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Abstract—Polarization of cells by extracellular fields is relevant
to neural stimulation, cardiac pacing, cardiac defibrillation, and
electroporation. The electric field generated by an extracellular
electrode may be nonuniform, and highly nonuniform fields are
produced by microelectrodes and near the edges of larger elec-
trodes. We solved analytically for the transmembrane voltage (�m)
generated in a spherical cell by a nonuniform extracellular field,
as would arise from a point electrode. �m reached its steady state
value with a time constant much shorter than the membrane time
constant in both uniform and nonuniform fields. The magnitude
of �m generated in the hemisphere of the cell toward the elec-
trode was larger than in the other hemisphere in the nonuniform
field, while symmetric polarization occurred in the uniform field.
The transmembrane potential in oocytes stained with the voltage
sensitive dye Di-8-ANEPPS was measured in a nonuniform field
at three different electrode-to-cell distances. Asymmetric biphasic
polarization and distance-dependent patterns of membrane voltage
were observed in the measurements, as predicted from the analyt-
ical solution. These results highlight the differences in cell polar-
ization in uniform and nonuniform electric fields, and these differ-
ences may impact excitation and poration by extracellular fields.

Keywords—Electrical stimulation, Laplace’s equation, Nerve
modeling, Voltage sensitive dye.

INTRODUCTION

The polarization of cells can modulate the outputs of
cardiac and neural tissues, and is relevant to neural stimula-
tion, cardiac pacing and defibrillation, and electroporation.
The spatial and temporal pattern of transmembrane voltage
generated by an extracellular electric field is determined
by the shape of the cell, its membrane properties, and the
characteristics and orientation of the extracellular electric
field with respect to the cell.11 The transmembrane voltage
(�m) generated in spheroidal,2,5,17,20,21,27 ellipsoidal3,12

and cylindrical cells23,25,36 has been determined for spa-
tially uniform extracellular electric fields.
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However, the extracellular electric field is always
nonuniform (nonhomogeneous) except between two par-
allel plate electrodes, and the nonuniformity is most ap-
parent in the electric fields from small electrodes,28 near
the edges of larger electrodes, and near boundaries be-
tween tissues with different conductivities. The resulting
�m may differ from that generated by a uniform extra-
cellular field. When considering stimulation in the central
nervous system, e.g., brain microstimulation9 or intraspinal
microstimulation13,18,30,31 the cell body is relatively large
compared to the other neural elements (axons, dendrites).
A cell body with a large volume can influence the electric
field locally around the cell and violate the assumptions of
classical cable theory.35

The purpose of this study was to determine the temporal
and spatial pattern of �m generated in a spherical cell by
a nonuniform extracellular electric field. The �m was ob-
tained by determining analytical solutions for the electrical
potentials in the intracellular and extracellular spaces gen-
erated by a nonuniform extracellular field in the presence
of a spherical cell body, and solving for the �m generated
by that electric field. The results (electric field distribution
and �m) were compared to those obtained when ignoring
the alteration of the potential distribution by the presence
of the cell, as well as the results obtained in a uniform
extracellular field. To verify the transmembrane voltage
generated in a spherical cell exposed to a nonuniform elec-
tric field, optical measurements of transmembrane voltage
were conducted in spherical cells using a voltage sensitive
dye (Di-8-ANEPPS).6,15,26,39

METHODS

Expressions for the intracellular and extracellular poten-
tials were derived by solving Laplace’s equation with the
proper boundary conditions. The transmembrane voltage,
�m, was computed as the voltage difference between the
intracellular and extracellular potentials at the membrane
boundary. The analytical solution was compared to the es-
timated �m measured from fluorescence images of oocytes
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TABLE 1. Definition, unit and value of symbols used in analytical solution.

Symbol Definition Unit Typical value

Rm Specific membrane resistance K� cm2 200
Cm Specific membrane capacitance µF cm−2 1
σi Intracellular conductivity S cm−1 0.014
σe Extracellular conductivity S cm−1 0.002
�i Intracellular potential mV
�e Extracellular potential mV
�m Transmembrane voltage (�m = �i − �e) mV
R Cell radius µm 10–60
U Distance to the electrode from an evaluation point µm
d Electrode-to-cell distance µm
r Radial distance from the origin to an evaluation point µm
t Time ms
τc Cell time constant ms
τm Membrane time constant ms

loaded with Di-8-ANEPPS in a nonuniform electric field
generated by a metal microelectrode.

Analytical Methods

A cell was modeled as a sphere, with the membrane
(specific membrane resistance, Rm = 200 K� cm2; specific
membrane capacitance, Cm = 1 µF/cm2) modeled with
zero thickness,11,21 positioned in a homogeneous isotropic
medium in the vicinity of a point source of current with the
return (counter) electrode positioned at infinity. The intra-
cellular (�i) and extracellular potential (�e) were solved
from Laplace’s Eqs. (1)–(3), because the divergence of the
current density is zero everywhere in the internal and ex-
ternal media.

∇2�i = 0 (1)

�e = �es + �applied (2)

∇2�es = 0, �applied = I

4πσeU
(3)

where �es is the secondary potential outside the sphere,1,33

which must satisfy Laplace’s equation, I is the applied cur-
rent, σe = 0.002 S/cm is the extracellular conductivity,10,32

and U is the distance from the point source of current to
the evaluation point. The cell membrane forms a boundary
between the intracellular and extracellular domains and the
requirement for continuity of the normal component of cur-
rent gives rise to two boundary conditions at r = R, (R: the
cell radius)2,5,36:

σi
∂�i

∂r
= Cm

∂�m

∂t
+ �m

Rm
, �m = �i − �e (4)

σi
∂�i

∂r
= σe

∂�e

∂r
, (5)

where r is the normal to the cell surface and σi =
0.014 S/cm is the conductivity of the intracellular medium.8

The initial �m was set to 0 mV by defining potential = 0 mV
everywhere.

