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Abstract
This paper presents a Markov-modulated stochastic volatility model that captures
the dependency of market regimes on investor sentiment. The main contribution lies
in developing a modified version of the classical Heston model by allowing for a
sentiment-driven bias in the volatility of the asset. Specifically, a two-factor Markov-
modulated stochastic volatility model is proposed, integrating a diffusion coefficient
in the risky asset dynamics and a correlation parameter influenced by both the volatil-
ity process and a continuous-time Markov chain accounting for the sentiment-bias.
Diverging from conventional approaches in option pricing models, this framework
operates under the real-world probability measure, necessitating considerations about
the existence of an equivalent martingale pricing measure. The purpose of this paper
is to derive a closed formula for the pricing of European-style derivatives and to fit the
model on market data through a suitable calibration procedure. A comparison with
the Heston benchmark model is provided for a sample of Apple, Amazon, and Bank
of America stock options.
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1 Introduction and literature review

In the realm of finance, both the stock and derivativemarkets are profoundly influenced
by sentiment, reflecting the collective feelings and perceptions of investors which
may underlie market movements. While traditional financial models often overlook
the dynamic nature of markets, regime-switching models offer a nuanced approach
by recognizing distinct market states or regimes characterized by specific behaviors
and relationships among assets. Human behavior shapes the market, driven by emo-
tions such as greed, fear, optimism, and pessimism; bullish periods reflect optimism,
encouraging stock buying, while bearish phases driven by fear prompt selling. Behav-
ioral finance merges psychology with economics, highlighting sentiment’s role in
market dynamics. Investors use sentiment-driven strategies like momentum investing,
leveraging trends shaped by sentiment. Recognizing these psychological factors helps
informed decision-making in financial markets.

Despite sentiment’s sway in short-term dynamics, long-term investment relies on
fundamental analysis. Yet, sentiment can skew perceptions, causing undervaluation or
overvaluation relative to a company’s fundamentals.

In the derivative market, intricately linked to broader financial markets, sentiment
is a driving force that can significantly shape pricing, trading volumes, and dynam-
ics. Derivatives, with their leverage, mirror sentiment’s shifts; bullish markets lead
to increased buying, while bearish markets intensify selling pressure, affecting both
derivatives and underlying assets.

With the availability of social networks, specialized forums, and online news,
sentiment analysis has become a common and useful technique to gauge investor
perceptions and improve the analysis of economic and financial scenarios. Several
data providers, such as Bloomberg and Thomson Reuters have also started comput-
ing proprietary sentiment indexes on financial assets to be delivered together with
traditional figures such as price and trading volume.

From a modeling perspective, it is widely acknowledged in financial literature
that classical diffusion processes fail to adequately explain various empirical findings
related to asset return time series, such as heavy tails, skewness, and volatility cluster-
ing. Potential enhancements to these models include incorporating a jump component,
such as the addition of a Poisson process, as demonstrated in the seminal work ofMer-
ton (1976), or the inclusion of a self-exciting jump, as seen in the Hawkes process
(Hawkes 1971, 2018). Recent examples include the works of Brignone and Sgarra
(2020) and Njike Leunga and Hainaut (2024). Brignone et al. proposed a method
for pricing Asian options in market models with risky asset dynamics driven by a
Hawkes processwith an exponential kernel. They showed thatArithmeticAsian option
prices can be computed efficiently using a standard Monte Carlo method. Njike et al.
expanded Heston’s stochastic volatility model by adding a jump component driven
by a Hawkes process with a kernel function defining the memory of the asset price
process.

An alternative or complementary approach lies in regime-switching models. Moti-
vated by the existence of regime-switching in real markets, as evidenced by Hamilton
(1990), these models capture shifts between distinct market states characterized by
varying risk-return profiles, instead of incorporating jumps. Understanding and mod-
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eling transitions between regimes enhances market understanding, providing insights
into potential triggers and implications, which aid risk management and contingent
claims valuation. Specifically, regime-switching stochastic volatility models represent
a powerful framework that captures the dynamic nature of financial markets by allow-
ing for changes in both volatility and market regimes over time. Extensive literature
exists regarding the application of regime-switching stochastic volatilitymodels driven
by a continuous-time Markov chain process to various financial problems. Recent
examples include the works of Hainaut and Moraux (2019) and Kirkby and Nguyen
(2020). Hainaut et al. proposed a hidden Markov chain with a finite number of states
thatmodulates the parameters of a self-excited jump process. Each regime corresponds
to a particular economic cycle, determining the expected return, diffusion coefficient,
and long-run frequency of clustered jumps. Beyond studying the theoretical properties
of this process, the authors proposed an empirical application by fitting the model to
the S&P 500. Kirkby et al. devised a transform method that combines continuous-
time Markov chain approximation with Fourier pricing techniques to evaluate Asian
options within stochastic jump diffusion models. A comprehensive literature survey
in this direction is beyond the scope of this paper. Nevertheless, we suggest the readers
to see e.g. Biswas et al. (2018), Lin and He (2020), Xie and Deng (2022), He and Lin
(2023) and references therein for recent developments in regime-switching stochastic
volatility models.

This paper introduces a novelMarkov-modulated stochastic volatilitymodel, where
regime states are driven by investor sentiment; in our opinion, sentiment-dependent
market regimes echo the complex interplay between investor psychology and market
dynamics. Bullish markets foster optimism and buying, potentially leading to asset
bubbles, while bearishmarkets amplify selling pressures and risk aversion. Transitions
between financial market regimes are often propelled by shifts in investors sentiment.

A previous study delving into this direction isCretarola andFigà-Talamanca (2020),
wherein the proposedmodel specification enables a state-dependent correlation param-
eter between asset returns and market attention.

The primary contribution of this paper lies in the development of a modified version
of the classical Heston model under the real-world probability measure. Here, price
volatility also varies according to regime changes associated with a sentiment indi-
cator. Specifically, we consider a two-factor Markov-modulated stochastic volatility
model, where the diffusion coefficient in the risky asset dynamics is the square root of
the sum of two independent factor processes; the first stochastic volatility component
is modeled by a square-root process and the second independent stochastic volatil-
ity component is driven by an observable continuous-time Markov chain describing
investors sentiment, as well as the drift coefficient. In addition, the correlation param-
eter is not constant but rather depends on the two volatility factors. We stress that we
do not aim to uncover latent regimes for the asset price volatility but rather to relate
the regime states to changes in investor sentiment.

