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Abstract This paper investigates the ability of six com-
mon multispectral sensors (GeoEye, Landsat 8 OLI,
RapidEye, Sentinel-2, SPOT 5, and WorldView-2) to
map archaeological sites typically inhabited by the farm-
ing communities of Southern Africa and characterized
by surface features such as middens, non-vitrified dung,
and vitrified dung. To achieve this, hyperspectral data
collected in the field using a GER-1500 field
spectroradiometer were resampled to the spectral reso-
lutions of the selected sensors using the spectral library
resampling tool in ENVI. Mean decrease in accuracy
was used to assess the importance of both hyperspectral
wavelengths and each band allocated to a multispectral
sensor in discriminating the selected archaeological

classes. Two predictive models based on the resampled
hyperspectral data were developed in R using algo-
rithms for support vector machine (SVM) and random
forest (RF) classifiers. The results demonstrate that data
resampled to the resolution of common multispectral sen-
sors have the ability to predict surface archaeological
features using RF and SVM classifiers. Important bands
for predicting sites are mostly in the visible and shortwave
infrared regions of the electromagnetic spectrum. The best
performance was achieved with data resampled to the
resolution of the Sentinel-2 sensor, which attained
81.90% and 92.38% accuracy in both RF and SVM
classifiers respectively. The predictions indicate the rele-
vance of field spectroscopy studies to better understand the
spectral models critical for archaeological sites detection.

Résumé Cet article étudie la capacité de six courants
capteurs multispectraux (GeoEye, Landsat 8 OLI,
RapidEye, Sentinel-2, SPOT 5 et WorldView-2) les plus
appropriés pour la cartographie des sites archéologiques
habités par les communautés agricoles de l’Afrique aus-
trale. Ces sites ont des caractéristiques de surface
spécifiques, telles que des amas, de bouse non vitrifiée
et de bouse vitrifiée. Pour y parvenir, des données
hyperspectrales ont été recueillies sur le terrain à l’aide
d’un spectroradiomètre de champ GER-1500. Les
données ont ensuite été rééchantillonnées aux résolutions
spectrales de les capteurs sélectionnés. Cela s’est fait à
l’aide de l’outil de rééchantillonnage des bibliothèques
spectrales integré dans l’ENVI. La diminution moyenne
de la precision a été utilisée pour évaluer l’importance des
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longueurs d’onde hyperspectrales et de chaque bande
attribuée à un capteur multispectral, afin de distinguer
les classes archéologiques susmentionnées. Deux
modèles prédictifs basés sur les données hyperspectrales
rééchantillonnées ont été développés dans le R, en
utilisant des algorithmes classificateurs « support vector
machine » (SVM) et « random forest » (RF). Les résultats
ont montré que les données rééchantillonnées à la résolu-
tion des capteurs multispectraux courants permettent de
prédire les caractéristiques archéologiques de surface à
l’aide de classificateurs RF et SVM. Les bandes
importantes pour la prédiction des sites étaient
principalement dans les régions de l’infrarouge visible et
à ondes courtes du spectre électromagnétique. Les
meilleures performances ont été obtenues avec des
données rééchantillonnées à la résolution du capteur Sen-
tinel-2, qui ont atteint une précision de 81,90% et 92,38%
dans les classificateurs RF et SVM. Les prédictions
indiquent la pertinence des études de spectroscopie de
terrain pour la compréhension des modèles spectraux les
plus importants pour la détection des sites archéologiques.

Keywords Field spectral data . Spectral resampling .

Variable importance . Farming communities

Introduction

Africa is rich with heritage that documents human his-
tory from early primates up to recent complex societies
(Connah 2004; Haaland 1995; Lange 2007; MacDonald
2013; Mattingly et al. 2007; Phillipson 2005; Shaw et al.
1993; Stahl 1994). Heritage sites on the continent are
faced with dangers posed by both anthropogenic and
natural threats such as mining activities, urban develop-
ment, looting, flooding, erosion, and fires (Chirikure
2013; Kankpeyeng and DeCorse 2004; Khandlhela
and May 2006; Lasaponara et al. 2016; Musyoki et al.
2016; Nienaber et al. 2008; Parcak 2015; Schmidt and
McIntosh 1996; Smith 2012). In addition to this, heri-
tage management institutions in Africa are facing sev-
eral challenges, including lack of funds, which often
lead to inadequate surveying, documentation, and mon-
itoring of heritage sites (Chirikure 2013; Mabulla 2001;
McIntosh 1993). Site surveying, documentation, and
monitoring in some regions are also hampered by inac-
cessibility due to factors such as the presence of danger-
ous wild animals, conflicts, and property rights (Biagetti
et al. 2017; Mabulla 2001; Thabeng et al. 2019).

The identification and documentation of archaeo-
logical features in Africa has traditionally been done
through fieldwalking surveys (Fleisher and
LaViolette 1999; Hitchner 1995; Huffman 2009a,
2011; McIntosh and McIntosh 1993). Fieldwalking
surveys offer the surveyor an opportunity to identify,
appreciate, and record finer details of different types
of archaeological sites on the ground and to provide
contextual records of archaeological materials (Foard
1977; Reid and Segobye 2000). Their limitation is
that they are time-consuming, costly, and difficult to
carry out over large areas (Banning et al. 2006; Corrie
2011; Hitchings et al. 2013). As a relatively cheap,
fast, and systematic alternative, heritage managers
and researchers have devised analytical techniques
to predict the locations of archaeological sites over
large and/or inaccessible areas within a short period of
time (i.e., “predictive models”). These are based ei-
ther on a sample of a region or on fundamental as-
sumptions about human behavior (Danese et al. 2014;
Keay et al. 2014; Kohler and Parker 1986; Lasaponara
et al. 2014; Verhagen and Whitley 2012). Traditional
models predict the location of archaeological sites
based on the spatial analysis of environmental vari-
ables and/or other sites (Danese et al. 2014; Sharafi
et al. 2016), while remote sensing predictive models
exploit the spectral contrast between features and
their surroundings (Corrie 2011). Although land-
scapes carry the cumulative traces of human–
environment interactions, anthropogenic activities
can have localized, long-lasting impacts on the soil’s
physical and chemical properties, thus making certain
areas distinct from their surroundings (Oonk et al.
2009; Wilson et al. 2008). For example, negative
vegetation marks have been identified as indicators
of the presence of subsurface archaeological features
such as walls (Hejcman and Smrž 2010). This is
because the presence of walls in the soil makes it
more compact and less moisture-retentive therefore
resulting in stunted vegetation growth (Gojda and
Hejcman 2012). High moisture-retentive features
such as ditches have been linked with positive vege-
tation marks (Featherstone et al. 1999; Reeves 1936).
On the other hand, surface archaeological features can
be identified based on their physical characteristics
such as form (De Laet et al. 2007; Mason 1968; Sadr
2016) and ecological indicators (Denbow 1979; Reid
2016). Lastly, soil chemical and physical characteris-
tics strongly influence the spectral behavior of soils
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and can be discriminated through spectral imaging
(Ben-Dor 2002). As a result, several studies
(Agapiou et al. 2012b, 2014a; Altaweel 2005; Beck
2007; Crawford 1923; Klehm et al. 2019; Mason
1968; Opitz and Herrmann 2018; Parcak 2007) have
successfully employed remote sensing techniques to
identify a number of archaeological site indicators.
However, due to limited funding and incomplete site
databases, research on the applicability of predictive
remote sensing in an African context remains sporad-
ic (Denbow 1979; Klehm et al. 2019; Mason 1968;
Sadr and Rodier 2012).

