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Abstract—The pericellular matrix (PCM) is a region of tissue that
surrounds chondrocytes in articular cartilage and together with the
enclosed cells is termed the chondron. Previous studies suggest
that the mechanical properties of the PCM, relative to those of
the chondrocyte and the extracellular matrix (ECM), may signifi-
cantly influence the stress–strain, physicochemical, and fluid-flow
environments of the cell. The aim of this study was to measure
the biomechanical properties of the PCM of mechanically isolated
chondrons and to test the hypothesis that the Young’s modulus of
the PCM varies with zone of origin in articular cartilage (surface
vs. middle/deep). Chondrons were extracted from articular carti-
lage of the canine knee using mechanical homogenization, and the
elastic properties of the PCM were determined using micropipette
aspiration in combination with theoretical models of the chondron
as an elastic incompressible half-space, an elastic compressible
bilayer, or an elastic compressible shell. The Young’s modulus
of the PCM was significantly higher than that reported for iso-
lated chondrocytes but over an order of magnitude lower than
that of the cartilage ECM. No significant differences were ob-
served in the Young’s modulus of the PCM between surface zone
(24.0 ± 8.9 kPa) and middle/deep zone cartilage (23.2 ± 7.1 kPa).
In combination with previous theoretical biomechanical models
of the chondron, these findings suggest that the PCM significantly
influences the mechanical environment of the chondrocyte in artic-
ular cartilage and therefore may play a role in modulating cellular
responses to micromechanical factors.

Keywords—Cartilage, Cell, Mechanics, Mechanical properties,
Osteoarthritis, Pericellular, Collagen, Micropipette aspiration,
Biomechanics, Chondron, Collagen type VI.

INTRODUCTION

The mechanical environment of the chondrocyte is one
of several important environmental factors that influence
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the normal balance between synthesis and degradation
of the articular cartilage extracellular matrix (ECM).24

Previous studies have shown that compression of carti-
lage explants alters the cellular metabolism in a time and
spatially varying manner that is correlated with specific
parameters in the local mechanical environment of the
chondrocytes.9,16,20,29,42,49,52 These findings suggest that
local biophysical factors in the microenvironment of each
cell are responsible for governing chondrocyte response to
matrix compression. Therefore, detailed information on the
stresses and strains that the individual cell is exposed to dur-
ing cartilage compression would improve our understand-
ing of the sequence of events involved in the transduction
of mechanical signals at the cellular level.13,17,36,50,53

Within the ECM, chondrocytes are surrounded by
a narrow region termed the pericellular matrix (PCM)
that together with the chondrocyte is referred to as the
chondron.8,40,44 This region is primarily characterized by
the presence of type VI collagen and increased proteoglycan
concentration relative to the ECM.11,39,41 The functional
role of this complex structural unit is not known, although
the fact that the PCM completely surrounds the cell sug-
gests that it influences the biochemical and biomechanical
interactions between the ECM and the chondrocyte. For
this reason, there has been considerable speculation that
the PCM plays a role in regulating the biomechanical envi-
ronment of the chondrocyte.12,15,37,38,40,44

To explore such hypotheses, previous studies have uti-
lized analytical and finite element models to predict the
mechanical environment of the chondrocytes within the
ECM and to determine the potential influence of the PCM.
The results of these studies have shown that the mechanical
environment of the chondrocytes is highly dependent on
the relative biomechanical properties of the ECM, PCM,
cells,2,17 the cell volume fraction,53 and cell shape.6,7,18 In
other studies, analytical models of a chondron subjected to
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cyclic loading suggest that the transmission of mechanical
signals to the cell is particularly sensitive to the modulus
and permeability of the PCM.21