The findings presented in this paper can be extended to more comprehensive mod-
els, also including jumps, such as Bates (1996), Eraker et al. (2003), Eraker (2004),
allowing for an explicit form of the generalized characteristic function. Therefore,
we have chosen to use the Heston model as our benchmark for its simplicity and
widespread use in the field.
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It is worth mentioning that most regime-switching stochastic volatility models are
typically set under a risk-neutral probability measure. Moreover, the dependence on
the Markov chain is usually incorporated into the model in the drift coefficients of the
asset price process and/or its volatility dynamics, see Elliott et al. (2007), Elliott and
Lian (2013), Elliott et al. (2016), Goutte et al. (2017) among others.

An explicit dependence on the Markov chain in the diffusion coefficient of the
asset price dynamics is suggested in Papanicolaou and Sircar (2014), where the model
analyzed includes regime switches and jumps. We differ from Papanicolaou and Sir-
car (2014) since our model adopts an additive form for the diffusion coefficient in
the dynamics of the risky asset, unlike their multiplicative approach. Furthermore,
differently from their setting, our model specification is given under the real-world
probability measure; therefore, we need to address the issue of the existence of an
equivalent martingale measure in order to perform the pricing procedure, see Sect. 3.

The rest of the paper is organized as follows; Sect. 2 defines the sentiment-biased
price dynamics for a financial asset, Sect. 3 collects the necessary outcomes to obtain
a quasi-closed pricing formula for European-style derivatives on a sentiment-biased
underlying and Sect. 4 provides a numerical application of the results. Finally, Sect. 5
collects some concluding remarks. In theAppendix, we prove themain technical result
on the generalized characteristic function, which is required in the pricing procedure.

2 Modeling framework

We consider a filtered probability space (�,F,P;F), whereF := {Ft , t ≥ 0} satisfies
the usual hypotheses of completeness and right continuity, and model the dynamics
of the asset price process S = {St , t ≥ 0} as follows:

{
dSt = μt Stdt + √

ut + at StdWt , S0 = s ∈ R+,

dut = κ(θ − ut )dt + ξ
√
utdBt , u0 = u ∈ R+,

(2.1)

whereW = {Wt , t ≥ 0} and B = {Bt , t ≥ 0} are correlatedF-Brownianmotions, i.e.
〈dW , dB〉t = ρtdt . FollowingPacati et al. (2014), the correlation factor is conveniently

set to ρt = ρ(t, Xt , ut ) := ρ

√
ut

ut + at
for each t ≥ 0, with ρ ∈ (−1, 1). The model

parameters κ, θ, ξ are positive constants satisfying the Feller condition: 2κθ ≥ ξ2.
The drift coefficient {μt , t ≥ 0} and the volatility factor {at , t ≥ 0} are Markov-
modulated through a continuous-timeMarkov chain X = {Xt , t ≥ 0}with finite state
space X = {e1, e2, . . . , eN } of unit vectors in R

N , representing a suitable measure
of market sentiment on the considered asset. We assume that X is homogeneous in
time, it is independent of W and B and denote by Q = (qi j )i, j=1,...,N the associated
Q-matrix, where qi j is an infinitesimal intensity of X . Then, it is possible to show that
X admits the following semimartingale decomposition

Xt = X0 +
∫ t

0
QXudu + Mt ,
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Table 1 Assigned parameters values for the Heston model and for the sentiment-biased Heston model with
two (SB Heston 2R) and three (SB Heston 3R) regimes

Model μ κ θ ξ ρ u0 a1 a2 a3

Heston 0.05 3 0.15 0.4 −0.7 0.04 – – –

SB Heston 2R 0.05 3 0.15 0.4 −0.7 0.04 0.01 0.05 –

SB Heston 3R 0.05 3 0.15 0.4 −0.7 0.04 0.01 0.03 0.05

where M = {Mt , t ≥ 0} is a martingale with respect to the natural filtration F
X =

{FX
t , t ≥ 0} of X , defined by FX

t = σ(Xs, s ≤ t) for each t ≥ 0, see Elliott et al.
(1995). Thus, we can write

μt := μ(Xt ) = 〈µ, Xt 〉
at := a(Xt ) = 〈a, Xt 〉,

for every t ≥ 0, where µ := (μ1, μ2, . . . , μN ) ∈ R
N and a := (a1, a2, . . . , aN ) ∈

R
N+ capture the impact of X on the drift and volatility of the price process S, respec-

tively.
We remark that when at = 0 the price volatility only depends on the square-root

process u as in the original Heston model, hence we interpret this additional factor
as a bias in the asset variance related to sentiment regime changes; according to this
interpretation, Eq. (2.1) is referred to as a sentiment-biased stochastic volatility model.
It is worth noticing that there exists a vast literature on Markov-modulated stochastic
volatility models which usually assumes some of the drift coefficients in the asset or
volatility dynamics to be state dependent. Many proposals, such as Elliott et al. (2016)
rely on the pioneering paper Elliott et al. (2007) where the mean-reversion parameter
of the instantaneous variance is assumed to switch between regimes. Since we believe
that sentiment bias is short-lived, we prefer to assume a constant mean-reversion level
for the variance factor and rather add a sentiment driven distortion in the diffusion
coefficient of the asset price in Eq. (2.1). In the numerical exercise we provide a
comparison with Elliott et al. (2016) that confirms our conjecture.

2.1 Model characteristics: a simulation exercise

In order to highlight the contribution of the sentiment-driven bias to the dynamics
of the asset price, we simulate the model in (2.1) for the case of two- and three-
regimes. Since we are mainly interested in the contribution of sentiment regimes to
asset volatility and option prices, we set the drift parameter μ at a constant value. The
simulation exercise is based on the parameters reported in Table 1 for the original and
sentiment-based (SB) Heston models.