Remote sensing data can be captured using broad-
band (multispectral) and narrowband (hyperspectral)
sensors housed on handheld, airborne, and spaceborne
platforms (Bradbury et al. 2013; Cavalli et al. 2013;
Doneus et al. 2014; Mutanga et al. 2015; Schmidt and
Skidmore 2003). At present, there are several multi-
spectral satellite sensors with different spatial and
spectral characteristics providing large volumes of
data with great potential for the identification of ar-
chaeological sites; the challenge is to identify the
suitable sensors for studying different archaeological
features (Agapiou et al. 2014a; Parcak 2007). This is
because, in addition to optimum environmental con-
ditions, the ability to detect archaeological materials
using remote sensing depends on the spatial and spec-
tral resolutions of the sensor (Beck 2007). Spatial
resolution represents the area on the ground that each
pixel in an image covers and is a measure of the
smallest object that can be resolved by the sensor
(Liang et al. 2012). Higher spatial resolution means
each pixel represents a smaller square of ground, with
higher chances of detecting small archaeological fea-
tures. In multispectral imagery (which are datasets
containing more than one spectral band), spectral res-
olution is the width of each band (wavelength range)
of the electromagnetic spectrum in the dataset, and it
measures the ability of the sensor to resolve features in
the electromagnetic spectrum (Lillesand et al. 2008).
Since different surface materials can be distinguished
by comparing their spectral responses (reflected radi-
ation) over distinct wave ranges, the finer the band-
width, the higher the ability of a sensor to make this
distinction. Often, a trade-off between the two is need-
ed for the identification of desired surface features. As
such, a number of studies have compared the accura-
cies of different satellites in detecting archaeological
features (Fowler 2002; Parcak 2007). This approach

can be time-consuming and expensive, especially
when using commercial satellite images.

Hyperspectral data offer high spectral resolution by
capturing narrow bands across visible, near-infrared,
and shortwave infrared portions of the electromagnetic
spectrum. This high spectral resolution permits the iden-
tification of distinctive attributes of different features
(Agapiou et al. 2012b; Cavalli et al. 2007; Cerra et al.
2018). As a result, many studies have used field and
laboratory hyperspectral data to pilot investigations on
the potential application of remote sensing principles in
various fields including the analysis of soil’s physical
and chemical properties (Cozzolino and Moron 2003;
Nocita et al. 2014; Sørensen and Dalsgaard 2005), veg-
etation health (Dhau et al. 2018b; Kokaly 2001), spec-
tral identification of different vegetation species (Adam
et al. 2009; Cochrane 2000), and spectral discrimination
of archaeological sites (Agapiou et al. 2010, 2012b;
Melillos et al. 2018). Hyperspectral data has also been
used to investigate the ability of planned multispectral
satellite sensors to detect vegetation indices associated
with buried archaeological features (Agapiou et al.
2014b). Currently, there are very few studies aimed at
identifying spectral bands suitable for discriminating
surface archaeological features in current operational
multispectral sensors (Thabeng et al. 2019).

The use of hyperspectral sensors for discriminating
different features has some limitations such as high
computational demands and the large data redundancy
due to the strong correlation between the spectral fea-
tures (Burger and Gowen 2011; Doneus et al. 2014;
Feng et al. 2016; Metternicht et al. 2010; Sibanda et al.
2016). Additionally, there are no operational airborne
and spaceborne sensors matching the very high spectral
resolution of hand-held spectrometers. As a result, nu-
merous studies have resampled field and laboratory
hyperspectral data acquired over small areas to the spec-
tral resolutions of existing multispectral and
hyperspectral sensors, in order to investigate applica-
tions for soil analysis (Nawar et al. 2014), vegetation
studies (Adam et al. 2012; Mansour et al. 2012), and
archaeology (Agapiou et al. 2014a). The major limita-
tion of resampling using field and lab spectroscopy data
is that these data have a high signal-to-noise ratio
(SNR), which is impossible to achieve with imagery
from airborne and spaceborne sensors (Mutanga et al.
2015). SNR is a measure that compares the level of a
desired signal to the level of background noise and
indicates, in remote sensing, how much of the recorded
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signal that appears as a pixel is useable information vs.
unwanted distortion or noise. However, several studies
(Mansour et al. 2012; Mutanga et al. 2015) have found
no significant difference between the results obtained
from resampling fine resolution data and those from the
actual satellite image.

This study seeks to identify the most suitable multi-
spectral sensors for mapping archaeological sites previ-
ously occupied by farming communities. This is done
through resampling in situ hyperspectral data to the
spectral resolutions of the most common multispectral
sensors (namely GeoEye, Landsat 8 OLI, RapidEye,
Sentinel-2, SPOT 5 and WorldView-2). The study was
carried out in the Mapungubwe Cultural Landscape, an
area of Southern Africa occupied by farming communi-
ties since the beginning of the first millennium AD
(Huffman 2008; Huffman and Du Piesanie 2011).
Unique surface features and a distinct settlement orga-
nization, known as the Central Cattle Pattern (CCP)
(Hanisch 2002), further described below, make this
landscape ideal for testing. The specific objectives of
the paper are (i) to identify the optimum spectral reso-
lution for predicting archaeological sites (middens, non-
vitrified dung, and vitrified dung) using in situ
hyperspectral data resampled to different remote sensing
multispectral platforms; (ii) to compare the prediction
accuracies of middens, non-vitrified dung, and vitrified
dung achieved using resampled data, RF, and SVM
classifiers; and (iii) to identify the importance of the
different bands allocated in different multispectral sen-
sors in predicting archaeological sites (middens, non-
vitrified dung, and vitrified dung) using RF algorithm.

Materials and Methods

Study Area and Archaeological Context

The Mapungubwe Cultural Landscape is a UNESCO-
listed heritage area situated where the Shashi and Lim-
popo rivers meet in the province of Limpopo, South
Africa (Fig. 1). The Shashi-Limpopo Confluence Area
(SLCA) forms the boundaries of three countries: Bo-
tswana to the west, South Africa to the south, and
Zimbabwe to the north. Geologically, the SLCA lies
within the Limpopo mobile belt, which joins the Zim-
babwe and Kaapvaal cratons (Chinoda et al. 2009). This
area is characterized by igneous and sedimentary rocks
of the Karoo supergroup (Bordy and Catuneanu 2002).

Erosion is rampant, particularly in areas closer to the
river channels, thus forming sandstone ridges and out-
crops, which cover most parts of the SLCA, with a
sparse distribution of volcanic intrusions (Götze et al.
2008; Hanisch 1981). Generally, soils in the Limpopo
mobile belt include clays and sands originating from the
Karoo system.

The Mapungubwe Cultural Landscape was occupied
by different farming communities, which combined cul-
tivation with herding and the smelting and forging of
iron (Mitchell 2013) in two distinctive periods. The first
occupation occurred during the early centuries of the
first millennium AD (Huffman 2008; Huffman and Du
Piesanie 2011) and the second from AD 900 onwards
(Calabrese 2000; Eloff andMeyer 1981; Huffman 2000;
Vogel and Calabrese 2000). A model of settlement
organization known as the Central Cattle Pattern
(CCP) (Hanisch 2002; Huffman 1982, 1986) has been
used to describe the structure of the villages and the
worldview of their inhabitants, both reflecting the cen-
trality of cattle in the life of these communities. The
main features of the CCP are (1) a central cattle byre
(also called a kraal) with elite burials and storage pits for
grains; (2) an area next to the kraal where men would
gather; (3) and an outer residential zone characterized by
huts arranged according to seniority (Fagan 1964;
Huffman 2000, 2001, 2009b). Social and political
changes in the Mapungubwe Cultural Landscape took
place during the early centuries of the second millenni-
umAD (AD 1000–1300), with the development of class
distinction and sacred leadership (Huffman 2000;
Meyer 2000). The chief/king was physically separated
from the commoners at the beginning of thirteenth
century AD with the occupation of Mapungubwe Hill
(Huffman 2009b). This led to changes in the organiza-
tion of the main settlements whereby the traditional
centrality of the cattle byre was abandoned and stone-
walls were built to seclude rulers from the commoners in
major settlements (Huffman 2000; Meyer 2000). How-
ever, the CCP continued in the satellite settlements
occupied by commoners (Huffman 2000).

