter
value, thus enabling a more accurate estimate of the param-
eter based on data fitting. The parameter %CVs reported in
SAAM II are computed from the diagonal variance entries
in the covariance matrix,2 estimated using the unknown
parameter sensitivity matrix.43 Parameter sensitivities are
thus implicit in %CV values reported. Table 2 shows that,
in addition to FcRn submodel parameters, model output
is sensitive to Jiso and L parameters for tumor, bone, kid-
ney and lung (%CV < 64%). Model output is relatively
insensitive to changes in Jiso and L parameters for GI tract
and liver (%CV > 307%), most likely due to additional
model complexity introduced by the hepatic portal system
(Fig. 1).

Utilization of organ level biodistribution data
(Fig. 4) coupled with a physiologically based de-
scription of mAb elimination and FcRn interaction
(Fig. 1) enabled us to accurately estimate the rate of
mAb internalization by endothelial cells (kint, FcRn =
9.6 × 10−3 min−1, %CV = 12), subsequent degradation
(kdeg, FcRn = 0.6127 min−1, %CV = 4) and recycling
(krec, FcRn = 3.5 × 10−3 min−1, %CV = 14). Considering
the high sensitivity of model output to changes in FcRn
submodel parameters (low %CVs), successful prediction
of the F(ab′)2 biodistribution data (Fig. 4) suggests that
these parameter estimates are physiologically meaningful
and can be used to predict mAb biodistribution based on
FcRn affinity. These results remain to be confirmed from
laboratory measurements.

Other models have been proposed for describing mAb
kinetics4,12,20 and the FcRn system.21 Ours extends these,
for the first time integrating an organ specific FcRn sub-
model within a physiologically-based pharmacokinetic
model, allowing successful prediction of mAb biodistri-
bution based on FcRn affinity.

Current mAb dosing regimens for cancer treatment in
humans are based primarily on empirical approaches,31,51

which does not ensure optimal drug efficacy. Our
new model is a step forward in the development
of a whole-body pharmacokinetic model that can be
used as a basis for computing optimal dosing regimes
for drugs with varying FcRn affinity, thereby increas-
ing the therapeutic power of anti-tumor monoclonal
antibodies.

APPENDIX

MODEL EQUATIONS

Each flux arrow depicted in Fig. 1 is represented below
using standard kij notation. For example, kP,io skin is the
transfer coefficient, in units of min−1, for mass flux from the
interstitial compartment (io) in the skin pool to the central
plasma pool (P). From Eq. A.1 below we see that kP,io skin

has the following value:

kP,io skin = Lskin/Vi,skin = Lskin,spMassskin/Vi,skin

= 3.4 × 10−6 ml min−1 g−1 × 2.94 g/0.999 ml

= 1 × 10−5 min−1

Note that lymph flow rate is given per unit mass, designated
by the subscript sp. The total lymph flow rate for an organ
is calculated by multiplying the specific flow rate by organ
mass. All ki j ’s are in units of min−1; all mass fluxes are in
units of mol/min. State variables (Eb, Ef , Vo, io, Tb and P)
are shown in bold font and represent the number of moles
of drug in a compartment at any give time. Compartment
masses are converted to concentrations within equations
when necessary.

Linear Mass Transfer Coefficients

The following transfer coefficients are constant through-
out the course of the simulation, as shown above for kP,io skin .

• Fractional lymph flow rate (labeled ‘L’ in Fig. 1):

kP,io = Lorgan/Vi,organ (valid for tumor and all organs)
(A.1)

• Fractional arterial plasma flow rate (labeled ‘a’ in Fig. 1):

kVo organ,P = Qorgan/Vplasma

× (valid for all organs except lung, liver

and tumor) (A.2a)

kVo lung,P = (Qlung − L lung)/Vv,lung (A.2b)

kVo liver,P = (Qliver − QGI − Qspleen + LGI

+ Lspleen)/Vplasma (A.2c)

• Fractional venous plasma flow rate (labeled ‘v’ in Fig. 1):

kVo lung,Vorgan = (Qorgan − Lorgan)/Vv,organ (A.3)

(valid for tumor and all organs)