Chondron and chondrocyte morphology may vary sub-
stantially from an elongated and flattened shape at the artic-
ular surface to a more rounded morphology and columnar
arrangement in the deep zone of cartilage.19,40,45 In addi-
tion, there is an abundance of data demonstrating substan-
tial variations in the structure, composition, and mechanical
properties of the cartilage ECM with depth.5,10,33,43,51 Re-
cently, a novel microaspiration technique was developed
to isolate viable chondrons that were mechanically tested
using micropipette aspiration.1 The results of this study
show that the PCM of human chondrocytes has an elastic
Young’s modulus of ∼70 kPa, which is significantly de-
creased by ∼40% in osteoarthritic cartilage. Using a bipha-
sic model, the PCM was found to have a Young’s modulus
of 40 kPa, a hydraulic permeability of 4.2 × 10−17 m4/Ns,
and a Poisson’s ratio of 0.04.3 In other studies, chondrons
isolated by mechanical homogenization were found not to
deform measurably when compressed in an agarose gel
with a stiffness of 25 kPa, suggesting that the modulus of the
PCM is greater than this value.31 Despite the widespread use
of homogenization techniques for extracting chondrons, the
mechanical properties of chondrons isolated by this tech-
nique have not been measured directly, particularly with
respect to their zone of origin in the tissue.

The aim of this study was to test the hypothesis that
the mechanical properties of chondrons isolated from the
superficial zone of cartilage differ from those isolated from
the middle and deep zones. Chondrons were isolated from
the articular cartilage of the femoral condyles of canine
knees using an established homogenization technique.40 To
determine the Young’s modulus of the PCM, data from test-
ing the chondrons in a micropipette aspiration experiment
were evaluated with three different analytical elastic models
of the chondron as an incompressible, elastic half-space,46

as a layered, compressible, elastic half-space,1 and as a
compressible, elastic layer corresponding to the assump-
tion of negligible mechanical stiffness of the chondrocyte
(i.e., shell model).1 Mechanical properties of the PCM were
compared using the three analytical models, and differences
in PCM properties were evaluated between chondrons iso-
lated from the surface or middle/deep zones of the cartilage.

METHODS

Knee joints (N = 16) were harvested from skeletally
mature beagle dogs immediately following sacrifice. These
tissues were acquired as discarded waste from an unre-
lated study approved by the Duke University Institutional
Animal Care and Use Committee, and no animals were
sacrificed for the present study. All joints appeared normal
macroscopically and showed no fibrillation, discoloration,
or other signs of osteoarthritis or other joint disease. The

articular cartilage was removed from the femoral condyles
of the joints using a razor cutting device that removes 150–
200 µm of tissue per cut. Chondrons were mechanically
isolated from the surface (top 200 µm) or middle/deep
zones (pooled remaining thickness) of the articular carti-
lage using a sequential homogenization technique adapted
from a protocol developed previously.40 Briefly, 1 g of car-
tilage was placed in 1 ml Dulbecco’s phosphate-buffered
saline (PBS; Gibco, Grand Island, NY) and homogenized
for 5 min at 3500 rpm (PRO Scientific Inc., Monroe, CT).
The supernatant was removed and passed through a 70 µm
filter to remove large debris, and the process was repeated.
The filtrate was centrifuged at 50 g for 15 min to form a
pellet.

The mechanical properties of the PCM were measured
on individual chondrons using the micropipette aspiration
technique.1,26,46 Isolated chondrons were suspended in 1 ml
of PBS and placed in a specially designed chamber on an
inverted optical microscope. The flattened tip of a small
glass micropipette was brought in contact with a chondron
and a series of five to eight steps in pressure (1 kPa each)
were applied to the PCM using a small glass pipette (∼6 µm
diameter) (Fig. 1). The length of PCM aspiration vs. time
was determined from optical imaging of the experiment
recorded for 5 min at each step, which represented an equi-
librium deformation.