Mapungubwe societies traded with merchants along
the Indian Ocean coast (Huffman 2000; Meyer 2000;
Pwiti 2005). Materials such as glass beads and marine
shells were exchanged for metals, salt, ivory, and animal
skins from the interior polities such as Toutswe and
Bosutswe (Denbow 1990; Huffman 2000; Klehm et al.
2019; Klehm 2017; Koleini et al. 2016). At the peak of
its power, the leadership of Mapungubwe is believed to
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have dominated societies up to 200 km away (Huffman
1982). A shift of power came towards the end of the
thirteenth century AD, as the Mapungubwe Kingdom
collapsed and the Great Zimbabwe Kingdom became
dominant in the region (Calabrese 2000; Denbow 1990;
Huffman 2009a; Klehm et al. 2019). However, trade
between the societies in the Mapungubwe Cultural
Landscape and the east coast merchants continued into
the historic period (Huffman 2012).

Archaeologically, the most distinct features that re-
main in theMapungubwe Cultural Landscape are cattle
byres, marked by deposits of vitrified and/or non-
vitrified dung (Huffman 2009b; Meyer 2000). Non-
vitrified dung deposits consist of unburned dung
(Huffman et al. 2013). Vitrified dung is a glassy bio-
mass slag with high deposits of nitrates and phosphates
formed by burning thick dung deposits at very high
temperatures, usually in the region of 1100 °C (Peter
2001; Thy et al. 1995). The causes of dung vitrification
are debated. Thy et al. (1995) posit that, for vitrifica-
tion to occur, dung may have been burned by veld fires
or lightning at very high temperatures, in an environ-
ment conducive to internal combustion. Other re-
searchers (Huffman et al. 2013; Peter 2001) argue that
vitrification results from the intentional burning of
byres, most likely for cleansing purposes. Generally,

the sites appear as bare patches within the savanna
woody vegetation, in some cases barren and grayish-
white in color (in particular when the dung is vitrified)
and in other cases covered by grass, predominantly
Cenchrus ciliaris (Denbow 1979; Mothulatshipi
2008). The distinct spectral signature, large size, and
centrality of cattle byres, already examined by remote
sensing-based studies in the region (Denbow 1979),
make them an ideal indicator for the prediction of a
household or village, depending on the scale at which
the study is carried out.

Pits, grain bins, and middens are the other major
features characterizing many sites (Huffman 2007).
Middens include the discarded remains of materials
such as broken potsherds, animal bones, beads and other
artifacts, and the ashes from fireplaces (Chirikure et al.
2014; Huffman 2012). While pits and grain bins are
small features of sub-meter sizes (not easily detectable
by any optical remote sensing images), middens, which
can differ in size depending on the duration and density
of site occupation (Eloff and Meyer 1981), are generally
larger than a few meters and could easily serve as
another excellent site indicator.

Given the distinct spatial and spectral characteristics
of these archaeological features, their detection through
the analysis of multispectral remote sensing imagery

Fig. 1 Location of the study area in southern Africa
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could have major implications not only for the construc-
tion of predictive models. These features are not just
associated with determining site location and settlement
patterns but they can also be associated with sociopolit-
ical factors such as site hierarchy and/or use (Denbow
1986; Huffman 1986, 2000, 2001, 2009b; Manyanga
2007; Meyer 2000; Mothulatshipi 2008). Expanding the
knowledge of location and size of sites over vast areas,
from local scales to regional landscapes, is fundamental
for gaining insight into political hierarchies of contem-
poraneous settlements (Huffman 1986) and diachronic
population aggregation and environmental strategies.
This is especially true for understanding the role of small
sites in hinterland locales (Antonites and Ashley 2016;
Klehm 2017; Klehm and Ernenwein 2016).

Field Data Collection

A total of 356 soil surface samples (at a depth of 0–
20 cm) were collected in February 2017 and packed in
zip-lock plastic bags for spectral measurements in the
laboratory. This procedure followed the traditional
method of acquiring reproducible, stable, and accurate
spectral measurements for the analysis of soil spectral
characteristics (Ben-Dor et al. 2017; Stevens et al.
2010). Between 60 and 117 samples were collected for
each category: non-sites, archaeological soils character-
ized by middens, and vitrified and non-vitrified dung
deposits. A purposive samplingmethodwas used during
the fieldwork data collection by visiting archaeological
sites that were known to be characterized by dung
deposits and middens (Huffman 2009a, 2011). Non-
site soil samples served as a control; these were collect-
ed at some distance from the targeted archaeological
features in order to avoid possible contamination that
could come from wind and water erosion. Although this
measure does not guarantee that the collected soils are
non-archaeological, the procedure ensured that the con-
trol soils were distinct and distant from the targeted
archaeological features—byres and middens.

Lab Spectral Measurements and Resampling

A portable field spectrometer (FieldSpec® 4) was used
to measure the reflectance spectra of vitrified dung, non-
vitrified dung, midden, and non-site soils in a controlled
environment. This was done in order to minimize the
atmospheric effects caused by weather conditions. The
Analytical Spectral Device (ASD) captures visible-near

infrared and shortwave infrared spectral data between
350 and 2500 nm, at a bandwidth of 1.4 nm in the
visible-near infrared region (350–1000 nm) and
1.1 nm in shortwave infrared region (1001–2500 nm)
(Analytical Spectral Devices, Inc. 2018). These very
narrow spectral channels have been successfully
resampled to the resolution of broadband sensors
(Castaldi et al. 2016; Mutanga et al. 2015). The spec-
trometer was calibrated using a white spectrolon refer-
ence panel before taking measurements of a new sample
and thereafter every 10–15 measurements to offset any
change in atmospheric condition (Analytical Spectral
Devices, Inc. 2018). Soil samples were flattened on a
black plastic plate to create a smooth surface. The spec-
tral measurements were then taken directly from the soil
surface of each sample at nadir position with 10-mm
field of view using Hi-Brite contact probe fitted with
100 W halogen reflector lamp (Ben-Dor et al. 2015;
Ogen et al. 2017). Between 60 and 117 samples were
collected from non-sites, middens, vitrified dung, and
non-vitrified dung sites in the field (see Table 1 below).
Three spectral measurements were taken per sample by
randomly moving the probe over the soil surface, in
order to obtain a representative reflectance spectrum
for the sample. The spectral measurements were then
averaged to represent the absolute spectral reading of the
soil class of interest (Fig. 2).

Hyperspectral data measured in the lab were then
converted to an ASCII file containing 10-nm-wide band
spacing using wavelengths between 350 and 2500 nm.
The resultant hyperspectral data contained in the ASCII
file was averaged to mimic, through resampling, the
spectral resolutions of common multispectral sensors
using the resampling spectral library function inherent
within Environment for Visualizing Images (ENVI)
software (v. 5.4). The resampling tool in ENVI employs
a Gaussian model with a full width at half maximum
(FWHM) equal to the specified band spacing to resam-
ple the data (Dhau et al. 2018a; Oumar and Mutanga
2010; Verrelst et al. 2013). The hyperspectral data were
resampled to the spectral resolutions of a selection of
popular multispectral sensors (GeoEye, Landsat 8 OLI,
RapidEye, Sentinel-2, SPOT 5 andWorldView-2) using
band centers in Table 1. Bands between 350 and 400 nm
and 2400–2500 nm were removed from the data before
resampling, as these bands are affected by noise
(Castaldi et al. 2016).