An example, showing the solutions for the intracellular
potential is given by Eqs. (6)–(9), and illustrates that the so-
lutions were a summation of associated Legendre functions
(P0

m [cos θ ]) with coefficients Am computed from conditions
defining the boundaries and the current source. X is the ratio
(X = d/R) between the electrode-to-cell distance, d, mea-
sured from the center of the cell to the tip of the electrode,
and the cell radius, R. Complete details and other solutions
are provided in the Appendix.

�i =
∞∑

m = 0

Amrm P0
m[cos θ ] (6)

Am = a2

a1
Sc(1 − e−a1t ) (7)

a2

a1
=

[
R−m

(
−

∫ π

0

(1 − X cos θ ) sin θ Pm[cos θ ]

(1 + X2 − 2X cos θ )3/2
dθ

+ (1 + m)
∫ π

0

sin θ Pm[cos θ ]√
1 + X2 − 2X cos θ

dθ

)]/

[
4πσiσe Rm

(
1 + m

m

) ∫ π

0
sin θ Pm[cos θ ]2 dθ

]

(8)

a1 = 1

R

σeσi

Cm((1 + m)σe + mσi)

1 + m

m
(9)

The �m generated by a uniform extracellular field was
solved by Schwan,37 and the time-dependent solution as
a function of radial position was obtained analytically by
Kotnik et al. (1998) and is given by

��m = f × E × R cos θ

[
1 − exp

(
− t

τ

)]
(10)

τ = RCm
2σeσi

2σo+σi
+ R

h σm
, (11)
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where E is the strength of the electric field, R is the
cell radius, h is the membrane thickness, σ m, σ i, and σ e

are conductivity of membrane, intracellular medium, and
extracellular medium, and f ≈ 3/2 under the condition that
σm � σi, σ e.22 To compare the pattern of �m generated in
a nonuniform field to the �m generated in a uniform field,
the magnitude of cosine function was scaled to match the
maximally polarized point generated by the nonuniform
field.

Experimental Methods

Immature Xenopus oocytes were collected and stained
with a solution of ND96 (96 mM NaCl, 2 mM KCl, 1.8 mM
CaCl, 1 mM MgCl2 and 5 mM HEPES; pH 7.5 adjusted
with NaOH, osmolarity ≈200 mosM) with 200 µM of Di-
8-ANEPPS for 30 min in room temperature.6,40 After the
staining process, oocytes were transported to a Petri dish
with artificial extracellular medium consisting of de-ionized
water with sucrose (21.395 g/l ≈120 mosM) added to in-
crease the osmolarity of the solution.34

To create a nonuniform electric field, a tungsten micro-
electrode was placed at the center of the dish with a ring-
shaped silver return electrode along the perimeter of the
dish (see Fig. 9). The microelectrode was insulated except
at the tip, and created an electric field approximating a true
point source.28 Rectangular 100 ms duration current pulses
(PULSAR, FHC Inc., Bowdoinham, ME) were delivered
through the microelectrode positioned at three different
electrode-to-cell distances determined by visual inspection.
As the distance from the electrode to the cell was increased,
the stimulation intensity was increased (range = 3–20 µA)
to maintain a similar magnitude of transmembrane polar-
ization and thereby increase the signal-to-noise ratio.

Image (1392 × 1040 size) acquisition was controlled by
Metafluor software (Universal Imaging, West Chester, PA),
and the acquired fluorescence signals were integrated by
a cooled 12-bit digital CCD camera (PXL, Photometrics,
Tucson, AZ). Fluorescence was excited at 480 nm and de-
tected at >550 nm with a Nikon microscope equipped with
an externally controlled light source (Lambda DG-4, Sutter
Instrument Company, Novato, CA).

Fluorescence images were acquired in the control state
(C image) before applying the electric field, and during
delivery of the current pulse (S image). The exposure time
was 100 ms. Five pulses of 100 ms pulse width were de-
livered with 1 s interpulse intervals. The control images
(C1–C5) were collected 500 ms before each current pulse,
and the stimulated images (S1–S5) were collected during
the pulse. Ensemble averages (Cavg and Savg) of five images
C1–C5 and S1–S5 were computed to increase the signal-to-
noise ratio, and the fluorescence difference was computed
as �F/F = (Cavg − Savg)/Cavg

26 to obtain a signal propor-
tional to the change in transmembrane potential generated
by the applied field.

FIGURE 1. Model of a spherical cell in a nonuniform electric
field. (A) The membrane separating the intracellular space and
extracellular space was modeled with passive properties in-
cluding a membrane resistance in parallel with a membrane
capacitance. (B) Potentials in the extracellular and intracel-
lular space, obtained from analytical solutions to Laplace’s
equation. The spherical cell (radius 10 µm) was centered at (0,
0), and the electrode was positioned 25 µm away as in A.

