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Abstract
This study explores the risk of the traditional momentum strategy in terms of its
realized variance using various data frequencies. It is shown that momentum risk is
infinite regardless of the data frequency, implying that (a) t-statistics for this strategy
do not exist, (b) correlation-based metrics such as Sharpe ratios do not exist either,
and (c) the momentum premium is not observable in reality. It is further shown that
the time-honored lognormal distribution is unable to accurately model extreme events
observed at various variance data frequencies. Finally, it is shown that the well-known
effect of time aggregation does not work for this investment vehicle. Hence, the study
is forced to conclude that momentum stories have no valid foundation for their claims.

Keywords Asset pricing · Financial risk · Momentum · Power laws · Realized
variance · Risk · Time aggregation

JEL Classification C14 · C22 · G10 · G14 · G17

1 Introduction

Kelly et al. (2021) introduced their recent study entitled “Understanding momentum
and reversal,” published in thewell-known Journal of Financial Economics as follows:

Since its introduction by Jegadeesh and Titman (1993), the momentum anomaly
has consistently ranked among the most thoroughly researched topics in finan-
cial economics. It forms the basis of strategies implemented throughout the asset
management industry and underlies a wide range of mutual funds and exchange
traded products. Despite its widespread influence on the finance profession,
momentum remains a mysterious phenomenon. A variety of positive theories,
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both behavioral and rational, have been proposed to explain momentum, but
none are widely accepted. Momentum also remains one of the few reliable vio-
lators of prevailing empirical asset pricing models such as the Fama and French
(2015) five-factor model, and research has yet to identify a risk exposure that can
explain the cross-sectional return premium associated with recent price perfor-
mance. Consequently, momentum is often the center piece for debates of market
efficiency.

Indeed, the original study by Jegadeesh and Titman (1993) has been cited more
than 14,000 times, suggesting that an enormous body of “momentum research” has
been produced over the last three decades. A recent literature review by Wiest (2022)
summarized the results of 47 out of the 60 momentum studies published in the
Journal of Finance, the Review of Financial Studies, and the Journal of Financial Eco-
nomics—journals often regarded as the three leading finance outlets. As mentioned
by Kelly et al. (2021), scholars have proposed many different explanations—which
I would like to term “stories”—for rationalizing the existence of the “momentum
premium,” postulating that stocks that have performed well recently (i.e., “winner”
stocks) tend to generate statistically significant higher returns than stocks that have
performed poorly recently (i.e., “loser” stocks). The main sample used in Jegadeesh
and Titman’s (1993) original study employed monthly data on United States (US)
stocks covering the period from January 1965 to December 1989. Figure 1 plots the
compounded returns of the stock-price momentum strategy over the sample used in

Fig. 1 Compounded returns of the momentum strategy from January 1965 to December 1989. I downloaded
monthly data for 10 value-weighted portfolios sorted by cumulative past returns fromKenneth French’s data
library. The portfolios are constructed daily using NYSE prior (2–12) return decile breakpoints. According
to the description provided by Kenneth French’s data library, the portfolios constructed each day include
NYSE, AMEX, and NASDAQ stocks with prior return data. Monthly data were obtained from January
1965 to December 1989. The zero-cost momentum portfolio buys the portfolio consisting of stocks with
the highest cumulative prior return and sells the portfolio consisting of stocks with the lowest cumulative
prior return. The time-series evolution of the compounded return of momentum (CRM)

123



Science or scientism? On the momentum illusion

the original study.1 We see from Fig. 1 an almost exponential increase in compounded
returns over the sample period. It may be not surprising that an investment vehicle
generating such impressive performance has attracted a lot of attention from both
finance scholars and the finance industry.

Themomentum effect has been documented not only for equities, but also for global
individual stocks, global equity indices, currencies, global government bonds, and
commodity futures (Asness et al. 2013). Interestingly, Hou et al. (2020), who imple-
mented a comprehensive replication of 452 cross-sectional asset-pricing anomalies
(including momentum), documented that 65% of those anomalies cannot clear the
single-test hurdle of |t | ≥ 1.96, whereas imposing the higher multiple-test hurdle of
2.78 raises the failure rate to 82%. Whereas the authors argued the biggest casualty
of their replication to be the trading frictions literature, they emphasized that “price
momentum fares well in our replication” (Hou et al. 2020, p. 2037). Unsurprisingly,
Nyberg and Pöyry (2014, pp.1465f) highlighted, “The prevalence and robustness of
the momentum effect justify the abundance of theoretical and empirical research that
has been directed at uncovering the underlying reasons for the large payoffs from the
trading strategy.” It is interesting to note that regardless of the “story” that scholars
have told to explain the origin of momentum profits, there is one commonality in their
foundations: the scholars have insisted that “the momentum strategy produces, on
average, a payoff of about 1% per month with t-statistics indicating statistical signifi-
cance on at least a 5% level.” Again, this has been even confirmed inHou et al.’s (2020)
scientific replication. Unequivocally, scholars believe in the strategy’s profitability.