To determine the Young’s modulus of the PCM, the ex-
perimental length–pressure data were analyzed using three
different theoretical models of the micropipette aspiration
technique (Fig. 2). First, the chondron was represented as
an isotropic, incompressible, elastic half-space.15,27,46 The

FIGURE 1. Micropipette aspiration of an isolated chondron.
Isolated chondrons were suspended in a specially designed
chamber on an inverted optical microscope. The flattened tip
of a small glass micropipette was brought in contact with a
chondron, and a series of five to eight steps in pressure (1 kPa
each) were applied to the PCM using a small glass pipette
(∼6 µm diameter) and allowed to equilibrate, and the length of
PCM aspiration vs. applied pressure was used in combination
with different theoretical analyses to determine the Young’s
modulus of the PCM.
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FIGURE 2. Mathematical models used for the quantification of the mechanical properties of the pericellular matrix. In model A, the
PCM was represented as an isotropic, incompressible, and elastic half-space. In model B, the PCM was represented by an isotropic,
compressible, and elastic layer of thickness h which overlies an elastic and compressible half-space (i.e., the chondrocyte). Model
C is a subcategory of model B where E1/E2 → ∞. This model is based on the assumption of zero stiffness for the chondrocyte,
resulting in a model of the PCM as a shell of thickness h.

Young’s modulus of the PCM (EPCM) was determined using
the slope of the equilibrium length of PCM projection (L),
normalized to the inner micropipette radius (ri), plotted
against the applied aspiration pressure (�p), and calculated
using linear regression.

EPCM = �
3ri�p

2π L
, (1)

where � is a “wall parameter” that depends on the inner
and outer radii of the micropipette and was set to � = 2.1
for the range of micropipette sizes in this study.46

Second, the chondron was represented by an isotropic,
compressible, elastic layer (the PCM) overlying an elastic
and compressible half-space representing the chondrocyte.1

The primary advantage of this layered model is that it
accounts for the thickness of the PCM and the different
mechanical properties in two distinct regions of the chon-
dron. The Young’s modulus was again determined from the
slope of the applied negative pressure (�p) vs. the normal-
ized equilibrium length (L/ri) of PCM projection using the
following equation1:

EPCM = 2C(1 + νPCM)
�p

L/ri
, (2)

where νPCM is the Poisson’s ratio of the PCM and C
a function of the following four dimensionless constants
that depend on the material and geometric parameters: the
Poisson’s ratio of the cell (νcell), the normalized PCM thick-
ness measured optically (h∗

PCM = hPCM/ri), the Poisson’s
ratio of the PCM (νPCM), and the Young’s modulus ratio
(EPCM/Ecell). The constant C was determined for assumed
values of Ecell of 0.36 kPa, νcell of 0.43,14,48 and νPCM of
0.04,3 based on prior findings of cell and PCM mechanics.
From knowledge of the measured PCM thickness, hPCM,
the constant C depends only on the Young’s modulus ratio
EPCM/Ecell that was determined implicitly from Eq. (2) to
calculate EPCM.

Third, the chondron was modeled as described above
for the compressible, layered half-space but under the as-
sumption of zero stiffness for the chondrocyte (i.e., when
EPCM/Ecell → ∞), resulting in a model of the chondron
as a shell of thickness hPCM.1 The Young’s modulus of the
PCM (EPCM) is given by the equation

EPCM = 2C(h∗
PCM)(1 − νPCM)(1 + νPCM)

�p

L/ri
, (3)

where C(h∗
PCM) is a function of the normalized PCM

thickness.1 Values for EPCM were determined for an as-
sumed value of νPCM of 0.04.3

Statistical analysis was performed using a two-factor
analysis of variance (ANOVA) to test for differences in the
elastic modulus between surface and deep zone chondrons
using the three different models.

RESULTS

Following mechanical homogenization, ∼3–5 intact
chondrons were retrieved from each gram of tissue.
Chondron yields were similar from surface or middle/deep
specimens (n = 22 chondrons from five donors). Chon-
drons did not exhibit major differences in shape or size
based on zone, although cells in the surface zone chondrons
were generally flatter and possessed a thinner PCM than in
middle/deep chondrons (Fig. 3).