RESULTS

The electric potentials in the extracellular and intracellu-
lar spaces were obtained by solution of Laplace’s equation
during extracellular electrical stimulation through a point
source electrode. Subsequently, the transmembrane voltage
(�m) was computed as the potential difference across the
membrane. The �m in a nonuniform field was compared
to that in a uniform field and the sensitivity of the pattern
of polarization in the nonuniform field to the physiological
environment was studied by varying the values of model
parameters. The analytical solution was compared to flu-
orescence imaging of the �m generated in oocytes by a
nonuniform electric field.

Distribution of Intracellular and
Extracellular Potentials

Due to axial symmetry, the potential on a plane bisecting
the center of the sphere and the current source adequately
represented the potential in the whole space. The steady
state potentials in the intracellular (r < R) and extracellular
spaces (r ≥ R) are plotted in Fig. 1. The extracellular poten-
tial was inversely related to the distance between the current
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FIGURE 2. Effect of the presence of the cell on the electric potential. (A) Potential without the cell present. (B) Potentials in the
extracellular and intracellular space with cell present. (C) Superimposed potentials from A and B. The presence of the cell increased
the potential outside of the hemisphere toward the electrode and attenuated the potential on other side. (D). Potential profiles along
a line crossing the electrode and the center of the cell. Electrode and cell positioned as in Fig. 1.

source and measurement point. The spatial gradient of the
potential was much steeper in the extracellular space than
in the intracellular space, and the intracellular potential was
approximately uniform due to the highly conductive cyto-
plasmic medium. At the boundary between the intracellular
and extracellular media, a potential across the membrane
was produced. Details of the transmembrane voltage as a
function of radial position and time are described below.

The electric field was altered by the presence of the cell.
Figure 2(A) and 2(B) show the distribution of potentials cal-
culated with and without the cell present. The electric field
generated by a point source in free space was nonuniform
and decayed in inverse proportion to the distance to the
source. The presence of the cell increased the magnitude of
the potentials outside of the membrane toward the electrode
and attenuated the magnitude of the potentials on the other
side. The presence of the cell affected the distribution of ex-
tracellular potentials and thus the resulting transmembrane
voltages (see below).

Temporal Evolution of the Potential Distribution

At time = 0 before stimulation was applied, the potential
everywhere was 0 V. When the stimulation was turned on
(t = 0+), the electric potential was continuous [Fig. 3(A)]
across the membrane, because the membrane capacitance
was not yet charged. As time increased, the membrane ca-
pacitance charged and the potential was discontinuous be-
tween the intracellular and extracellular spaces [Fig. 3(B)].
The potentials reached steady state [Fig. 3(C)] within 2 µs
with the default parameters in Table 1 (see below for sen-
sitivity analysis).

Transmembrane Voltage in Nonuniform
Extracellular Field

The �m was obtained as the difference between the in-
tracellular and extracellular potentials at r = R (Fig. 4) and
plotted as a function of the angle (θ ) from an axis running
through the electrode and the center of the cell where 0◦

corresponds to the point nearest to the electrode. The po-
larization pattern along the membrane exhibited regions of
both hyperpolarization and depolarization, while current
injection through an intracellular microelectrode produced
monophasic polarization. The magnitude of polarization
was asymmetric and characterized by highly focused po-
larization with large magnitude over the area near to the
electrode and less pronounced polarization over the rest of
the sphere. The point of zero polarization, or neutral point,
defined as �m = 0 V was located at ∼78◦ [Fig. 4(B)].
For the cell with radius of 10 µm, the �m reached steady
state within 2 µs [Fig. 4(C)].15 The cellular time constant
(τ c)5,15,24 was obtained from the voltage response assum-
ing the cell behaved as a first-order linear system, and
was substantially less than the membrane time constant
(τm = 200 ms) which is the product of the membrane re-
sistance and the membrane capacitance.

The degree of asymmetry increased and location of the
point of zero polarization shifted farther from the equa-
tor (90◦) as the electrode-to-cell distance decreased. To
compare the patterns of �m at different electrode-to-cell
distances, the �m obtained at the longer distance was nor-
malized by the maximum depolarization at the shorter
electrode-to-cell distance [Fig. 5(A)]. While the relative
amount of polarization in the hemisphere opposite the
electrode was relatively unaffected by the electrode-to-cell
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FIGURE 3. Potential as a function of time on the plane crossing
the electrode and center of the cell. (A) At t = 0+ the stimula-
tion was on and the potential across the membrane is continu-
ous because the membrane capacitance was not yet charged.
(B) In the middle of the charging phase, the intracellular po-
tential approached steady state. (C) The extracellular potential
reached steady state in ∼2 µs.

distance, the degree of polarization in the hemisphere to-
ward the electrode was increased as the electrode-to-cell
distance was decreased (i.e., greater asymmetry). The loca-
tion of the neutral point was also a function of electrode-to-
cell distance. The neutral point at smaller electrode-to-cell
distances was further from the equator than the neutral
point at larger electrode-to-cell distances, both during the
transient phase of membrane polarization and during the
steady state [Fig. 5(B)]. The magnitude of transmembrane
polarization was inversely related to the electrode-to-cell
distance and decreased rapidly as the electrode-to-cell dis-
tance increased [Fig. 5(C)], but the time course of polariza-
tion was unaffected. The time course of �m at two different
electrode-to-cell distances (2.5R and 4R) are compared in
Fig. 5(D), and the normalized trace makes clear that the

FIGURE 4. The transmembrane voltage, �m, was computed
from the potential difference across the membrane. (A) Solu-
tions for intracellular and extracellular potential at r = R on
the plane were obtained from Eqs. (1) and (2). (B) �m as a
function of the angle around the cell, where 0◦ is the point
nearest to the electrode and 180◦ is on the opposite side. The
hemisphere facing the electrode was hyperpolarized while the
other side was depolarized during anodic stimulation. (C) Time
course of the magnitude of �m at 0◦ reached steady state in
less than 2 µs and the membrane discharged with the same
time constant after stimulation was switched off. In B and C,
the electrode-to-cell distance was 2.5 times the cell radius.

time course of �m was independent of the electrode-to-cell
distance.