The resulting resampled satellite datasets were divid-
ed into training (70%) and test (30%) datasets (Table 2).

Afr Archaeol Rev (2020) 37:25–4930



Table 1 Spectral characteristics showing band description, bandwidth, band center, and spatial resolution of different multispectral sensors

Sensor Band description Bandwidth (nm) Band center (nm) Spatial resolution (nadir)

GeoEye Blue 450–510 480 1.84 m MS

Green 510–580 545

Red 655–690 672.5

Near-infrared 780–920 850

Landsat 8 Coastal 430–450 440 30 m MS

Blue 450–510 480

Green 530–590 560

Red 630–670 650

Near-infrared 850–880 865

SWIR 1 1570–1650 1610

SWIR 2 2110–2290 2200

RapidEye Blue 440–510 475 6.5 m MS

Green 520–590 555

Red 630–685 657.5

Red edge 690–730 710

Near-infrared 760–850 805

Sentinel-2 Aerosols 433–533 483 10 m, 20 m, and 60 m MS and SWIR

Blue 458–523 490.5

Green 542–578 560

Red 650–680 665

Vegetation red edge 695–713 704

Vegetation red edge 733–748 740.5

Vegetation red edge 733–793 763

Near-infrared 855–875 865

Vegetation red edge 785–900 842.5

Water vapor 935–955 945

Shortwave infrared-cirrus 1360–1390 1375

Shortwave infrared 1565–1655 1610

Shortwave infrared 2100–2280 2240

Spot 5 Green 500–590 545 10 m MS

Red 610–680 645 20 m SWIR

Near-infrared 780–890 835

SWIR 1580–1750 1665

Worldview-2 Coastal 400–450 425 1.84 MS

Blue 450–510 480

Green 510–580 545

Yellow 585–625 605

Red 630–690 660

Red edge 705–745 725

Near-infrared 1 770–895 832.5

Near-infrared 2 860–1040 950
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Thereafter, the datasets were used as input variables in
RF and SVM classifiers to test if their spectral resolu-
tions are suitable for predicting archaeological sites.

Data Classification

Although the use of conventional parametric classifiers
such as Maximum Likelihood remains the preferred
method for many remote sensing applicative studies,
including archaeological ones (e.g., De Laet et al.
2009), this study used Random Forest (RF) and Support
Vector Machines (SVM) to classify all soil classes (sites
and non-sites). Despite the advantages offered by the
availability of parametric classifiers in conventional im-
age processing software packages (Yu et al. 2014) vis-à-
vis uncertainties in how to use and implement machine-
learning techniques effectively (Maxwell et al. 2018),
RF and SVM classification algorithms have proved to
provide better classification performance (higher accu-
racy) than traditional, statistically based, parametric pro-
cedures (Ahmad et al. 2010; Belgiu and Drăguţ 2016;
Chagas et al. 2016; Grimm et al. 2008; Maxwell et al.
2018; Mountrakis et al. 2011; Pal and Mather 2003).
Moreover, the machine-learning classifiers able to mod-
el complex class signatures characterized by many pre-
dictor variables (high dimensional feature space) are
non-parametric. That is, they do not make assumptions
about the data distribution (Maxwell et al. 2018) and can
accept limited training datasets (Rodriguez-Galiano
et al. 2012; Shao and Lunetta 2012). Furthermore, RF
and SVM have a high generalization capacity, which
makes it possible to apply them on incomplete or noisy
(error prone) databases (Rodriguez-Galiano et al. 2012;
Rodriguez-Galiano and Chica-Rivas 2014; Shao and
Lunetta 2012). These characteristics are advantageous

for archaeological site prediction, particularly in com-
plex archaeological landscapes that may contain a high
number of land covers, with low interclass separability,
and/or limited access for the collection of training data.

Random Forest

RF is a non-parametric machine learning classification
algorithm developed by Breiman (2001). The algorithm
uses an ensemble of classification and regression trees
for prediction. The algorithm grows each tree, without
trimming it until its nodes reach purity, using a random
subset of predictor variables (Adam et al. 2017). Each
tree from the forest then contributes a single vote for the
prediction class with the majority votes deciding the
class. RF needs the optimization of the number of trees
(ntree) and the number of the predictive variables taken
into consideration at each node (mtry) in order to im-
prove the classification accuracy (Genuer et al. 2010;
Mureriwa et al. 2016). The bootstrap sampling of vari-
ables at random carried out in building each tree was
performed with replacement from the population
(Breiman 1996; Rodriguez-Galiano et al. 2012). This
sampling technique divides the variables into two-thirds
training data and uses the remaining third to assess the
importance of each variable in classification and gener-
alization error (Belgiu and Drăguţ 2016). The testing
data is defined as the Out-Of-Bag (OOB) sample.

One major advantage of RF over other machine
learning algorithms, such as artificial neural networks
and SVM, is its inherent ability to measure the impor-
tance of each candidate predictor in the classification
process. This advantage has been demonstrated in a
number of studies where RF was used for reduction of
dimensionality and variable selection in various

Fig. 2 Visualization of the
average reflectance of different
soil classes: midden (MD); non-
site (NS); vitrified dung (VD);
and non-vitrified dung (NVD)
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domains like bioinformatics (Díaz-Uriarte and De
Andres 2006; Farhat et al. 2016; Wu et al. 2008), ecol-
ogy (Brieuc et al. 2015; Wei et al. 2010), remote sensing
(Mutanga et al. 2012), and medical imaging (Lebedev
et al. 2014). Gini importance measures the contribution
of each predictor in keeping the nodes pure in a forest.
The second measure of importance, mean decrease in
accuracy, is calculated using the RF internal measure of
accuracy. RF assesses the importance of each variable in
the final model by measuring the decrease in accuracy
by means of OOB error, when its values are removed
from the sample with other variables remaining constant
(Breiman 2001). The error is expected to rise if the
variable is important in the prediction of the forest.
The importance of the predictor variable yj can be de-
fined as follows:

MDA y j
� �

¼ 1

ntree
∑
ntree

t¼1
aptj−atj

� �

Whereby:

& ntree is the number of trees of the RF,
& aptb is the OOB error of tree t after randomly per-

muting the values of the predictor variable yj, and
& atb is the OOB error of tree t before randomly

permuting the values of the predictor variable yj

The end results for each predictor variable can then
be used to assess its importance in relation to others in
the prediction process. In this study, mean decrease
accuracy was used to measure the importance of
hyperspectral data and resampled satellite bands in
predicting non-sites, middens, non-vitrified dung, and
vitrified dung. The mtry and ntreewere optimized using
grid search and 10-fold cross-validation in the e1071
library of R statistical packages version 3.4.1 (Meyer
et al. 2017). The resampled hyperspectral data was then
classified in R using the randomForest package, which

is based on the original RF algorithm developed by
Breiman and Cutler (2007).