Chondrons exhibited linear deformation behavior in re-
sponse to a series of step increases in pressure (Fig. 4). The
average value of ri for all micropipettes employed was 2.9 ±
0.3 µm, and the average value of hPCM was 3.3 ± 1.5 µm.
Using the half-space model, chondrons from surface
and middle/deep cartilage exhibited mean Young’s mod-
uli Ehalf-space

S = 10.8 ± 4.3 kPa and Ehalf-space
M/D = 12.1 ±

3.9 kPa (Fig. 5).
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FIGURE 3. Images of chondrons isolated from the surface
(left) and middle/deep (right) tissues. Chondron shape was not
quantified in the present study, but in general, no major differ-
ences were observed in shape or size based on zone. Cells
in the surface zone chondrons were generally flatter and pos-
sessed a thinner PCM, while cells in middle/deep chondrons
had a larger PCM and were sometimes found in columns. Scale
bar equals 15 µm.

If the geometry and compressibility of the PCM were
taken into account using the layered half-space model of
the chondron, the mean Young’s modulus of the PCM was
found to be significantly higher (24.0 ± 10.9 kPa in the
surface zone and 23.2 ± 7.1 kPa in the middle/deep zones)
in comparison with the half-space model (p < 0.001,
ANOVA). With application of the shell model, the mean
Young’s modulus of the PCM was found to be similar to
the layered half-space model (25.1 ± 11.5 kPa in the sur-
face zone and 23.6 ± 7.3 kPa in the middle/deep zones;
p > 0.75, ANOVA). While differences were apparent in
mechanical properties among models, there was no evi-
dence of significant differences in PCM mechanics between
the zones.

DISCUSSION

The results of this study provide direct measurements
of the biomechanical properties of the native PCM of

articular chondrocytes isolated by mechanical homoge-
nization, which is the most commonly used method for
extracting chondrons from cartilage.25,31,40 Our findings
indicate that the Young’s modulus of the PCM (∼23 kPa)
is significantly higher than that of the chondrocytes but
1–2 orders of magnitude lower than that of the cartilage
ECM. In combination with previous theoretical models of
cell–matrix interactions in cartilage, our findings suggest
that the mismatch in properties of the chondrocyte, PCM,
and ECM may have an important influence on the me-
chanical environment of the chondrocyte and support the
hypothesis that the function of the PCM is biomechanical in
nature.

An important finding of this study was the observation of
no significant differences in PCM properties between the
surface and middle/deep zones, although significant dif-
ferences have been shown in the mechanical properties of
ECM from the surface zone of cartilage to the deep zones.
On the basis of the previous finite element studies,17 a
mismatch of the Young’s modulus between PCM and ECM
by a factor of 10 (EPCM/EECM = 0.1) has been shown to
amplify local strains by 50% in the vicinity of the chondro-
cyte. Because the Young’s modulus of cartilage increases
with depth,10,19,43,51 the ratio EPCM/EECM becomes signif-
icantly smaller and the strain amplification is likely more
pronounced. This phenomenon may represent a mechanism
whereby mechanical signals are amplified under condi-
tions where tissue level strain magnitudes may be relatively
small, i.e., the deep zone, while cell level strain magnitudes
may be similar to or smaller than tissue strains in the surface
zone. Taken together with previous studies of the proper-
ties of the cartilage ECM19,43,50 and PCM,1,3,31 our findings
suggest that a potential role of the chondron is to provide for
a more uniform mechanical environment for the cell from
the surface to the deep zones, despite large inhomogeneities
in ECM properties and local tissue strain.2

FIGURE 4. Typical equilibrium response of the pericellular matrix (PCM) subjected to a series of step increases in aspiration
pressure �p. The Young’s modulus of the PCM is determined from the slope of the length vs. pressure curve, as described in the
Methods section.
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FIGURE 5. Young’s moduli of the PCM calculated using three different models: the half-space model, the layered model, and
the shell model. Significant differences were observed between the layered model and the half-space model (∗p < 0.001 vs. the
half-space counterpart) as well as between the shell model and the half-space model (∗p < 0.001 vs. the half-space counterpart).
No significant differences were found between surface and middle/deep zones.