Finally, the transition matrices P and the marginal probabilities π , correspond-
ing to two and three sentiment regimes, are set to: P2reg = (

0.7 0.3
0.4 0.6

)
, with π2reg =

[0.57; 0.43], and P3reg =
(
0.6 0.3 0.1
0.2 0.5 0.3
0.1 0.3 0.6

)
, with π3reg = [0.27; 0.38; 0.35].
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Fig. 1 Paths example for the three different model: Heston (blue line), sentiment regime switching with
two-regimes (black-line) and sentiment regime switching with three-regimes (red-line) (color figure online)

In Fig. 1, we present two simulated paths illustrating asset price dynamics over
a span of 2 years (730 days), assigning parameters as detailed above. These plots
demonstrate how the inclusion of regimes leads to increased variability and possible
shifts during specific subperiods.

For a deeper insight on model statistics, we sum up in Table 2 the basic summary
statistics of daily logarithmic returns computed with respect to different time horizons
T (1, 3, 6 and 12 months), on M = 1000 paths of the selected models. As expected,
the overall contribution of sentiment bias increases with the time horizon, affecting
the variability and the quantiles of the returns dynamics.

To better assess the overall contribution of the regimes to the integrated volatility,
we define the annualized integrated contribution over time of sentiment bias as

SB(0, T ) :=
√

1

T

∫ T

0
a(Xs)ds.

Fig. 2 represents the mean annualized contribution SB(0, T ) against different time
horizons T and its empirical confidence bands at the 90% level, obtained by the
simulation of M = 1000 different paths for the underlying Markov chain Xs, s ≤ T .

3 Sentiment biased option pricing

In this section, we gather essential outcomes required to derive a quasi-closed pricing
formula for European-style derivatives linked to a sentiment-influenced underlying.
Specifically, our focus will delve into the measure transformations within theMarkov-
modulated Heston stochastic volatility model presented in (2.1), as well as the option
pricing methodologies utilizing the conditional generalized characteristic function.
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Fig. 2 Mean value of SB(0, T ) (blue dotted line) and 90%-confindence bands (red solid line): the two-
regimes case (left plot) and the three-regimes case (right plot) (color figure online)

3.1 Risk-adjusted pricingmeasure

Let T > 0. To fix ideas, T is the expiration date of a derivative. Splitting the Brownian
motion W into B and its orthogonal part B⊥ = {B⊥

t , t ≥ 0}, we define the process
L = {Lt , t ∈ [0, T ]} by

Lt = exp

{
−
∫ t

0
γudBu −

∫ t

0
γ ⊥
u dB⊥

u − 1

2

∫ t

0
γ 2
u du − 1

2

∫ t

0
(γ ⊥

u )2du

}
,

t ∈ [0, T ], (3.1)

with γ = {γt , t ∈ [0, T ]} and γ ⊥ = {γ ⊥
t , t ∈ [0, T ]} satisfying proper integrability

conditions. Then, the process L provides the density of a risk-neutral measure if and
only if it is a true martingale and the (local) martingale property of the discounted
risky asset price process holds:

μ(Xt ) − r = √
ut + a(Xt )

(
ρtγt + ρ̄tγ

⊥
t

)
, t ∈ [0, T ], P − a.s., (3.2)

where r denotes the (constant) risk-free interest rate and we have set ρ̄t :=
√
1 − ρ2

t .
Inspired by Heston (1993), we assume

γt = b
√
ut , t ∈ [0, T ],

for some constant b, so that u remains in the family of square-root processes under
the candidate risk-neutral measure. By substituting γt for b

√
ut in (3.2), we solve for

γ ⊥
t and since ρt ∈ (−1, 1), for each t ∈ [0, T ], we get

γ ⊥
t = 1

ρ̄t

{
μ(Xt ) − r√
ut + a(Xt )

− ρt b
√
ut

}
, t ∈ [0, T ].
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Define the constant c :=
⎧⎨
⎩
1, if ρ = 0

min

{
1,

ρ̄

ρ

}
, if ρ 	= 0,

where ρ̄ := √
1 − ρ2. The fol-

lowing result ensures that the financial market described in Sect. 2 is arbitrage-free.

Proposition 3.1 Let L be the process given in (3.1). Then, for |b| ≤ κ

ξ
c we get

E [LT ] = 1 and hence the measure Q defined by

dQ
dP

∣∣∣∣
T

= LT

is an equivalent martingale measure for S.

Proof To ensure that the change in measure is well defined, it is sufficient to verify
that the processes γ and γ ⊥ satisfy the Novikov condition, i.e.

E

[
exp

{
1

2

∫ T

0

(
γ 2
s + (γ ⊥

s )2
)
ds

}]
< ∞. (3.3)

First, since |b| ≤ κ
ξ
, by Kraft (2005, Proposition 5.1), we get

E

[
exp

{
1

2

∫ T

0
b2usds

}]
< ∞,

which implies that the Novikov condition E

[
exp

{
1
2

∫ T
0 γ 2

s ds
}]

< ∞ is satisfied.

Now, for every t ∈ [0, T ], we have

(γ ⊥
t )2 = 1

(ρ̄t )2

{
μ(Xt ) − r√
ut + a(Xt )

− ρt b
√
ut

}2
≤ 2

(ρ̄t )2

{
(μ(Xt ) − r)2

ut + a(Xt )
+ ρ2

t b
2ut

}

≤ 2

1 − ρ2

{
(max j=1,...,N 〈µ, e j 〉 − r)2

min j=1,...,N 〈a, e j 〉 + ρ2b2ut

}
,

where the last inequality holds in view of the Feller condition and because of ρ2
t ≤ ρ2,

for every t ∈ [0, T ]. Since (γ ⊥
t )2 is controlled by a quantity that is a linear function

of ut , we can write

(γ ⊥
t )2 ≤ A + C2ut , t ∈ [0, T ],

for some suitable constants A and C . Here, C2 = 2ρ2b2

1 − ρ2 and it is easy to check that

C2 ≤ κ2

ξ2
. Then, by applying again Kraft (2005, Proposition 5.1), we get

E

[
exp

{
1

2

∫ T

0
C2usds

}]
< ∞,
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which implies that E
[
exp

{
1
2

∫ T
0 (γ ⊥

s )2ds
}]

< ∞ is satisfied and therefore, the

Novikov condition (3.3) holds. ��
By Girsanov’s Theorem, we obtain the Q-Brownian motions B̃ = {

B̃t , t ∈ [0, T ]}
and B̃⊥ = {

B̃⊥
t , t ∈ [0, T ]} defined as

B̃t = Bt +
∫ t

0
γsds, B̃⊥

t = B⊥
t +

∫ t

0
γ ⊥
s ds, t ∈ [0, T ].