The presence of the cell altered the distribution and
magnitude of the intracellular and extracellular poten-
tials (Fig. 2), and subsequently the magnitude of �m was
changed. The amplitude of �m over both the hyperpolar-
ized and depolarized portions of the cell was increased
[Fig. 6(A)] when the potentials were calculated with the
cell present. The maximum �m when the potentials were
calculated without considering the presence of the cell was
estimated as the potential difference between r = 0 and
r = R in Fig. 2(D), and was less than the �m determined
with the cell present. To quantify the degree to which the
altered field increased �m, the maximum polarizations (Vcp:
with cell present and Vca: with cell absent) were compared
at different electrode-to-cell distances [Fig. 6(B)]. When
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FIGURE 5. Effect of electrode-to-cell distance (EtoC) on cell
polarization. (A) Transmembrane potential at two different
electrode-to-cell distances with a cell radius of 10 µm. To com-
pare the patterns of �m, �m at 4R was normalized. (B) Neutral
point (angle where �m = 0) at steady state was also a function
of the electrode-to-cell distance. During the application of the
stimulus current, the neutral point shifted toward the equa-
tor with the same time constant as membrane polarization. (C)
Magnitude of the maximum transmembrane voltage decreased
as the electrode-to-cell distance increased (R = 10 µm). (D)
The electrode-to-cell distance influence the magnitude of �m,
but the cellar time constant (τc) showed little difference.

the effect of the altered electric field was ignored, the mag-
nitude of �m was underestimated by 33–37%.

Comparison with Transmembrane Voltage in Uniform
Extracellular Field

The �m of the spherical cell in a nonuniform electric
field exhibited asymmetric biphasic polarization, and the
degree of asymmetry and position of the neutral point were
dependent on the electrode-to-cell distance. The �m in a
uniform field exhibited symmetric biphasic polarization and
the neutral point was always at the equator (90◦). The �m in
a uniform field (cosine function, Eq. 10) was compared to
the �m in a nonuniform field as a function of the electrode-
to-cell distance (Fig. 7). As the electrode was moved farther
from the cell, the pattern of �m generated in the nonuniform
field approached the pattern of �m generated in the uniform
field.

To quantify the differences in polarization a percent error
between the �m resulting from a nonuniform field and �m

resulting from a uniform field was calculated as a function
of the electrode-to-cell distance using Eq. (13) (Fig. 7B).

% Error = |�nonuniform
m − �uniform

m |
|�nonuniform

m | (12)

To achieve less than 10% difference between the �m re-
sulting from a nonuniform field and �m resulting from a

FIGURE 6. Influence of the presence of the cell on the trans-
membrane voltage. (A) �m with the cell present was compared
to the �m estimated from the electric field calculated without
considering the presence of the cell. �m in this case was com-
puted from the potential difference between the origin (the
center point of the cell if the cell were present) and the cell
radius (if the cell were present). (B) Ratio of maximum polar-
ization amplitudes obtained with and without the cell present
(Vca: maximum polarization with cell absent and Vcp: with cell
present).

uniform field, the electrode-to-cell distance must exceed
13 times the cell radius.

In the uniform field the neutral point always lay at 90◦,
whereas in the nonuniform field the position of the neu-
tral point was dependent on the electrode-to-cell distance.
Figure 7(C) shows that as the electrode-to-cell distance
increased, the neutral point at steady state shifted toward
the equator. The shift of the neutral point with distance was
most pronounced when the electrode was located within
10 radii of the cell. At a normalized electrode-to-cell dis-
tance of 13, where the magnitude of �m in the nonuniform
field was within 10% of the magnitude of �m in the uniform
field, the neutral point in the nonuniform field lay at 86◦, as
compared to 90◦ in the uniform field.

Sensitivity of Transmembrane Polarization
to Model Parameters

The distribution, amplitude, and time course of �m were
studied with different values of model parameters, includ-
ing the cell radius, extracellular and intracellular conductiv-
ities, and the membrane specific resistance and capacitance.
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FIGURE 7. Comparison of �m generated in uniform and
nonuniform extracellular electric fields. (A) Patterns of
�m varied with different electrode-to-cell distances (EtoC).
(B) Difference between transmembrane voltages generated
in a nonuniform field and in a uniform field as a function of
the electrode-to-cell distance. (C) Position of the neutral point
(angle where (�m = 0) as a function of the electrode-to-cell
distance, expressed in multiples of the cell radius.