Support Vector Machines

SVM classification algorithm has previously been used
to classify land cover data from satellite sensors (Adam
et al. 2014; Ustuner et al. 2015). This is because of its
robust generalization ability and capacity to deal with
noise effects and achieve high classification accuracies
(Shao and Lunetta 2012). SVM are non-parametric clas-
sifiers, therefore they do not assume normality within
training statistics. In this study, SVMwas used to predict
the soil classes using resampled satellite bands. SVM is
a kernel-based algorithm that predicts classes by finding
the hyperplane that optimally separates two classes in
high dimensional feature space (Chen and Lin 2006;
Zhu and Blumberg 2002). The most used SVM kernels
are the polynomial, sigmoid, linear, and radial basis
function (RBF) (Ben-Hur and Weston 2010; Lin and
Lin 2003; Pal and Mather 2005). A radial basis kernel
function was used to classify the data in this study
because of its ability to handle nonlinear relations be-
tween class labels and attributes (Hsu et al. 2003). The
RBF defined as follows:

k(x, x1) = exp( − γ‖x − x1‖2)
Whereby x and x1 represent two points from training

data with default kernel function parameter (γ), which is
(1/(data dimension)). RBF requires two user-defined
parameters, which are the regularization parameter (C)
and kernel function parameter (γ) to run the SVM
model. The regularization parameter regulates the ac-
cepted level of misclassification errors by determining
the margin between class boundaries (Li et al. 2015).
Kernel function parameter defines the width of the
Gaussian kernel. In general, these parameters have an
influence on the overall classification accuracy. Hence
the need to run the model on optimum parameters in
order to obtain good classification accuracy (Hsu et al.

Table 2 Training and validation dataset for all the soil classes created by splitting the field data into 70:30

Archaeological classes Code Training
dataset

Validation dataset Total number of spectral samples

Midden MD 61 25 86

Non-vitrified dung NVD 82 35 117

Vitrified dung VD 42 18 60

Non-sites NS 66 27 93
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2003). In this study, pairs of C and γ parameters were
optimized using a 10-fold cross-validation and grid
search. This method tests various combinations of C
and γ parameters and chooses the one which attained
the best cross-validation accuracy. The model follows
the procedure described below:

1. Consider a grid space of (C, γ) with log2C ∈ {− 5,−
3, . ., 13} and log2γ ∈ {− 13,− 11, ., 3}.

2. For each pair of C and γ parameters in the search
space, carry out 10-fold cross-validation on the
training set.

3. Select a pair ofC and γ, which will result in the best
overall cross-validation classification rate.

4. Train a model using the selected best combination
of parameters (C, γ)

The optimization of parameters and classification of
the resampled hyperspectral data were done using the
e1071 library of R statistical packages version 3.4.1
(Meyer et al. 2017).

Accuracy Assessment

Classification accuracy was assessed by means of the
confusion matrix, which was constructed using a hold-
out dataset created by randomly dividing the resampled
data into 70% (training data) and 30% (test data) (see
Table 1 above). The confusion matrix enables the as-
sessment of the classification of each class by giving the
user’s accuracy and the producer’s accuracy (Congalton
1991). User’s accuracy shows the proportion of predic-
tor variables correctly predicted as they are in reality.
This measure is achieved by dividing the number of
correctly predicted variables by the row total. Producer’s
accuracy, on the other hand, measures the proportion of
predictor variables, which were correctly predicted
within a class. Producer’s accuracy is attained by divid-
ing the number of correctly predicted variables by the
column total. Above all, the confusion also offers the
overall accuracy, which is the percentage of correctly
classified test pixels across all classes. Cohen’s kappa
coefficient was used to assess the agreement between
the reference data and the classifier because of its ability
to compensate for chance agreement (Rosenfield and
Fitzpatrick-Lins 1986). Cohen’s kappa coefficient is
defined as follows:

K ¼ Pr oð Þ−Pr cð Þ
1−Pr cð Þ

Where Pr(o) is the observed agreement and Pr(c) is
the expected agreement. A perfect agreement is
achieved if the kappa value (K) is one or close to one
(McHugh 2012; Rosenfield and Fitzpatrick-Lins 1986).

Results

Optimization of RF and SVM

The optimization results of RF parameters (mtry and
ntree) for different sensors are shown in Fig. 3. In
general, the lowest error rates achieved by the different
optimum mtry and ntree combinations for spectral data
resampled to resolutions of various sensors ranges be-
tween 0.120 and 0.168 (Fig. 3). The optimum mtry and
ntree parameter combinations for Sentinel-2 achieved
the lowest OOB error rate at the value of 0.12. The best
mtry and ntree parameter combination for hyperspectral
data resampled to resolution each satellite sensor was
used to classify its related data in the RF algorithm.

The exponentially growing sequence of C and γ
values were assessed using grid search in an attempt to
select the best parameter combinations for classifying
dataset resampled to the spectral resolutions of different
sensors. The optimization model achieved varying opti-
mum combinations of C and γ for classifying data
resampled to resolutions of GeoEye (C = 1000 and γ =
1), Landsat 8 OLI (C = 100 and γ = 1), RapidEye (C =
100 and γ = 1), Sentinel-2 (C = 1000 and γ = 0.1), SPOT
5 (C = 1000 and γ = 1), and WorldView-2 (C = 100 and
γ = 1) sensors, in SVM classifier using RBF.

Band Importance

RF algorithm was used to assess the relative impor-
tance of each resampled band in predicting the clas-
ses of midden, non-vitrified dung, non-sites, and
vitrified dung. Although the most important bands
for each sensor are situated in different portions of
the electromagnetic spectrum in the different sensors
(Fig. 4), these are generally located within the visi-
ble spectrum. The green band (545 nm) was the
most important band in discriminating midden, vit-
rified dung, non-vitrified dung, and non-sites in the
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SPOT 5 satellite sensor. This band combines wave-
lengths in the blue with those in the green part of the
electromagnetic spectrum (Fig. 4). The SWIR band
in the SPOT 5 sensor was the second most important
band. The blue band was the most important band
for satellites that have the ability to capture data in
the blue portion of the electromagnetic spectrum
such as GeoEye (480 nm), RapidEye (470 nm),
Sentinel-2 (490 nm), and WorldView-2 (480 nm).
Landsat 8 OLI was the only satellite that, despite
having a blue band, had its most important band in
discriminating midden, non-vitrified dung, non-sites,
and vitrified dung located in the SWIR (1610 nm).
The red band was the least important band for

discriminating these soil classes for satellite sensors
Landsat 8 OLI, SPOT 5, and GeoEye, while the red
edge bands were the least important for satellite
sensors WorldView-2, Sentinel-2, and RapidEye,
which capture data in the red edge wavelengths.
Overall, SPOT 5 had the most important bands for
discriminating midden, vitrified dung, non-vitrified
dung, and non-sites. Most bands of the Sentinel-2
sensor, which captures data in most regions of the
magnetic spectrum, have low values in mean de-
crease of accuracy as compared with other sensors
(Fig. 4).

The mean decrease in accuracy in RF was used to
assess the relationship between the important bands

Fig. 3 OOB errors of optimized RF parameters (mtry and ntree)
using grid search procedure. The OOB method was used to iden-
tify the error rates for different sets ofmtry and ntree; (a) 30 sets for

GeoEye; (b) 60 sets for Landsat 8 OLI; (c) 40 sets for RapidEye;
(d) 120 sets for Sentinel-2; (e) 30 sets for SPOT 5; and (f) 70 sets
for WorldView-2

Afr Archaeol Rev (2020) 37:25–49 35



for discriminating midden, non-vitrified dung, non-
sites, and vitrif ied dung soil classes using
hyperspectral data and the location of these bands
for different sensors. The important bands for clas-
sification using hyperspectral data are spread across
visible, near-infrared, and shortwave infrared por-
tions of the electromagnetic spectrum (350–
2500 nm), as shown in Fig. 5. However, there are
notable peaks in the visible and the shortwave infra-
red portions of the electromagnetic spectrum be-
tween 350–576 nm, 1292–1380 nm, 1575–
1748 nm, and 1801–1808 nm. All the satellite sen-
sors have their bands located in the different areas of
the visible spectrum. New satellite sensors, with a
spatial resolution of less than 5 m do not have bands
covering the shortwave infrared region, which also
possesses some important bands in classifying the
midden, non-vitrified dung, non-sites, and vitrified
dung (Fig. 5). Nevertheless, only medium resolution
sensors (Landsat 8 OLI, Sentinel-2, and SPOT 5)
have bands that can capture data in the SWIR of the
electromagnetic spectrum. The SWIR bands from
the previously mentioned sensors are located at the
same position of hyperspectral bands, which are
important for discriminating midden, non-vitrified
dung, non-sites, and vitrified dung. This, therefore,

corroborates the importance of these bands in ar-
chaeological classification as shown in Fig. 4.