Thanks to Proposition 3.1 we get that there are no arbitrage opportunities in the
underlying financial market. Our model specification under the measure Q reads as

{
dSt = r Stdt + √

ut + at StdW̃t , S0 = s ∈ R+,

dut = α(β − ut )dt + ξ
√
utd B̃t , u0 = u ∈ R

+,

where α := κ + bξ , β := κθ
κ+bξ , and dW̃t = dWt + (ρtγt + ρ̄tγ

⊥
t )dt . Note that

the Feller condition for the volatility process is also satisfied under Q, since we have
2(κ+bξ) κθ

κ+bξ = 2κθ ≥ ξ2, which is the same as underP. Note that, since theMarkov
chain X is independent of W and B, its dynamics is not affected by the change of
probability measure from P to the selected pricing measure Q.

The above framework can be extended in order to discuss the market risk premium
associated with changes in sentiment regimes. To this aim let us introduce a measure
transformation for the Markov chain X and denote Hi (t) = 1{Xt=ei } and Hi j (t) =∑

0<s≤t Hi (s−)Hj (s), for i 	= j with i, j = 1, . . . , N ; then, the process

Mi j (t) = Hi j (t) − qi j

∫ t

0
Hi (s)ds, t ∈ [0, T ],

is a P-martingale. Moreover, consider a matrix κ̃ = (κ̃i j )i, j=1,...,N with elements in
R satisfying κ̃i j > −1 and κi i = 0, for all i, j = 1, . . . , N . Define the probability
measure QX with respect to the measure Q on FX

t with Radon-Nikodym density
η = {ηt , t ∈ [0, T ]} given by

ηt = 1 +
∫ t

0

N∑
i, j=1

ηs−κ̃i jdMi j (s), t ∈ [0, T ].

Then, Bielecki and Rutkowski (2004, Proposition 11.2.3) implies that X is also a
Markov chain under QX with generator Q∗ = (q∗

i j )i, j=1,...,N , where

q∗
i j = qi j (1 + κ̃i j ), q∗

i i = −
∑
j 	=i

q∗
i j .

Since the process Lη, with L given in (3.1), turns out to be aP-martingale, it provides an
admissible change of measure. Here, κ̃ corresponds to the sentiment regime-switching
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risk parameter. Moreover, the discounted risky asset price process S̃ = {e−r t St , t ∈
[0, T ]} remains a martingale even under QX since its dynamics is not influenced by
thismeasure transformation. A similar result has been also obtained in Bo et al. (2017),
where a general jump-diffusionmarket with regime-switching is considered and a risk-
neutral probability measure is derived by a combination of the Esscher transform and
change of measure on time-inhomogeneous Markov chains. This observation stems
from the fact that the regime-switching risk parameter κ̃ does not affect the martingale
condition, as neither L nor S̃ provide any information about the Markov chain.

3.2 Option pricing via the conditional generalized characteristic function

Let 

Q
t,T (z) := E

Q
[
exp {i z (YT − Yt )}|Ft

]
, for z ∈ Dt,T , be the conditional gen-

eralized characteristic function of YT − Yt under the probability measure Q, where
Dt,T ⊆ C denotes the domain in which it is well defined.1 Here, EQ [·|Ft ] represents
the conditional expectation with respect to Q. The following result shows that it is
possible to efficiently compute 


Q
t,T in our model specification.

Theorem 3.2 Let z ∈ Dt,T ⊂ C. Then, the conditional generalized characteristic
function 


Q
t,T (z) = E

Q
[
exp {i z (YT − Yt )}|Ft

]
is given by:



Q
t,T (z) = φt,T (z) × φJ

t,T (s(z)), (3.4)

where

φt,T (z) = φt,T (z; x, v, t, T ) := exp {i zx + D(z; τ)v + C(z; τ)}, (3.5)

with

C(z; τ) := i zrτ + αβ

ξ2

(
(α − iρξ z − d)τ − 2 log

1 − ge−dτ

1 − g

)
,

D(z; τ) := 1

ξ2
(α − iρξ z − d)

1 − e−dτ

1 − ge−dτ
,

d :=
√

(α − iρξ z)2 + ξ2(i z + z2),

g := α − iρξ z − d

α − iρξ z + d
,

τ := T − t

and

φJ
t,T (s(z)) = 〈exp {[Q + diag (s(z))](T − t)}Xt , 1〉,

1 Details on the conditions for existence of the conditional generalized characteristic function, see, among
others, Duffie et al. (2000), Lewis (2001), Albrecher et al. (2007)
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where 1 := (1, 1, . . . , 1)′ ∈ R
N and diag(s(z)) = s(z) IN×N , with IN×N denot-

ing the N × N identity matrix, s(z) := (s1(z), s2(z), . . . , sN−1(z), 0) for sk(z) :=
− i z+z2

2 (ak − aN ), with 1 ≤ k ≤ N − 1.

The proof is postponed to Appendix A.
We stress that φt,T corresponds to the generalized conditional characteristic func-

tion of the log price at time T for the classical Heston model with parameters α, β, ξ ;
see Duffie et al. (2000), Lewis (2000), Lewis (2001) among others.

Remark 1 Analogous results can be obtained when similar sentiment biases are intro-
duced in the drift and diffusion coefficients of several generalizations of the Heston
model, as long as the generalized characteristic function of the unbiased model is well
defined. Some examples are Bates (1996), Eraker et al. (2003), Eraker (2004) among
others. Moreover, since the purpose of this paper is the evaluation of European-style
derivatives we focused on the derivation of theQ-characteristic function in (3.4). Nev-
ertheless, it is possible to obtain an similar decomposition result under the real-world
probability measure P.

Since the generalized characteristic function is known analytically, a straightforward
application of the results referenced in Carr and Madan (1999), gives the following.