Cell Radius

The pattern and time course of polarization were de-
pendent on the cell radius. Figure 8(A) shows the �m for
two different spherical cells (R = 10 µm and 20 µm) at the
same normalized electrode-to-cell distance (X = 3 = d/R,
corresponding to d = 30 µm and 60 µm, respectively). The
amplitude of �m in the smaller cell was greater than the
amplitude of �m in the larger cell, but the patterns of �m

in looked similar, with both patterns exhibiting asymmetry
and biphasic polarization with the neutral point located at
∼80◦. The normalized �m in Fig. 8(A) demonstrates that
the patterns of �m were identical at the same ratio of cell
radius to electrode-to-cell distance. However, for the same

FIGURE 8. Sensitivity of transmembrane voltage to model
parameters. (A) �m with different cell sizes (R = 10 µm and
20 µm) at the same normalized electrode-to-cell distance (X =
3). (B) �m with different cell sizes (R = 10 µm and 20 µm) at a
fixed electrode-to-cell distance (30 µm). (C) �m with different
extracellular conductivities (0.002 and 0.0002 S/cm). (D) Time
course of �m with different extracellular conductivities (0.002
and 0.001 S/cm). (E) Time course of �m with different intracel-
lular conductivities (0.014 and 0.0014 S/cm). (F) Time course
of �m with different membrane specific capacitance (1 and
2 µF/cm2).

two cells (R = 10 µm and 20 µm), located at equal physical
distances from the electrode (30 µm, X = 3 and X = 1.5,
respectively) the magnitude and pattern of polarization were
different [Fig. 8(B)].

Conductivities of the Extracellular and
Intracellular Media

Changes in the extracellular conductivity affected the
magnitude, but not the pattern of �m [Fig. 8(C)], while
alteration of the intracellular conductivity by a factor of 10
affected neither the magnitude nor the pattern of polariza-
tion (data not shown). Reducing either the intracellular or
extracellular conductivity lengthened the time constant τ c

[Figs. 8(D) and (E)], and increasing in the intracellular con-
ductivity by a factor of 10 had approximately the same effect
on τ c as doubling the extracellular conductivity. Therefore,
the τ c of �m was more sensitive to the extracellular medium
conductivity than to the intracellular medium conductivity.



610 D. C. LEE and W. M. GRILL

FIGURE 9. Experimental measurement of transmembrane voltage generated in a nonuniform extracellular electric field using
fluorescence imaging of the voltage sensitive dye Di-8-ANEPPS. (A) A spherical cell (Xenopus oocyte) was located in the center of
a Petri dish with the electrode tip located at the same height as the center of the cell. (B) Fluorescent image (�F/F) with the line
to extract �m and the relative angle of the position along the oocyte with respect to the tip of the microelectrode (top view from
microscope). (C) Three superimposed traces (thin lines) of the changes in fluorescence intensity with the application of the field
(�F/F), extracted from the image in B, compared to the analytical solution (thick line) for the transmembrane potential.

Specific Membrane Resistance and Capacitance

The time constant was also dependent on the membrane
capacitance [Fig. 8(F)], but membrane capacitance did
not affect the steady state value of �m. The magnitude
and pattern of polarization were insensitive to the specific
membrane resistance over increases and decreases by a
factor of 10.

In summary, the amplitude of �m was affected by the
electrode-to-cell distance, cell radius, extracellular conduc-
tivity and intracellular conductivity (data not shown), as ex-
pected from the solution (Eq. (8)). However, the normalized
electrode-to-cell distance (X = d/R) affected only the spa-
tial distribution of �m and not its magnitude. The cellular
time constant was affected by the intracellular conductiv-
ity, extracellular conductivity, cell radius, and membrane
capacitance. It is clear that the membrane conductance will
influence the time constant as well as the magnitude of
the induced transmembrane voltage (Eqs. (10) and (11)),
but for given cell and medium parameters the membrane
conductance must exceed a certain limit to gain significant
influence. The electrode-to-cell distance did not affect the
time course of �m as expected from Eq. (9).

Experimental Results

The changes in transmembrane potential generated in
a nonuniform extracellular electric field were determined
from fluorescence images of oocytes stained with Di-8-
ANEPPS [Fig. 9(A)]. The change in intensity of the pixels
along a line just inside of the cell boundary was measured,
and to increase the signal-to-noise ratio, the pixel inten-
sity values along three concentric traces were averaged
[Fig. 9(B)]. The fluorescence intensity (�F/F) was con-
verted to voltage by assuming that a 10% change of fluo-
rescence corresponded to a 100 mV change in �m.26 The
measured �m was compared with the steady state �m com-
puted from the analytical solution with model parameters
selected to approximate those in the experimental setup
(σi = 0.014 S/cm, Cm = 4.5 µF/cm2, R = 400 µm, σe =
0.002 S/cm, and stimulation intensity = 3–20 µA).2

The asymmetric and biphasic pattern of �m determined
from the analytical solution was observed in all experiments
(n = 7 cells). With an anodic current pulse the membrane
was hyperpolarized directly beneath the electrode (0◦), de-
polarized to a lesser degree on the opposite side, and the
point of zero polarization occurred at an angle of less than
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FIGURE 10. Experimental measurements of transmembrane
potential generated in a spherical cell in a nonuniform elec-
tric field with different polarity (cathodic vs. anodic) current
pulses and at different electrode-to-cell distances (expressed
as multiples of the cell radius). (A) Fluorescent image (�F/F)
and the radial position with respect to the tip of the micro-
electrode. (B) The transmembrane voltages estimated from
fluorescent images (thin line) and determined from the ana-
lytical solution (thick line). Each trace of experimental data
is the average of three traces as described in Fig. 9. Stim-
ulation intensities for experiment (Exp) and analytical solu-
tion (Ans) shown in B were adjusted to match the magni-
tude of the transmembrane potentials for cathodic stimuli
(1.5R; Exp = 10 µA and Ans = 3 µA, 2R; Exp = 20 µA and
Ans = 6 µA, 3R; Exp = 20 µA and Ans = 15 µA) and for anodic
stimuli (1.5R; Exp = 10 µA and Ans = 3 µA, 2R; Exp = 20 µA
and Ans = 9 µA, 3R; Exp = 20 µA and Ans = 20 µA).