• Fractional mAb elimination rate (labeled ‘e’ in Fig. 1):

k0,Vo liver = kdeg,liver/Vv,liver (A.4a)

k0,Ef skin = kdeg,FcRn (A.4b)

k0,Ef muscle = kdeg,FcRn (A.4c)
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• Fractional mAb uptake rate by endothelial cells (labeled
‘i’ in Fig. 1):

kEf skin,Vo skin = kint,FcRn (A.5a)

kEf muscle,Vo muscle = kint,FcRn (A.5b)

• Fractional mAb-receptor dissociation rate (labeled ‘d’ in
Fig. 1):

kio tumor,Tb tumor = koff,CEA (A.6a)

kEf skin,Eb skin = koff,FcRn (A.6b)

kEf muscle,Eb muscle = koff,FcRn (A.6c)

• Fractional mAb transport rate from endothelial cell to
plasma (labeled ‘r’ in Fig. 1):

kVo skin,Eb skin = krec,FcRn (A.7a)

kVo muscle,Eb muscle = krec,FcRn (A.7b)

Linear, Time-Varying Mass Transfer Coefficients

Linear, time-varying transfer coefficients are explicitly
a function of time, i.e., ki, j = f (t).

• Fractional arterial plasma flow rate (labeled ‘aTV’ in
Fig. 1):

kVo tumor,P = Qtumor,spMasstumor,perfusable/Vplasma (A.8a)

Masstumor,perfusable = 0.4169(Masstumor)
0.62 (A.8b)

Gompertz growth model

Masstumor = N0 + C × exp(− exp((2.718 µ/C)

× (Lag − t) + 1)) (A.8c)

where N0 = 0.1868 g, C = 9.109 g, µ =
0.000367 g/min, Lag = 11070 min (Models B
and Blinear leaks)N0 = 0.1460 g, C = 4.182 g, µ =
0.0004715 g/min, Lag = 4325.4 min (Model C).

Non-Linear Mass Transfer Coefficients

The nonlinear transfer coefficients in this model are
functions of compartment masses.

• Fractional mAb-receptor binding rate (dashed arrows in
Figure 1):

kEb skin,Ef skin = kon,FcRn(FcRntot − Eb/Vendo) (A.9a)

kEb muscle,Ef muscle = kon,FcRn(FcRntot − Eb/Vendo) (A.9b)

Vendo = Vv,organ(Eb+Ef)/Vo + ε (A.9c)

set ε to 1 × 10−99 to avoid divide by zero at time 0 of
simulation

kTb,io tumor = kon,CEA(Bmax − Tb/Vi,tumor) (A.10)

Two-Pore Extravasation Submodel

kio,Vo = JL ,organ(1 − σL)/Vv,organ + PSL ,organ

× (1/Vv,organ − 1/Vi,organ × io/Vo)

× PeL ,organ/(ePeL ,organ − 1)

+ JS,organ(1 − σS)/Vv,organ + PSS,organ

× (1/Vv,organ − 1/Vi,organ × io/Vo)

× PeS,organ/(ePeS,organ − 1) (A.11a)

PeL,organ = (Jiso,organ + αLLorgan)
1 − σE

P SL,organ
,

(Pe = Peclet number) (A.11b)

(valid for tumor and all organs except kidney; for kidney,
replace αL with αL, kidney)

PeS,organ = (Jiso,organ + (1 − αL)Lorgan)

× (1 − σE)/PSS,organ (A.11c)

(valid for tumor and all organs except kidney; for kidney,
replace αL with αL, kidney)

An Example

Using the above equations and Fig. 1, the differential
equation for state variable io tumor is written as follows:

d

dt
(io tumor) = kio tumor,Tb Tb + kio tumor,Vo tumor Vo tumor

−kP,itumor io tumor − kTb,io tumor io tumor

(A.12)

All other equations are written similarly, with one equation
for each compartment, 26 ODEs total.

Measurement Model

Experimental data is listed in units of percentage injected
dose per gram of tissue (%ID /g) for each organ. We used
the following measurement model for each organ pool in
SAAM II during the fitting process:

measured concentration of mAb in an organ

= 100
n∑

i=1

Xi/(dose × Massorgan) (A.13)

where Xi = amount of drug (mol) in compartment i at time
t; n = number of compartments in organ pool. Note that for
the central plasma pool measurement:

Massblood = Massplasma/(1 − hematocrit) (A.14)
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MODEL PARAMETERS
Drug Independent Parameters

Jiso, bone, sp = 0.518 × 10−4 ml min−1 g−1 Jiso, gi, sp = 3.033 × 10−4 ml min−1 g−1