Proposition 3.3 The pricing function at time t of a Call Option with strike price K
and maturity T > t is given by

C(S, u, K , T − t) = S�1 − Ke−r(T−t)�2, (3.6)

where

� j = 1

2
+ 1

π

∫ +∞

0
Re

[
e−i z log K f j (T − t, log S, u, z)

i z

]
dz, j = 1, 2

with

f1 (T − t, log S, u, z) = 

Q
t,T (z − i)



Q
t,T (−i)

and

f2 (T − t, log S, u, z) = 

Q
t,T (z),

with the function 

Q
t,T defined in (3.4). Here, Re[ ] denotes the real part of a complex

variable.

Note that the pricing formula given in (3.6) aligns with the classical pricing formula
established in the Heston model.
In Fig. 3 we compare the implied volatility smile obtained by computing option prices
with the Heston pricing formula and considering the sentiment-biased correction in
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Fig. 3 Implied volatility for the Heston model and the two- and three-regimes distortions

the two- and three-regime case. In both cases the volatility dynamics parameters are
assigned as in Table 1, whereas two parameter settings are considered for the regime
bias: we set a1 = 0.01, a2 = 0.05 in two-regimes case 1, a1 = 0.01, a2 = 0.5 in
two-regimes case 2, a1 = 0.03, a2 = 0.01, a3 = 0.05 in three-regimes case 1 and
a1 = 0.1, a2 = 0.01, a3 = 0.5 in three-regimes case 2.

4 A numerical application onmarket option data

This section is dedicated to illustrating the calibration of the model specification using
market data. Specifically, our focus will be on three distinct S&P 500 components. A
fundamental aspect lies in identifying the sentiment regimes.

4.1 Data description

The historical sentiment based on media news for Apple (AAPL), Amazon (AMZN),
and Bank of America (BAC) stocks was retrieved from Bloomberg for the period
January 1, 2015, December 19, 2023. In Fig. 4 the time series for the dynamics of the
sentiment score are plotted for the assets considered.

On December 19, 2023 we obtained the implied volatility smile for Apple, Amazon
and Bank of America stocks from Eikon Refinitiv (now LSEG) by selecting all the
optionswithin a 30% range inmoneyness and all of the available expiration dates above
one week, namely T = 16, 23, 30, 37, 58, 86, 121, 149, 184, 212, 240, 275, 366,
394, 548, 639, 730 calendar days. We end up with a total of M = 367, 429, 218
options for Apple, Amazon and Bank of America, respectively. In Table 3 we report,
as an example, the option data for Apple stock relative to T = 30, 58, 86, 184, 366
calendar days.
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Fig. 4 News-based sentiment from January, 2015 to December 2023: Apple (top), Amazon (middle), Bank
of America (bottom)

4.2 Sentiment regimes

Sentiment scores are computed by Bloomberg using proprietary algorithms and range
in the continuous interval [-1,1]. For a detailed description of their computation, see
Figà-Talamanca and Patacca (2022). In order to identify sentiment regimes, we dis-
cretize the value range. For the two-regimes case, positive and neutral values of the
Bloomberg sentiment score are associated to the first state (“positive sentiment”) of
the Markov process and negative values are associated to the second state (“negative
sentiment”). It is worth noticing that 10 (0.43%), 22 (0.94%) and 164 (7.01%) null
values out of 2340 are observed for Apple, Amazon, and Bank of America, respec-
tively, which need to be included either in the “positive” or in the “negative” sentiment
state; we opt for the first alternative.

In the three-regimes case, we assume that the sentiment is “positive” when the
score is above 0.10, is in the “neutral” state when the score belongs to the interval
]−0.10, 0.10[, and is “negative” when below −0.10. With this interpretation, we plot
in Fig. 5 the time series of the sentiment polarity for the three considered assets. Note
that the selection of the threshold to assign a neutral polarity to the sentiment score
(±0.10) is arbitrary. As a robustness test, all the analyses are replicated using several
threshold values. Notably, the results shows no significant changes in terms of the
model pricing performance, as reported in Appendix B.

Since the regimes are derived by the Bloomberg sentiment index, the marginal
probabilities are obtained by calculating the relative frequencies of being in a specific
state. Similarly, each element of the transition matrix is determined by counting, for
any pair (r , s) ∈ X × X, the number of times for which the sentiment score moves
from state r at time t − 1 to state s at time t for any t = 1, 2, . . . , T , and then dividing
by the total occurrences of being in state r . In Table 4 we display the state probabilities
and the transition matrices estimated for the Apple, Amazon, and Bank of America
stocks in the two- and three-regimes cases, using the time series of AAPL, AMZN,
and BAC sentiment indices from January 2015 to December 2019.
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Table 3 Implied Volatility
values (%) retrieved on
December 19, 2023 for a sample
of strike prices K and maturities
T (in days) of Apple CALL
options; the underlying price is
S0=195.89

K T = 30 T = 58 T = 86 T = 184 T = 366

140 50.77 44.17 37.67 32.15 30.04

145 46.07 42.15 35.80 30.73 29.23

150 46.94 36.90 33.62 29.96 28.70

155 41.28 33.50 31.24 28.68 28.03

160 36.51 31.78 29.34 27.23 27.20

165 32.62 30.05 27.35 26.33 26.65

170 29.06 27.29 25.95 25.24 26.04

175 25.49 25.32 24.50 24.46 25.31

180 22.31 24.19 23.16 23.63 24.83

185 19.55 22.71 21.98 22.91 23.16

190 18.20 21.64 21.21 22.09 23.60

195 16.62 20.63 20.18 21.51 23.29

200 15.70 19.87 19.29 20.66 22.41

205 15.31 19.09 18.65 20.14 22.13

210 15.46 18.62 18.19 19.62 21.71

215 16.29 18.40 17.88 19.11 21.20

220 17.81 18.55 17.74 18.82 20.48

225 19.19 18.98 17.81 18.47 20.41

230 21.29 19.56 18.11 18.18 20.21

235 22.42 20.39 18.62 18.27 19.79

240 24.81 21.00 19.10 18.09 19.66

245 26.16 22.46 19.89 18.20 19.52

250 28.27 23.11 20.46 18.27 19.25

Fig. 5 Sentiment polarity from January, 2015 toDecember 2023 for the two-regimes (left) and three-regimes
(right): Apple (top), Amazon (middle), Bank of America (bottom). Sentiment color code: Non-negative =
Blue, Negative = Red, Positive = Green, Neutral = white (color figure online)
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Table 4 Sentiment polarity transitionmatrices P andmarginal probabilitiesπ for the two- and three-regimes
model applied to Apple, Amazon, and Bank of America stocks