90◦ [Fig. 9(C)]. The �m was most asymmetric at short
electrode-to-cell distances. As the electrode-to-cell distance
was increased the degree of asymmetry in �m was reduced
and the point of zero polarization moved from more acute
angles toward 90◦. Finally, the sign of �m was reversed by
changing polarity of the stimulus (Fig. 10).

DISCUSSION

An analytical solution to Laplace’s equation was derived
to calculate the potentials generated in and around spheri-
cal cells by uniform and nonuniform extracellular electric
fields. The distribution of potentials in the extracellular
space was altered by the presence of the cell. The poten-
tial outside of top hemisphere of the cell was increased
by the presence of the cell, and decreased on the oppo-
site side. Therefore, the potentials computed ignoring the
presence of the cell resulted in underestimation of the trans-

membrane voltage by 33–37%. This finding (33% at large
electrode-to-cell distances) is equivalent to the “influential
radius” factor described by Gimsa and Wachner.11 For a
spherical cell of radius R in a uniform field, the influential
radius is 1.5R, corresponding to a field amplification factor
of 1.5. Thus, the maximum underestimation of transmem-
brane polarization without considering the change in the
electric field by the presence of the cell can be computed
as (1.5R-R)/1.5R = 33% in a uniform field. However, the
influential radius may not be appropriate in the nonuniform
field, because the electric fields are not only a function of
the distance from the cell, but also the position relative to
the location of the electrode tip.

Several simplifying assumptions were made to derive
the analytical solution. A sphere was used to model the cell
body of a neuron as this enabled derivation of an analytical
solution in spherical coordinates. However, neurons may
have different shapes including elliptical and stellate, and
these more complex morphologies will affect the pattern
of transmembrane voltage generated in the nonuniform
field. Such geometries would likely require a numerical
approach for determination of the distribution of trans-
membrane potential. Secondly, it was assumed that the
extracellular medium was homogeneous. Previous exper-
imental measurements indicate that the extracellular con-
ductivity can vary by a factor of two in different layers
of the hippocampus,16 and this heterogeneity can influence
the resulting potentials and their effect on neurons.13 Third,
the electrode was modeled as a point source of current.
Previous results demonstrate that this is an adequate model
at electrode-to-cell distances exceeding 10 µm, as a result
of the high concentration of current density at the elec-
trode tip.28 However, if the electrode-to-cell distance is
small, the point source assumption will result in an over-
estimation of the magnitude of the potentials. Further, other
electrode geometries, for example bipolar pairs of elec-
trodes or cylindrical electrodes used in clinical deep brain
stimulation, will produce different distributions of extracel-
lular potentials and generate different patterns of transmem-
brane potential. Fourth, the cell membrane was modeled as
passive with a linear specific membrane resistance, and does
not account for the dynamic activity of ion channels em-
bedded in the membrane. Such a model provides adequate
estimation of subthreshold polarization which plays an im-
portant role in initiation of subsequent nonlinear phenom-
ena including sodium action potentials and calcium spikes.
Other approaches may be employed to incorporate nonlin-
ear membrane properties including numerical techniques,4

and perturbational approaches,24 but require substantially
longer simulation times. Thus, while the present results do
not enable predictions of the exact patterns of �m in geo-
metrically complex non-linear cells, they do provide insight
into the response of such cells to a nonuniform extracellular
electric field. Such information can be used to develop ap-
propriate “cable”-type cell models, and to design electrodes
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and stimulation protocols for stimulation, electroporation,38

cell selection,7 and cell fusion.7,19

In a uniform extracellular field, the top and bottom hemi-
spheres were symmetrically but oppositely polarized, while
polarization in the nonuniform field �m was asymmetric
with stronger polarization occurring in the portion of cell
nearest to the electrode. This asymmetric biphasic polar-
ization will result in differing effects on membrane ionic
channels in different regions of the cell and will change
the thresholds for excitation of cells located close to the
electrode. The degree of asymmetry was reduced as the
electrode was moved farther from the cell, and �m in
the nonuniform field approached the pattern of �m gen-
erated in a uniform field. In the uniform field the neutral
point was fixed at the equator (90◦). In the nonuniform
field the neutral point was always positioned at less than
90◦, moved as a function of time, and was dependent on
the electrode-to-cell distance. For cells closer to the elec-
trode than 13 times the cell radius, the specific pattern
of polarization created by the nonuniform field should be
considered.

The biphasic polarization of the cell body requires spe-
cial attention when modeling neurons with conventional
compartmental “cable” models. Because the polarization
pattern is a function of circumferential position on the cell
membrane, multiple compartments are required to represent
adequately the cell body. Intuitively, 6 is the minimum num-
ber of compartments required to represent the cell body,29

and such a model exhibited the proper amplitude and pattern
of polarization in a nonuniform field (data not shown).

In addition to its implications for modeling of the cell
body, the alteration of the electric field caused by the pres-
ence of the cell may affect the polarization and excitation
of presynaptic terminals in the vicinity of the cell body.
The activating function at the end of a terminating axon is
the first spatial difference of the potential along the fiber,
and the effect of the cell on these potentials should be
considered in central nervous system stimulation at short
electrode-to-cell distances.