Classification Accuracy

The classification of the midden, non-vitrified dung,
non-sites, and vitrified dung sites was performed using
RF and SVM on the hyperspectral data resampled to the
spectral resolution of GeoEye, Landsat 8 OLI,
RapidEye, Sentinel-2, SPOT 5, and WorldView-2 sen-
sors, respectively. The error matrices for the output of
each classifier were built using a holdout sample created
by randomly dividing resampled laboratory data into 70
and 30% for training and validation, respectively. SVM
achieved higher classification accuracies than RF for all
datasets.

Accuracy assessment of the RF classifier, which was
done using the validation data, achieved overall accura-
cies of 78.10, 80.00, 72.38, 81.90, 77.14, and 77.14%
and Kappa coefficients of 0.7030, 0.7276, 0.6262,
0.7529, 0.6877, and 0.6905 when classifying
hyperspectral data resampled to the spectral resolutions
of GeoEye, Landsat 8 OLI, RapidEye, Sentinel-2,
SPOT 5, and WorldView-2, respectively (Fig. 6). Gen-
erally, a lower classification accuracy of 72.38% and
Kappa coefficient of 0.6262 were attained with the data
resampled to the spectral resolution of RapidEye sensor,

Fig. 4 Relative importance of each band for different sensors used
in this study for predicting midden, non-vitrified dung, non-sites,
and vitrified dung using RF. The spectral bands are distributed as
follows: blue, green, red, and near-infrared for GeoEye; coastal,
blue, green, red, near-infrared, SWIR1, and SWIR 2 for Landsat 8
OLI; blue, green, red, red edge, and near-infrared for RapidEye;

aerosols, blue, green, red, red edge, red edge, red edge, near-
infrared, red edge, water vapor, SWIRI-Cirus, SWIR 1, and SWIR
2 for Sentinel-2; green, red, near-infrared, and SWIR for SPOT 5;
coastal, blue, green, yellow, red, red edge, NIR1, and NIR2 for
WorldView-2. The most important variables are those with the
highest mean decrease accuracy
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while Sentinel-2 achieved a very high classification
accuracy of 81.90% and a kappa coefficient of 0.7529
(Table 3; Fig. 6). Sentinel-2 attained high producer’s and
user’s accuracies of 82.86 and 78.38%, respectively, for
NVD. RapidEye attained producer’s accuracy of
60.00% and user’s accuracy of 75.00% for the same
class (Tables 3 and 4). However, mixed results were
attained when classifying MD, with data resampled to
RapidEye sensor resolution achieving high producer’s
accuracy of 64.00% as compared with 60.00% for
Sentinel-2 (Table 4). On the other hand, Sentinel-2
achieved higher user’s accuracy of 65.22% as compared
with 50.00% (Tables 3 and 4).

SVM classifier achieved overall accuracies of 86.67,
92.38, 82.86, 92.38, 91.43, and 86.67% and kappa
coefficients of 0.8188, 0.8967, 0.7663, 0.8963, 0.8836,
and 0.8192 when using a holdout sample from the data
resampled to spectral resolutions of GeoEye, Landsat 8
OLI, RapidEye, Sentinel-2, SPOT 5, and WorldView-2
sensors, respectively (Fig. 7; Table 6). Overall, Sentinel-
2 achieved a high overall classification accuracy of
92.38% and a kappa coefficient of 0.8963, while
RapidEye attained the lowest overall classification of
82.86% and a kappa coefficient of 0.7663 (Table 5).MD
achieved producer’s accuracy of 68.00% and user’s
accuracy of 68.00% for hyperspectral data resampled
to RapidEye sensor, while user’s and producer’s

accuracies of 84.00 and 87.50% were achieved for the
one resampled to a spectral resolution of the Sentinel-2
sensor. Similar user’s accuracies of 100%were archived
for VD from the data resampled to the spectral resolu-
tions of RapidEye and Sentinel-2, while varying pro-
ducer’s accuracies of 83.33 and 94.44% were attained
for the same datasets, respectively (Tables 5 and 6).
Landsat 8 OLI also achieved a very high overall classi-
fication accuracy of 92.38%, which was similar to that
of Sentinel-2 when using SVM classifier (Table 6; Fig.
7). However, their producer’s and user’s accuracy for
NVD and MD were different (Table 6). Further results
on producer’s and user’s accuracies for SVM classifiers
are provided in Table 6.

Discussion

Following recent improvements in both the spatial and
spectral resolutions of satellite sensors, numerous stud-
ies have reported successful mapping of subsurface and
surface archaeological material using various multispec-
tral remote sensing data (Agapiou et al. 2012a; Beck
et al. 2007; Lasaponara and Masini 2006; Masini and
Lasaponara 2007; Melillos et al. 2018; Parcak 2007;
Schuetter et al. 2013; Thabeng et al. 2019). Archaeo-
logical materials produce localized signatures that alter

Fig. 5 The location of different satellite sensor bands across the
visible, near-infrared (NIR), and shortwave infrared (SWIR) por-
tion of the electromagnetic spectrum (350–2500 nm) in relation to

the relative importance of spectral bands collected using field
spectrometer to predict midden, non-vitrified dung, non-sites,
and vitrified dung using RF algorithm

Afr Archaeol Rev (2020) 37:25–49 37



soil chemical and physical properties differently. On the
one hand, this is the very reason why spectral variations
of soils (and vegetation growing on them) can be used to
discriminate archaeological features from their sur-
roundings. On the other hand, these variations are not
universal and cannot be uncritically used to predict
archaeological sites in different contexts. As such, cre-
ating spectral libraries specific to local archaeological
features and testing the potential of different sensors
before acquiring imagery for predictive classification
and further analyses of data is necessary. This is partic-
ularly important when, in the context of limited access
to funding, there is the necessity of acquiring commer-
cial imagery at a high cost. This study is an example of

the methods available for identifying the best spectral
bands, and thus the most suitable multispectral sensors,
for detecting archaeological sites characterized by
known archaeological surface features. This specific
case study tested the separability of middens, vitrified
dung, and non-vitrified dung, all of which characterize
Southern African Iron Age sites interpreted as farming
community settlements. Nevertheless, the methods pre-
sented here can be applied in other time periods and
regions around the world, anywhere distinctive archae-
ological features expressed by soil or vegetation varia-
tions can also be measured on the ground.