An important consideration in the theoretical modeling
of micropipette aspiration of the chondron is the incor-
poration of the layered geometry of the chondron and the
compressibility of the PCM in the model. Significant differ-
ences were found in the apparent modulus of the PCM using
the different models, and the study suggests that neglecting
PCM thickness and compressibility in an incompressible,
elastic half-space model46 may lead to underestimation of
the elastic modulus of the PCM by over 50%.1 However,
both the layered model and the shell model yielded sim-
ilar results, consistent with previous reports of the rela-
tively low stiffness of the chondrocyte relative to that of
the PCM.14,32,48 These findings are consistent with a pre-
vious study that used finite element modeling of pipette
aspiration to account for differences in the thickness of
different layers when determining the mechanical proper-
ties of soft tissues.4 Future studies may wish to use such
numerical methods to incorporate more complex aspects of
the geometry and constitutive behavior of the chondron,
such as viscoelasticity, large deformation behavior, and
contact boundary conditions in the micropipette aspiration
experiment.3,4,22,23,47

The findings of this study are generally consistent with
previous measurements of the Young’s modulus of the
PCM of human chondrons, extracted by microaspiration
(EPCM ≈ 65 kPa with the layered or shell models and
EPCM ≈ 43 kPa using the half-space model)1; although it
is important to note that the present study examined ca-
nine chondrons, while previous studies were performed
on human chondrons. However, these results are in con-
trast to our previous studies on enzymatically isolated hu-
man chondrons15,27 or canine chondrons,35 which reported
a Young’s modulus of ∼1–2 kPa for the PCM. In these

previous studies, no differences were observed in the vis-
coelastic properties of enzymatically isolated canine chon-
drons between surface and middle/deep zones.35 This dif-
ference of over an order of magnitude between enzymati-
cally isolated and mechanically isolated chondrons is most
likely attributable to degradation of other PCM compo-
nents by collagenase, which allows for enzymatic isolation
of chondrons34 due to the resistance of type VI collagen
to this enzyme. The loss of mechanical properties in en-
zymatically isolated chondrons suggests that collagenase-
digestible macromolecules in the PCM, such as type II
collagen, play an important role in determining the me-
chanical properties of the PCM. Nonetheless, a potential
limitation of this work is that mechanical homogenization
of the cartilage yields a very low fraction of viable chon-
drons, raising the issue that damage may be occurring to
the PCM during the isolation process or that this technique
preferentially selects for more “robust” chondrons that have
greater strength or other failure properties. Further studies
would be required to perform direct comparisons of the
different chondron isolation methods.

Our findings are also consistent with previous studies
examining the deformation behavior of enzymatically and
mechanically isolated chondrons embedded in an agarose
matrix.30,31 These studies showed that enzymatically iso-
lated chondrons initially deformed significantly as the
agarose matrix was deformed but appeared to stiffen with
time in culture. Mechanically isolated chondrons, however,
did not deform measurably, suggesting that they possessed
a compressive modulus higher than that of the agarose
(∼25 kPa).

In this study, the mechanical stiffness of the chondrocyte
was assumed to be significantly lower than that of the PCM,
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to allow for simplification of the analytical solutions used
to determine the modulus of the PCM.1 This assumption is
consistent with several studies that have directly measured
the elastic and viscoelastic properties of the chondrocyte
and have shown its Young’s modulus to be 1–2 orders of
magnitude lower than that of the PCM.14,28,32,47 However,
it is important to note that this study did not measure vis-
coelastic or biphasic properties of the PCM,3 which may
also have a significant influence of the local stress–strain
and fluid flow environments of the cell.17,21

In summary, our findings provide further support for the
biomechanical role of the PCM and chondron in articular
cartilage and suggest that the mismatch of the PCM and
ECM stiffness modulates the stress–strain environment of
the chondrocyte. Despite depth-dependent variations in cell
morphology and ECM mechanics, there was no evidence
of a difference in the elastic properties of the PCM between
chondrons isolated from surface and middle/deep zones ar-
ticular cartilage. The methods developed in this study may
provide a means of more accurately characterizing alter-
ations in the mechanical environment of the chondrocyte in
situ under physiological and pathological conditions.
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