The �m of the spherical cell reached steady state within a
few microseconds for typically sized cell bodies. The cellu-
lar time constant (τ c) was orders of magnitude smaller than
the membrane time constant that determines the time course
of �m in response to intracellular current injection. The τ c

obtained from our analytical solution (Eq. (11)) was similar
to experimental observations.15 The τ c was dependent on
model parameters and was lengthened by increased extra-
cellular (or intracellular) conductivity or decreased mem-
brane capacitance. The short cellular time constant suggests
that the membrane voltage can follow comparatively high
frequency changes in the extracellular field and that mem-
brane ion channels will be subject to rapid fluctuations in
transmembrane voltage during alternating field stimulation.

The pattern of �m calculated analytically was validated
by fluorescence images of oocytes in a nonuniform field.

The asymmetric pattern of �m generated by the nonuniform
field was observed in the experiments as was the depen-
dence of the pattern of polarization on the electrode-to-cell
distance. The voltage sensitive dye Di-8-ANEPPS was used
to image the pattern of polarization along the membrane
because of the linearity of its voltage-induced fluorescence
and its longer chain-length improves stability within
the membrane.6,26,39 Immature oocytes were selected
as the cells for imaging as they have a spherical shape
and passive membrane as considered in the analytical
study. While the analytical solution always exhibited
asymmetric polarization, the experimental estimates of �m

from the fluorescent images did not always exhibit clear
asymmetry and there was a constant voltage shift between
the calculated and measure �m (Fig. 10). These differences
could be due to limitations of the voltage sensitive dye
including saturation of the dynamic range of fluorescence,
changes in the level of background fluorescence, and the
assumption of a linear relationship between the change of
fluorescence and the change in transmembrane potential,
and changes in the properties of the extracellular solution
in the vicinity of the cell membrane as the result of ionic
flux through the membrane.

APPENDIX

The procedure to obtain the coefficients in the solutions
of Laplace’s Equation [Eqs. (A1) and (A3)] is determined
by the properties of the model defined in the Methods sec-
tion, and the following steps explain how the coefficients
were computed. The solutions [Eqs. (A4) and (A5)] of
Laplace’s Equation are the summation of associated Leg-
endre functions. The P0

m [cos θ ] is the mth harmonic with
symmetry in γ angles. The analytical solutions were ob-
tained by using symbolic tools in Mathematica [Wolfram
Research Inc, Champaign, IL].

∇2�i = 0 (A1)

�e = �es + �applied (A2)

∇2�es = 0, �applied = I

4πσeU
(A3)

�i =
∞∑

m = 0

Amrm P0
m[cos θ ], (A4)

�es =
∞∑

m = 0

Bmr−(m+1) P0
m[cos θ ], (A5)

�e = I

4πσeU
+

∞∑
m = 0

Bmr−(m+1) P0
m[cos θ ]

=
∞∑

m = 0

(Em + Bm)r−(m+1) P0
m[cos θ ] (A6)
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The applied field term (�applied) can be represented using
Legendre functions with coefficients Em, where the Em are
functions of time and distance (U) between electrode and
a specific point for potential. Due to the axial symmetry, U
can be represented in spherical coordinates as a function of
R (cell radius), d (distance from the origin to the electrode)
and θ (radial displacement). The coefficients Em in spherical
coordinates are

Em = I × r1+m P1

4π P2

P1 =
∫ π

0

sin θ Pm[cos θ ]√
R2 + d2 − 2Rd cos θ

dθ,

P2 =
∫ π

0
sin θ Pm[cos θ ]2 dθ

Next, we solve the two coefficients Am and Bm which are
functions of time, because the applied current is a function
of time. The associated Legendre functions are orthogonal
to each other with different m. Therefore, the solution can
be obtained for each m in the summation of Legendre func-
tions. Then each coefficient (Am and Bm) is presented as
only a function of time in each m value, A and B.

Plugging the solutions, Eqs. (A4) and (A6), into the
boundary conditions, Eqs. (A7) and (A8), produces first
order differential equations, Eqs. (A9) and (A10), where Vr

is the resting potential.

σi
∂�i

∂r
= Cm

∂�m

∂t
+ �m

Rm
, �m = �i − �e (A7)

σi
∂�i

∂r
= σe

∂�e

∂r
(A8)

f1 A + f2 A′ + g1 B + g2 B ′ + j1 I + j2 I ′ + j3V r = 0,

(A9)

h1 A + h2 B + m1 I = 0, (A10)

To solve Eq. (A9), we need one more equation which is
the derivative of Eq. (A10) by time [Eq. (A11)],

h1 A′ + h2 B ′ + m1 I ′ = 0, (A11)

The coefficients in (A9)–(A11) are defined below.

h1 = R−1+mmσi Pm[cos θ ],

h2 = R−2−m(1 + m)σe Pm[cos θ ], m1 = Pm[cos θ ]P3

4P2π

f1 = R−1+m(R + mσi Rm)Pm[cos θ ]

Rm
,

f2 = RmCm Pm[cos θ ], g1 = − R−1−m Pm[cos θ ]

Rm
,

g2 = −R−1−mCm Pm[cos θ ]

j1 = − P1 Pm[cos θ ]

4πσe P2 Rm
, j2 = −Cm P1 Pm[cos θ ]

4πσe P1
,

j3 = − 1

Rm

P3 =
∫ π

0

(R − d cos θ ) sin θ Pm[cos θ ]

(R2 + d2 − 2Rd cos θ )3/2
dθ

Using Eqs. (A10) and (A11), Eq. (A9) can be represented
as a function of only A, A′, I, and I′.