AAPL AMZN BAC

P2rs 0.644 0.356 0.734 0.266 0.498 0.502

0.264 0.736 0.343 0.657 0.344 0.656

π2rs 0.425 0.575 0.560 0.440 0.399 0.601

P3rs 0.710 0.258 0.032 0.600 0.371 0.029 0.274 0.493 0.234

0.033 0.942 0.024 0.050 0.919 0.031 0.059 0.803 0.138

0.078 0.675 0.247 0.100 0.667 0.233 0.107 0.570 0.322

π3rs 0.108 0.857 0.035 0.117 0.841 0.043 0.089 0.722 0.189

4.3 Calibration

Given the quasi-closed pricing formula (3.6) in Proposition 3.3 it is possible to obtain
themodel parameters byminimizing a suitable loss functionon a sample ofM observed
option prices. Sincemost stock options are American-style, we define the loss function
based on implied volatilities rather than option prices. Precisely, given a sample IV∗ =
{I V ∗

1 , I V ∗
2 , . . . , I V ∗

M , } of implied volatilities derived from observed option prices,
parameter values are obtained by minimizing the loss function in (4.1) below.

MSE(α, β, ξ, u0, a) = 1

M

M∑
i=1

(
I V (α, β, ξ, u0, a; S0, Ti , Ki ) − I V ∗

i

)2
. (4.1)

Calibration is performed by applying the Matlab function lsqnonlin to the entire
data set of implied volatilities for the three considered stocks where the model implied
volatility is computed assuming S0 = 195.89, 154.07, 33.43USD, forApple,Amazon
and Bank of America stocks, respectively, and r = 5%. These values correspond to
the asset prices and the three-month T-bill interest rate observed on December 19,
2023.

The calibrated values of the model parameters as well as the corresponding level
for the Root Mean Squared Error (RMSE) are reported in Table 5.2

The results show consistent parameter estimates for the volatility process across
the three models; the lowest RMSE is achieved by the three-regime dynamics for
Amazon stocks, whereas both the two-regime and three-regime alternatives yield the
same value for Apple and Bank of America. It is worth noticing that the value of the
parameter a1 is essentially 0 across all cases, suggesting that the optimal choice for
the three-states model corresponds to the unbiased Heston dynamics when sentiment
is positive.

2 Note that in the calibration results, the Feller condition is violated. This occurrence is common in empirical
applications when aiming for a better fit of market data, see Gatheral (2011), Guillaume and Schoutens
(2010), Bakshi et al. (1997) among others. Furthermore, in our proposed model, the presence of the bias
factor at in the diffusion coefficient makes the Feller condition less binding.
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Table 6 Historical transition rate matrix Q, calibrated forward-looking transition rate matrix Q∗ andmatrix
κ̃ for the two-regimes model applied to Apple, Amazon, and Bank of America stocks

AAPL AMZN BAC

Q −0.5560 0.5560 −0.4110 0.4110 −1.1074 1.1074

0.4124 −0.4124 0.5293 −0.5293 0.7588 −0.7588

Q∗ −0.5164 0.5164 −0.4869 0.4869 −0.5089 0.5089

0.4037 −0.4037 0.5227 −0.5227 0.3879 −0.3879

κ̃ 0.0000 −0.0713 0.0000 0.1845 0.0000 −0.5404

−0.0212 0.0000 −0.0125 0.0000 −0.4888 0.0000

We remark that the parameters reported in Table 5 are calibrated by assuming
that the transition rate matrix is the one obtained under the real-world probability
measureP, i.e. by selecting the pricingmeasureQ introduced in Sect. 3.1. These results
can be generalized to calibrate the transition rate matrix Q∗ under the probability
measureQX , allowing for the computation of the risk premium associated with regime

changes, defined as κ̃i j = q∗
i j
qi j

−1. In Table 6 we report both the transition rate matrices

obtained through historical estimation (under P) and calibration (under QX ), and the
corresponding regime premium changes κ̃ for the three analyzed assets in the case of
two regimes3. Note that a negative (positive) risk premium is associated to a reduction
(increase) of the regime change forward-looking probability q∗

i j with respect to the
historical value qi j for i, j = 1, 2 with j 	= i . The calibration of the other parameters
do not differ substantially from the values reported in Table 5.

To underscore the efficacy and utility of the sentiment-biased stochastic volatility
model, we additionally calibrate the parameters and compute the calibration RMSE
of the Elliott Markov-modulated variance model Elliott et al. (2016). The quoted
model extends the benchmark Heston model by assuming that the mean-reversion
level, representing the long-term variance to which the variance process reverts, is
regime-dependent. The model we propose in this paper suggests that the “volatility
bias” depending on sentiment is short-lived and affect the instantaneous rather than
the long-term variance level. The calibration results and the corresponding RMSE for
the Elliot model compared to our suggestion, reported in Table 7, seem to support our
conjecture. Indeed, by comparing the RMSE values presented in Tables 5 and 7, it is
evident that the model in (2.1) outperforms the Elliott model in all cases.4

To provide a deeper insight into the pricing properties on the model that we pro-
pose, Table 8 shows the values of the pricing RMSE for sub-samples of option data,
categorized by maturity (5 levels) and moneyness (3 levels). Precisely we classify
options as at-the-money (ATM) if their moneyness is within a 2.5% range with respect
to the stock price, and as in-the-money (ITM) and out-of-the-money (OTM) if their

3 The results for the three-regimes case are not included since this would require the estimation of six
extra parameters and we believe that the available option data is nor sufficiently large to achieve calibration
accuracy.
4 We thank an anonymous reviewer for suggesting this comparison that contributes highlighting the potential
of the proposed model.
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Table 7 IV Calibration results for AAPL, AMZN and BAC of Elliott regime switching model

AAPL AMZN BAC

El.2 reg El. 3 reg El. 2 reg El. 3 reg El. 2 reg El. 3 reg

u0 0.0754 0.1311 0.0338 0.0249 0.1783 0.1607

α 80.4891 388.1046 32.1833 67.9959 85.7067 65.8508

β1 0.0305 0.0263 0.0930 0.0789 0.1036 0.1683

β2 0.0555 0.0262 0.0163 0.0582 0.0215 0.0355

β3 – 0.3587 – 0.7781 – 0.0076

ξ 4.2238 3.9959 3.3947 5.0981 5.0434 4.1260

ρ −0.2683 0.8455 −0.1908 −0.1962 −0.0801 −0.0884

RMSE 0.0370 0.0314 0.0245 0.0225 0.0318 0.0315

moneyness is above 1.025 or below 0.975, respectively. The RMSE values are reported
in the table for the Heston benchmark model and the two- and three-regime sentiment
biased cases. In general, the sentiment-based specification consistently outperforms
the benchmark across all groups for the analyzed stock options. with the only excep-
tions of Apple options for 6 months < T ≤ 12 months and Amazon options for 1
month < T ≤ 6 months.