The importance of each wavelength (350–2500 nm)
in resampled hyperspectral data was effectively

Fig. 6 The OA (%) and Kappa coefficients for RF classification of the midden, non-vitrified dung, non-sites, and vitrified dung achieved
using a holdout sample from hyperspectral data resampled to resolutions of different multispectral sensors

Table 3 Error matrices of RF classification results for non-vitrified dung (NVD), midden (MD), non-sites (NS), and vitrified dung (VD)
based on the holdout sample for hyperspectral data resampled to the spectral resolutions of RapidEye and Sentinel-2 sensors

Class RapidEye Class Sentinel-2
NVD MD NS VD Total NVD MD NS VD Total

NVD 21 6 0 1 28 NVD 29 8 0 0 37

MD 11 16 1 4 32 MD 5 15 0 3 23

NS 3 3 26 0 32 NS 1 2 27 0 30

VD 0 0 0 13 13 VD 0 0 0 15 15

Total 35 25 27 18 105 Total 35 25 27 18 105

OA 72.38% OA 81.90%

Kappa 0.6262 Kappa 0.7529

Afr Archaeol Rev (2020) 37:25–4938



assessed using mean decrease in accuracy in RF. Re-
sults are in line with studies of the spectral character-
istics of soils showing that VIS (400–700 nm), NIR
(700–1100 nm), and SWIR (1100–2500 nm) spectral
regions all serve as powerful tools for recognizing soils
qualitatively and quantitatively (Ben-Dor et al. 2009).
These wavelengths are commonly associated with soil
color, which is influenced by a number of soil chromo-
phores, parameters, or substances (chemical or physi-
cal) that significantly affect the shape and nature of a
soil spectrum—for example, minerals, organic content,
water, and particle size (Ben-Dor et al. 1997). This
study found that wavelengths in the visible and short-
wave infrared regions are the most important in dis-
criminating natural soils and archaeological sites char-
acterized by midden, non-vitrified dung, and vitrified
dung deposits in all the resampled multispectral sensor
data, followed by the IR region, while the resampled
bands in the red and red edge are the least important in

the classification of the aforementioned soils. Further-
more, the additional bands in the new Very High Res-
olution (VHR) satellites such as the yellow band in
WorldView-2 are of limited importance (Fig. 4). The
blue band is the most important variable for predicting
the targeted archaeological classes using hyperspectral
data resampled to GeoEye, RapidEye, Sentinel-2, and
WorldView-2. However, the green band, which com-
bines the wavelengths from the blue and the green
sections of the electromagnetic spectrum in SPOT 5
sensor, is the most important across all bands (Fig. 5).
The SWIR bands from the SPOT 5, Landsat 8 OLI, and
Sentinel 2 sensors also show very high importance in
the discrimination of the different deposits under study.

Despite their high spatial resolution, the results in this
study show that new VHR multispectral sensors
(GeoEye and WorldView-2) do not have the best bands
for detecting these archaeological deposits. These sen-
sors only capture data in the visible and near-infrared

Table 4 RF classification accuracies of non-vitrified dung (NVD), midden (MD), non-sites (NS), and vitrified dung (VD) achieved using a
holdout sample from hyperspectral data resampled to resolutions of different multispectral sensors

GeoEye Landsat 8 OLI RapidEye Sentinel-2 SPOT 5 WorldView-2

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

NVD 71.43 80.65 77.14 77.14 60.00 75.00 82.86 78.38 77.14 72.97 68.57 80.00

MD 64.00 59.26 60.00 60.00 64.00 50.00 60.00 65.22 52.00 54.17 64.00 57.14

NS 96.30 81.25 100.00 90.00 96.30 81.25 100.00 90.00 100.00 90.00 96.30 81.25

VD 83.33 100.00 83.33 100.00 72.22 100.00 83.33 100.00 77.78 100.00 83.33 100.00

OA (%) 78.10 80.00 72.38 81.90 77.14 77.14

Kappa 0.7030 0.7276 0.6262 0.7529 0.6877 0.6905

PA producer’s accuracy, UA user’s accuracy, OA overall accuracy

Table 5 Error matrices of SVM classification results for non-vitrified dung (NVD), midden (MD), non-sites (NS), and vitrified dung (VD)
based on the holdout sample for hyperspectral data resampled to the spectral resolutions of RapidEye and Sentinel-2 sensors

Class RapidEye Class Sentinel-2

NVD MD NS VD Total NVD MD NS VD Total

NVD 29 6 0 1 36 NVD 32 4 0 0 36

MD 5 17 1 2 25 MD 2 21 0 1 24

NS 1 2 26 0 29 NS 1 0 27 0 28

VD 0 0 0 15 15 VD 0 0 0 17 17

Total 35 25 27 18 105 Total 35 25 27 18 105

OA 82.86% OA 92.38%

Kappa 0.7663 Kappa 0.8963
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regions; they do not have bands in the SWIR that are
sensitive to the important soil characteristics discussed
above.

Overall, Sentinel-2, SPOT 5, and Landsat 8 OLI
sensors detect the highest number of important spectral
bands, making them the most suitable in discriminating
midden, non-vitrified dung, and vitrified dung deposits
from their surrounding natural soils. This is also sup-
ported by the high prediction accuracies they attained
when using SVM (91.43–92.38%) and RF (77.14–
81.90%) classifiers to predict the abovementioned fea-
tures. Notably, Sentinel-2 achieved the highest classifi-
cation accuracies in SVM (92.38%) and RF (81.90%)
for the archaeological features discussed here because of

its high spectral resolution, which captures data across
wide portions of the electromagnetic spectrum. This is
in line with findings by Cavalli et al. (2007) that bands
in SWIR are important in detecting soil characteristics
related to archaeological remains. The high classifica-
tion accuracies achieved by Landsat 8 OLI, Sentinel-2,
and SPOT 5 are an important development for archae-
ological heritage managers and researchers, particularly
on the African continent where funding is often limited.
In fact, imagery captured by Sentinel-2 and Landsat 8
OLI is free and readily available via World Wide Web
portals. As a result, these sensors are potentially cost-
effective for survey, documentation, and monitoring of
archaeological sites over large areas.

Fig. 7 The OA (%) and kappa coefficients for SVM classification of the midden, non-vitrified dung, non-sites, and vitrified dung achieved
using a holdout sample from hyperspectral data resampled to resolutions of different multispectral sensors

Table 6 SVM classification accuracy of non-vitrified dung (NVD), midden (MD), non-sites (NS), and vitrified dung (VD) achieved using a
holdout sample from hyperspectral data resampled to resolutions of different multispectral sensors

GeoEye Landsat 8 OLI RapidEye Sentinel-2 SPOT 5 WorldView-2

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

NVD 85.71 88.24 88.57 93.94 82.86 80.56 91.43 88.89 88.57 91.18 82.86 90.63

MD 80.00 71.43 88.00 84.62 68.00 68.00 84.00 87.50 88.00 81.48 84.00 70.00

NS 96.30 92.86 100.00 93.10 96.30 89.66 100.00 96.43 100.00 96.43 96.30 92.86

VD 83.33 100.00 94.44 100.00 83.33 100.00 94.44 100.00 88.89 100.00 83.33 100.00

OA (%) 86.67 92.38 82.86 92.38 91.43 86.67

Kappa 0.8188 0.8967 0.7663 0.8963 0.8836 0.8192

PA producer’s accuracy, UA user’s accuracy, OA overall accuracy
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Although the spectral resolutions of Landsat 8 OLI,
Sentinel-2, and SPOT 5 are ideal for the detection of
archaeological features in the study area, the lower
spatial resolutions (2.5–15 m panchromatic; 10–60 m
multispectral) might pose a challenge for scaling models
up to satellite sensors. Two main issues can be distin-
guished: the size of single features and their proximity in
space. On average, the diameter range of individual
byres and middens in the study area is 3–18m (Huffman
pers. comm.). This is smaller than the minimum size of
features that can be discriminated by the above satellites,
which have a spatial resolution between 20 and 30 m in
the SWIR region of the spectrum (Myint et al. 2011;
Thabeng et al. 2019). The second issue is linked to the
proximity of middens and byres (Calabrese 2000;
Huffman 2009b), which have high chances of spectral
confusion when captured in a single cell larger than
10 m.