Jiso, heart, sp = 0.560 × 10−4 ml min−1 g−1 Jiso, kidney, sp = 2.264 × 10−4 ml min−1 g−1

Jiso, liver, sp = 13.10 × 10−4 ml min−1 g−1 Jiso, lung, sp = 6.561 × 10−4 ml min−1 g−1

Jiso, muscle, sp = 0.050 × 10−4 ml min−1 g−1 Jiso, skin, sp = 0.300 × 10−4 ml min−1 g−1

Jiso, spleen, sp = 0.002 × 10−4 ml min−1 g−1 Jiso, tumor, sp = 6.274 × 10−4 ml min−1 g−1

Lbone, sp = 3.037 × 10−4 ml min−1 g−1 Lgi, sp = 22.90 × 10−4 ml min−1 g−1

Lheart, sp = 0.752 × 10−4 ml min−1 g−1 Lkidney, sp = 14.40 × 10−4 ml min−1 g−1

Lliver, sp = 64.50 × 10−4 ml min−1 g−1 Llung, sp = 8.509 × 10−4 ml min−1 g−1

Lmuscle, sp = 0.757 × 10−4 ml min−1 g−1 Lskin, sp = 0.034 × 10−4 ml min−1 g−1

Lspleen, sp = 1.111 × 10−4 ml min−1 g−1 Ltumor, sp = 0.000 ml min−1 g−1

kdeg, liver = 1.500 × 10−4 ml min−1 Massresto = 17.70 g
Massbone = 2.250 g Massgi = 3.450 g
Massheart = 0.133 g Masskidney = 0.298 g
Massliver = 0.951 g Masslung = 0.191 g
Massmuscle = 7.924 g Massblood = 0.758 g
Massskin = 2.940 g Massspleen = 0.100 g
Qbone = 0.171 ml min−1 Qgi = 0.897 ml min−1

Qheart = 0.279 ml min−1 Qkidney = 0.799 ml min−1

Qliver = 1.103 ml min−1 Qlung = 4.368 ml min−1

Qmuscle = 0.792 ml min−1 Qskin = 1.205 ml min−1

Qspleen = 0.050 ml min−1 Qtumor, sp = 0.212 ml min−1g−1

Vplasma = 0.493 ml Vi,bone = 0.279 ml
Vi, gi = 0.600 ml Vi, heart = 0.019 ml
Vi, kidney = 0.101 ml Vi, liver = 0.190 ml
Vi, lung = 0.057 ml Vi, muscle = 1.030 ml
Vi, skin = 1.000 ml Vi, spleen = 0.020 ml
Vi, tumor, sp = 0.547 ml g−1 Vv, bone = 0.081 ml
Vv, gi = 0.100 ml Vv, heart = 0.007 ml
Vv, kidney = 0.030 ml Vv, liver = 0.095 ml
Vv, lung = 0.019 ml Vv, muscle = 0.151 ml
Vv, skin = 0.200 ml Vv, spleen = 0.010 ml
Vv, tumor,sp = 0.070 ml g−1 αL = 0.042 (dimensionless)
FcRntot = 4.00 × 10−8 mol ml−1 αL, kidney = 0.002 (dimensionless)
kint, FcRn = 0.00961 min−1 kdeg, FcRn = 0.613 min−1

koff, FcRn = 0.03 min−1 krec, FcRn = 0.00345 min−1

Bmax, sp = 8.30 × 10−11 mol ml−1 kf,CEA = 9.84 × 1010 ml min−1 mol−1

kr, CEA = 8.46 × 10−4 min−1

Drug Dependent Parameters
σL = 0.26 (intact mAb), 0.11 [F(ab′)2] (dimensionless)
σS = 0.98 (intact mAb), 0.96 [F(ab′)2] (dimensionless)
PSL,sp = 2.66 × 10−6 (intact mAb), 7.98 × 10−6 [F(ab′)2] ml min−1 g−1

PSS,sp = 7.80 × 10−6 (intact mAb), 2.34 × 10−6 [F(ab′)2] ml min−1 g−1

kon,FcRn = 2.00 × 109 (intact mAb), 0 [F(ab′)2] ml min−1 mol−1

Dose = 8.30 × 10−13 (intact mAb), 1.25 × 10−12 [F(ab′)2] mol
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