Finally, in Figs. 6, 7 and 8 we plot the observed implied volatility smile (dots) and
the corresponding model curves for the Heston (blue) and the best sentiment-biased
specification (red) for a sample of maturities. It is confirmed that the biased model
offers a superior fit for all considered stock options.

5 Conclusions

In summary, this paper presents a Markov-modulated stochastic volatility model,
driven by investor sentiment to characterize market regimes. Our specification is a
modified version of the Hestonmodel under the real-world probabilitymeasure, where
price volatility dynamically responds to shifts in sentiment-influenced regimes. Pre-
cisely, the diffusion coefficient is given by the sum of a square-root-driven stochastic
volatility component and a function of an observable continuous-time Markov chain
representing the investor sentiment.

The main theoretical contribution of this study is the introduction of a modified
version of the classical Heston model, incorporating sentiment-dependent regime
changes under the real-world probability measure. This modification aims to address
the dynamics of market sentiment more accurately. In discussing the existence of
the risk-neutral probability measure, we ensure the absence of arbitrage opportunities
within our framework. We further enhance the model’s utility by deriving a quasi-
closed formula for pricing European-style derivatives, leveraging the insights gained
from our modified Heston model. To validate the effectiveness of our approach, we
calibrate the model using data from the US market, providing empirical evidence of
its applicability in real-world scenarios, and conduct a comparative analysis with the
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Fig. 6 AAPLmodel andmarket option smiles observed onDecember 19, 2023 formaturity dates T=January
12, 2024 (top-left),March 15, 2024 (top-right), June 21, 2024 (bottom-left) andDecember 20, 2024 (bottom-
right)

Fig. 7 AMZN model and market option smiles observed on December 19, 2023 for maturity dates
T=January 19, 2024 (top-left), January 26, 2024 (top-right), July 19, 2024 (bottom-left) and January 17,
2025 (bottom-right)

Heston benchmark model to evaluate the performance of our proposed approach in
capturing market dynamics and pricing derivatives effectively. A further comparison
is provided with the regime-switching model in Elliott et al. (2016) which is also
outperformed by our proposal.

By addressing these aspects, the study adds to the understanding of sentiment’s
impact on market behavior, offering insight into potential triggers, implications, and
avenues for effective riskmanagement. Indeed, regulators and riskmanagers recognize
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Fig. 8 BACmodel andmarket option smiles observed onDecember 19, 2023 formaturity dates T=February
16, 2024 (top-left),March 15, 2024 (top-right),May 17, 2024 (bottom-left) and July 19, 2024 (bottom-right)

sentiment’s significance in derivatives, monitoring for speculative risks, and systemic
vulnerabilities. Integrating sentiment analysis into risk frameworks helps anticipate
market scenarios and mitigate adverse impacts. The model proposed in this paper may
be further extended by allowing for jumps in the asset price dynamics where either the
jump intensity or the jump size can be potentially biased by investor sentiment. Finally,
an interesting avenue for further investigation is the application of this approach to
market indexes and to the consistent pricing of derivative products tied to the underly-
ing stock or its volatility, measured by indices such as VIX or SPIKES (see Carr and
Figà-Talamanca 2020).

A Proof of Theorem 3.2

Denote by FX ,u = {FX ,u
t , t ≥ 0} the natural filtration generated by the Markov chain

X and the stochastic factor u, defined by

F
X ,u
t := FX

t ∨ Fu
t , t ≥ 0,

where Fu
t = σ(us, s ≤ t), for every t ≥ 0. Let z ∈ Dt,T ⊂ C. The conditional gen-

eralized characteristic function 
t,T (z) = E
Q
[
exp {i z (YT − Yt )}|Ft

]
can be easily

computed by first conditioning on FS
t ∨F

X ,u
T , where FS

t = σ(Su, u ≤ t), with t ≥ 0.
Indeed, we have


t,T (z) = E
Q
[
E
Q
[
exp {i z (YT − Yt )}|FS

t ∨ F
X ,u
T

]
Ft

]
.
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Define the inner conditional expectation as�t,T (i z) := E
Q
[
exp {i z (YT −Yt )}|FS

t ∨F
X ,u
T

]
.

Then, we have

�t,T (z) : = E
Q
[
exp

{
i z
∫ T

t

(
r − 1

2
a(Xs)

)
ds − i z

2

∫ T

t
usds + i zρ

∫ T

t

√
usdBs

}

× exp

{
i z
∫ T

t

√
ρ̄2 us + a(Xs)dB

⊥
s

}∣∣∣FS
t ∨ F

X ,u
T

]

= exp

{
− i z

2

∫ T

t
usds + i zρ

∫ T

t

√
usdBs + i z

∫ T

t

(
r − 1

2
a(Xs)

)
ds

}

× E
Q
[
exp

{
i z
∫ T

t

√
ρ̄2 us + a(Xs)dB

⊥
s

}∣∣∣FS
t ∨ F

X ,u
T

]
, (A.1)

where we recall that ρ̄ = √
1 − ρ2. Under suitable assumptions, the latter condi-

tional expectation is obtained as the characteristic function of a centered Gaussian
distribution with variance

∫ T
t

(
ρ̄2 us + a(Xs)

)
ds; hence, we have

E
Q
[
exp

{
i z
∫ T

t

√
ρ̄2 us + a(Xs)dB

⊥
s

}∣∣∣FS
t ∨ F

X ,u
T

]

= exp

{
−z2

1

2

∫ T

t

(
ρ̄2 us + a(Xs)

)
ds

}

and therefore (A.1) can be written as

�t,T (z) = exp

{
− i z

2

∫ T

t
usds + i zρ

∫ T

t

√
usdBs + i z

∫ T

t

(
r − 1

2
a(Xs)

)
ds

}

× exp

{
− z2

2
ρ̄2
∫ T

t
usds − z2

2

∫ T

t
a(Xs)ds

}

= exp

{
− i z

2
I Vt,T + i zρAt,T + i z

∫ T

t

(
r − 1

2
a(Xs)

)
ds

}

× exp

{
− z2

2
ρ̄2 I Vt,T − z2

2

∫ T

t
a(Xs)ds

}
,

where we have set I Vt,T := ∫ T
t usds and

At,T :=
∫ T

t

√
usdBs = 1

ξ

(
uT − ut − αβ(T − t) + α I Vt,T

)
.