As such, this study recommends two avenues for
further research using actual satellite imagery. The first
approach will be to compare the potential of very high
spatial resolution multispectral satellites (WorldView-2
and GeoEye) and lower spatial resolution satellites
(Landsat 8 OLI and Sentinel-2) in detecting archaeolog-
ical sites characterized by surface features. This is be-
cause, in general, the spatial resolutions (0.46 m pan-
chromatic; 1.84 m multispectral) of VHR satellite sen-
sors have the potential to capture individual features
with diameters as small as 4 m (Thabeng et al. 2019).
On the other hand, low spatial resolution satellite sen-
sors have the spectral ability to detect soil characteris-
tics, which show reflectance differences within the vis-
ible and SWIR bands as discussed above. The second
approach for detecting the middens and non-vitrified
and vitrified dung deposits will be to assess the potential
of data fusion combining the spectral abilities of low
spatial resolution satellite sensors and the spatial abili-
ties of very high spatial resolution satellite sensors.

In general, the results of this study show that RF and
SVM classifiers can accurately predict midden, non-
vitrified dung, and vitrified dung materials based on
their spectral characteristics. These results agree with
those of other research using RF and SVM together in a
number of spectral mapping applications for vegetation
species (Ghosh et al. 2014; Sesnie et al. 2010), vegeta-
tion health (Abdel-Rahman et al. 2014), agriculture
(Duro et al. 2012), land cover (Adam et al. 2014; Noi
and Kappas 2018), soil texture (Bousbih et al. 2019),
and archaeology (Thabeng et al. 2019). Comparison of

the accuracies achieved by the two classifiers has re-
vealed that SVM achieved higher overall classification
accuracies than RF in all datasets. For example, RF
classifier achieved 78.10, 80.00, 72.38, 81.90, 77.14,
and 77.14% when classifying hyperspectral data
resampled to the spectral resolutions of GeoEye,
Landsat 8 OLI, RapidEye, Sentinel-2, SPOT 5, and
WorldView-2. Meanwhile, SVM classifier achieved
overall accuracies of 86.67, 92.38, 82.86, 92.38, 91.43,
and 86.67% for the same datasets. This is in line with
other studies (Adam et al. 2014; Sesnie et al. 2010) that
attained variable classification accuracies between the
two classifiers when dealing with similar data samples.
However, other researchers (Pelletier et al. 2016;
Thabeng et al. 2019) found out that, even though there
may be variations in their results, RF and SVM classi-
fiers complement each other because of their different
classification abilities.

RF and SVM also varied in their predictions of
individual classes. In general, RF classifier picked a
lot more confusion between middens and non-
vitrified dung than SVM classifier (Tables 3 and 5).
RF had the lowest producer’s accuracy (52.00%) and
user’s accuracy (54.17%) for hyperspectral data
resampled to the resolution of SPOT 5 sensor. The
lowest producer’s and user’s accuracies attained by
SVM classifier stood at 68.00% each and were from
hyperspectral data resampled to RapidEye sensor.
The confusion between MD and NVD might be a
result of chemical similarities between the two of
them (Thabeng et al. 2019). Another reason might
be signature confusion influenced by post-
depositional processes such as erosion, which is ram-
pant in the study area, mixing the two deposits, which
are located in close proximity to each other. Sesnie
et al. (2010) posits that SVM is a superior method for
solving complex classification problems, which
would make it a better predictor of archaeological
sites in the study area, particularly those character-
ized by the presence of MD and NVD in close prox-
imity. Both classifiers achieved the highest user’s
accuracy (100%) for VD across all the datasets.

In sum, the approach presented is a cost-effective
manner of using information on the spectral character-
istics of archaeological surface features (acquired
through field spectroscopy in limited sample areas) to
gain insight on the potential of different sensors and
classifiers to predict archaeological sites. As remote
sensing sensors all have different spectral and spatial
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resolutions, the selection of the appropriate data for
archaeological applications is challenging. This assess-
ment step helps to maximize the time and effort put into
image treatment and classification. Doing so in advance
of image acquisition will aid the exploration of vast and
understudied areas in Africa and across the globe. This
method can be applied anywhere as a cost-effective way
of identifying sensors with spectral abilities to predict
the archaeological material of interest. If the results are
positive, the mapping of archaeological sites could be
scaled up to data from operational sensors on satellite
platforms. Properly identifying appropriate images and
classifiers for the detection of archaeological features
leads to accurate and reliable predictive maps. These
maps have the potential to capture the archaeological
landscapes in a synoptic manner that would be challeng-
ing (or even unachievable) by other means (Klehm et al.
2019).

Conclusions

This study investigates the possibility of discriminating
archaeological features using hyperspectral data
resampled to the spectral resolutions of the most widely
used multispectral sensors (GeoEye, Landsat 8 OLI,
RapidEye, Sentinel-2, SPOT 5, and WorldView-2).
The following findings can be reported:

& The bands within the visible and SWIR portions of
the electromagnetic spectrum are the most important
for predicting the natural soils and archaeological
sites characterized by middens, vitrified dung, and
non-vitrified dung—all of which are in line with the
spectral resolutions of Sentinel-2, SPOT 5, and
Landsat 8 OLI. This, therefore, makes them themost
suitable sensors for detecting archaeological sites.
Their lower spatial resolution is nevertheless a lim-
itation and restricts the detection to larger byres and
middens.

& The high classification accuracies achieved in this
study demonstrate that multispectral sensors have
the ability to detect middens, non-vitrified dung,
and vitrified dung. In general, higher classification
accuracies were achieved by SVM than by RF clas-
sifier. The highest classification accuracies were
achieved when classifying data resampled to the
resolution of the Sentinel-2 sensor using both RF
(81.90%) and SVM (92.38%). Landsat 8 OLI also

achieved the highest classification accuracy similar
to that of Sentinel-2 when using SVM classifier.

& The green band and SWIR bands in SPOT 5 satellite
sensor were the most important bands in discrimi-
nating between midden, vitrified dung, non-vitrified
dung, and non-sites. The blue band is the most
important discrimination band in the GeoEye,
RapidEye, Sentinel-2, and WorldView-2 sensors.
Other important bands included the SWIR bands
in Landsat 8 OLI and Sentinel-2 and the NIR bands
in sensors without SWIR bands.

& VHR satellite sensors, although characterized by
lower spectral resolution, still possess important
bands for discriminating archaeological and non-
archaeological features; they also achieved high
classification accuracies in this study. These sensors
offer the potential of overcoming the limitation of
higher spectral resolution sensors that can only de-
tect larger archaeological features.

The results of this study have revealed the prospects
for discriminating middens, natural soils, vitrified dung,
and non-vitrified dung by means of hyperspectral data
resampled to the resolutions of multispectral satellite
sensors. This, in turn, offers an opportunity to scale this
approach up to spaceborne sensors for mapping and
monitoring archaeological features. This is an important
development for archaeological researchers and heritage
managers because it can facilitate satellite image identi-
fication and classification for predictive modelling
across vast regions. This will reduce the challenges
inherent to traditional fieldwalking surveys—including
high costs, restricted land access, long surveying pe-
riods, wild animals, and active war zones. This is one
of the earliest studies to assess the potential of several
sensors to detect surface archaeological material. Al-
though hyperspectral data resampled to the spectral
resolutions of low spatial resolution sensors (Landsat 8
OLI, Sentinel-2, and SPOT 5) achieved relatively high
classification accuracies, this study recommends further
research using actual images to assess the potential of
very high spatial resolution satellites (GeoEye and
WorldView-2) in detecting archaeological sites charac-
terized by surface features. As with other remote sensing
applications, the trade-offs among multispectral sensors,
in terms of their spectral and spatial resolutions, needs
careful consideration and assessment within the context
of the features being studied.
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