( f1h2 − g1h1)

( f2h2 − g2h1)
A + A′ = (g1m1 − h2 j1)

( f2h2 − g2h1)
I

+ (g2m1 − h2 j2)

( f2h2 − g2h1)
I ′ − (h2 j3)

( f2h2 − g2h1)
V r, (A12)

and can be simplified to

A′ + a1 A = fas + a4V r, (A13)

a1 = ( f1h2 − g1h1)

( f2h2 − g2h1)
, a2 = (g1m1 − h2 j1)

( f2h2 − g2h1)
,

a3 = (g2m1 − h2 j2)

( f2h2 − g2h1)
, a4 = − (h2 j3)

( f2h2 − g2h1)
,

fas = a2 I + a3 I ′

where the term s is a function of time.
The general solution of Eq. (A12) is

A = e−a1t
∫ t

0
(C + ea1t (a4V r + fa1s[τ ]) dτ (A14)

The constant C will be zero under the initial condition
that potential equal to zero at t = 0. Following the same
procedure, B was obtained as

B = e−b1t
∫ t

0
eb1t (b4V r + fbs[τ ]) dτ (A15)

b1 = (g1h1 − f1h2)

(g2h1 − f2h2)
, b2 = ( f1m1 − h1 j1)

(g2h1 − f2h2)
,

b3 = ( f2m1 − h1 j2)

(g2h1 − f2h2)
, b4 = − (h1 j3)

(g2h1 − f2h2)
,

fbs = b2 I + b3 I ′

In computing the infinite summation of Legendre func-
tions, only the first 20 terms (m = 20) were used, and in-
creasing m did not make any substantial improvement in
the accuracy of the solutions.

Under the condition that the rest potential is zero
(Vr = 0) and the applied current is a square pulse (unit
step function) with pulse width t1 and intensity Sc, the co-
efficients A and B are the integration of the step and delta
functions.

A = e−a1t
∫ t1

00
(a2ScUnitStep [t] + a3Sc Delta [t])ea1t dτ

= a2

a1
Sce−a1t (ea1t − 1), t < t1

= a2

a1
Sc(1 − e−a1t ), (A16)
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and

B = b2

b1
Sc(1 − e−b1t ) (A17)

Therefore, the steady state values of A and B are a2/a1

and b2/b1 with time constants a1 and b1 for the intracellular
and extracellular media, respectively.

a2

a1
= (g1m1 − h2 j1)

( f1h2 − g1h1)

=
(
− R−1−m Pm[cos θ]

Rm

Pm[cos θ]P3
4P2π

+ R−2−m(1 + m)σe Pm[cos θ ] P1 Pm[cos θ]
4πσe P2 Rm

)
(

R−1+m (R+mσi Rm)Pm[cos θ]
Rm

R−2−m(1 + m)σe Pm[cos θ ] + R−1−m Pm[cos θ]
Rm

R−1+mσim Pm[cos θ ]
)

= R1−m(−R × P3 + (1 + m)P1)

4P2π ((R + mσi Rm)(1 + m)σe + m Rσi)

=
R1−m

(
−R

∫ π

0
(R−d cos θ) sin θ Pm[cos θ]

(R2+d2−2Rd cos θ)3/2 dθ + (1 + m)
∫ π

0
sin θ Pm[cos θ]√

R2+d2−2Rd cos θ
dθ

)
4π ((R + mσi Rm) · (1 + m)σe + m Rσi)

∫ π

0 sin θ Pm[cos θ ]2 dθ

With the condition that the membrane is much less
conductive than the intracellular and extracellular media
(1/Rm � σi, σ e) and X = d/R22 the normalized electrode-
to-cell distance, the former equation can be simplified to

a2

a1
=

[
R−m

(
−
∫ π

0

(1 − X cos θ ) sin θ Pm[cos θ]

(1 + X2 − 2X cos θ)3/2
dθ

+ (1 + m)
∫ π

0

sin θ Pm[cos θ ]√
1 + X2 − 2X cos θ

dθ

)]/

[
4πσiσe Rm

(
1+m

m

)∫ π

0
sin θ Pm[cosθ ]2 dθ

]
(A18)

The solution for the transmembrane voltage is the
difference between the solutions for the intracellular and
extracellular potentials at r = R. Plugging a2/a1 into the
Eq. (A4) at r = R illustrates that the potential is only a
function of X (normalized electrode-to-cell distance), as
shown in Fig. 4(C).

The time constants of each coefficient of the mth har-
monic Legendre function are

a1 = ( f1h2 − g1h1)

( f2h2 − g2h1)

=
[(

R−1+m(R + mσi Rm)Pm[cos θ ]

Rm

)
R−2−m(1 + m)σe

×Pm[cos θ]+ R−1−m Pm[cos θ]

Rm
R−1+mmσi Pm[cos θ]

]/

[
(RmCm Pm[cos θ ]R−2−m(1 + m)σe Pm[cos θ ]

+ R−1−mCm Pm[cos θ ]R−1+mmσi Pm[cos θ ])

]

= (R−1(R + mσi Rm)(1 + m)σe + mσi)

RmCm((1 + m)σe + mσi)

b1 = (g1h1 − f1h2)

(g2h1 − f2h2)
= a1 (A19)

Under the same conditions for simplification, time con-
stants a1 are

a1 = 1

R

1 + m

m

σeσi

Cm((1 + m)σe + mσi)
. (A20)
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