Finally, in view of the independence between the processes X and u, we obtain


t,T (z) = E
Q
[
exp

{
− i z

2
I Vt,T + i zρAt,T + i z

∫ T

t

(
r − 1

2
a(Xs)

)
ds

}
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× exp

{
− z2

2
ρ̄2 I Vt,T − z2

2

∫ T

t
a(Xs)ds

}∣∣∣Ft

]

= E
Q
[
exp

{
i zr(T − t) − i z

2
I Vt,T + i zρAt,T − z2

2
ρ̄2 I Vt,T

}∣∣∣Ft

]

× E
Q
[
exp

{
− i z

2

∫ T

t
a(Xs)ds − z2

2

∫ T

t
a(Xs)ds

}∣∣∣Ft

]

= φt,T (z) × E
Q
[
exp

{
− i z

2

∫ T

t
a(Xs)ds − z2

2

∫ T

t
a(Xs)ds

}∣∣∣Ft

]

= φt,T (z) × E
Q
[
exp

{
− i z + z2

2

∫ T

t
a(Xs)ds

}∣∣∣Ft

]
, (A.2)

where the function φt,T is the generalized conditional characteristic function of the
Heston model given in (3.5).

Now, we have to compute the latter expectation in (A.2). Note that if ν(Xt ) =
〈ν, Xt 〉 with ν = (ν1, ν2, . . . , νn), we can write

∫ T

t
ν(Xs)ds =

N∑
k=1

νk Jk =
N−1∑
k=1

(νk − νN )Jk + νN (T − t),

where Jk is the (random) occupation time of state k within the time interval (t, T ).
The multivariate characteristic function of the sequence (J1, J2, . . . , JN−1) has been
derived in Buffington and Elliott (2002, Lemma 1) and is given by

φJ
t,T (s) = E

[
exp

{
N−1∑
k=1

sk Jk

}]

= E

[
exp

{∫ T

t
〈s, Xu〉du

}]

= 〈exp {[Q + diag(s)](T − t)}Xt , 1〉,

where s := (s1, s2, . . . , sN−1, 0), 1 := (1, 1, . . . , 1)′ ∈ R
N and diag(s) = s IN×N ,

with IN×N denoting the N × N identity matrix. Finally, we get



Q
t,T (z) = φt,T (z) × φJ

t,T (s(z)),

with s(z) := (s1(z), s2(z), . . . , sN−1(z), 0) for sk(z) := − i z+z2
2 (ak − aN ).

B Robustness check

See Fig. 9 and Tables. 9, 10.
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Fig. 9 Sentiment polarity from January, 2015 to December 2023 for the three-regimes with threshold 5%
(left) and threshold 15% (right): Apple (top), Amazon (middle), Bank of America (bottom). Sentiment color
code: Negative = Red, Positive = Green, Neutral = white

Table 9 Sentiment polarity transition matrices P and marginal probabilities π for the three-regimes model
with different threshold applied to Apple, Amazon, and Bank of America stocks

AAPL AMZN BAC

Panel a: threshold 0.05

P3rs 0.849 0.119 0.032 0.672 0.287 0.041 0.306 0.407 0.287

0.023 0.929 0.048 0.063 0.871 0.066 0.096 0.688 0.216

0.069 0.628 0.303 0.071 0.659 0.269 0.127 0.460 0.413

π3rs 0.148 0.789 0.063 0.165 0.756 0.079 0.135 0.582 0.283

Panel b: threshold 0.10

P3rs 0.710 0.258 0.032 0.600 0.371 0.029 0.274 0.493 0.234

0.033 0.942 0.024 0.050 0.919 0.031 0.059 0.803 0.138

0.078 0.675 0.247 0.100 0.667 0.233 0.107 0.570 0.322

π3rs 0.108 0.857 0.035 0.117 0.841 0.043 0.089 0.722 0.189

Panel c: threshold 0.15

P3rs 0.524 0.453 0.024 0.423 0.551 0.026 0.239 0.606 0.155

0.037 0.945 0.018 0.052 0.927 0.022 0.044 0.852 0.103

0.037 0.741 0.222 0.076 0.682 0.242 0.081 0.653 0.266

π3rs 0.074 0.903 0.023 0.086 0.884 0.030 0.065 0.803 0.132
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Table 10 IV Calibration results for the three-regimes case of AAPL, AMZN and BAC with different
threshold

AAPL AMZN BAC

5% 10% 15% 5% 10% 15% 5% 10% 15%

u0 0.000 0.000 0.000 0.006 0.006 0.006 0.041 0.041 0.040

β 0.050 0.050 0.046 0.113 0.116 0.117 0.095 0.096 0.099

α 13.771 13.760 15.676 7.136 7.008 6.934 5.041 5.087 4.835

ξ 6.715 6.705 6.583 7.187 7.078 7.072 8.413 8.457 8.457

ρ −0.665 −0.665 −0.694 −0.507 −0.502 −0.500 −0.361 −0.361 −0.362

a1 0.000 0.000 0.278 0.000 0.000 0.000 0.000 0.000 0.000

a2 0.030 0.029 0.018 0.047 0.046 0.047 0.027 0.027 0.027

a3 0.018 0.018 0.043 0.150 0.176 0.197 0.038 0.038 0.038

RMSE 0.014 0.014 0.014 0.020 0.020 0.020 0.020 0.020 0.020
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