Interestingly, Daniel and Moskowitz (2016) documented that the strong positive
average returns and Sharpe ratios of momentum strategies are punctuated by occa-
sional crashes manifested in negative returns, which can be pronounced and persistent.
To illustrate this issue, Fig. 2 plots the compounded returns of two stock-price momen-
tum strategies over a sample from January 1965 to April 2022. The black curve in
Fig. 2 shows the time-series evolution of the compounded returns of the standard
momentum strategy, whereas the gray curve in Fig. 2 shows the time-series evolution
of the momentum strategy’s compounded returns, where 1% of the sample observa-
tions exhibiting the highest level of volatility are excluded.2 Unsurprisingly, all those
excluded months fall into the ex-post December 1989 period. More interestingly,
those 1% of sample observations represent more than 90% of the potential overall
compounded return of the momentum strategy—which, paradoxically, seems to be an
issue whose theoretical and practical implications have not been further elaborated on
in the corresponding momentum literature. This study fills this important gap in the
literature.

1 To do so, I downloaded monthly data for 10 value-weighted portfolios sorted by cumulative past returns
from Kenneth French’s data library. The portfolios are constructed daily using NYSE prior (2–12) return
decile breakpoints. According to the description provided by Kenneth French’s data library, the portfolios
constructed each day include NYSE, AMEX, and NASDAQ stocks with prior return data. Monthly data
were obtained from January 1965 to December 1989. The zero-cost momentum portfolio buys the portfolio
consisting of stocks with the highest cumulative prior return and sells the portfolio consisting of stocks with
the lowest cumulative prior return.
2 In the appendix in Table 9, the corresponding months are reported.
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Fig. 2 Compounded returns of the momentum strategy from January 1965 to April 2022. I downloaded
monthly data for 10 value-weighted portfolios sorted by cumulative past returns fromKenneth French’s data
library. The portfolios are constructed daily using NYSE prior (2–12) return decile breakpoints. According
to the description provided by Kenneth French’s data library, the portfolios constructed each day include
NYSE, AMEX, andNASDAQ stocks with prior return data.Monthly data were obtained from January 1965
to April 2022. The zero-cost momentum portfolio buys the portfolio consisting of stocks with the highest
cumulative prior return and sells the portfolio consisting of stocks with the lowest cumulative prior return.
The black curve in the time-series evolution of the compounded return of momentum (CRM). The gray
curve in the time-series evolution of the CRM where the months exhibiting the highest level of volatility
were excluded

Hence, the purpose of this study is to examine the realized variance risk of the well-
known traditional stock-price momentum strategy implemented among US stocks.3

Perhaps because of its popularity, the standard momentum strategy based on 1-year
prior performance and a holding period of 1 month has even been proposed as a
risk factor for various asset-pricing models.4 In the corresponding finance literature,
risk has been typically measured in terms of variance (or volatility, that can also be
measured based on standard deviation, i.e., square root of variance of returns). Using
daily returns of the momentum portfolio, which is a self-financing investment strat-
egy, I compute realized variances for various time frequencies ranging from weekly
to semiannually. Then, I employ log–log regressions to estimate power-law exponents
for various variance time frequencies of the momentum strategy. While Mandelbrot
(2008) argued that log–log regression lines of different time frequencies with identical
slopes is prima facie evidence of power-law behavior, I explicitly perform statistical

3 The rationale for using realized variances is that well-established literature documents that realized
variances contain information concerning the risk dynamics that standard models—such as generalized
auto-regressive conditional heteroskedasticity (GARCH) models—cannot reveal (e.g., Bubák, Kočenda,
and Žikeš, 2011; Andersen, Bollerslev, Diebold, and Labys 2003; Andersen, Bollerslev, and Meddahi
2004; Andersen, Bollerslev, Diebold, and Ebens 2001a, b). In this regard, Barndorff-Nielsen and Shephard
(2002) stress that realized asset variance as a measure for financial asset uncertainty is less susceptible to
biases and measurement errors that could affect other variance estimators.
4 See Carhart (1997), Novy-Marx (2013), or Fama and French (2018), for instance.
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tests for invariance of realized momentum variances. Additionally, I test whether the
estimated power-law exponents are stable over time by splitting variance samples into
nonoverlapping subsamples, where the first subsample is used to estimate confidence
intervals for hypothesis testing. Furthermore, I test the plausibility of the power-law
hypothesis by differentiating the lognormal distribution from power laws. I also imple-
ment a more data-driven approach to estimate power-law exponents and test whether
those estimates are covered by the confidence intervals derived from the uncertainty of
the point estimates from log–log regressions. Finally, I test the effect of time aggrega-
tion, which is an important issue, especially in the context of financial risk as studied
here.

This study contributes to the existing literature inmany important ways. First, while
earlier literature has acknowled that the momentum strategy suffers from occasional
crashes, as documented by Daniel and Moskowitz (2016) and Barroso and Santa-
Clara (2015), among others, the literature has not further quantified the implied risk
associated with the momentum strategy. The current study takes a novel perspective
by modeling the realized momentum variances as power laws and tests the invari-
ance hypothesis. This methodological approach is in line with Taleb (2020), who
argued, “There are a lot of theories on why things should be power laws, as sort of
exceptions to the way things work probabilistically. But it seems that the opposite
idea is never presented: power laws should be the norm, and the Gaussian a spe-
cial case …” (p. 91). Recent studies have found evidence for power-law behavior
in the unconditional volatility distribution of future markets (Renò and Rizza 2003),
realized variances for commodities, exchange rates, cryptocurrencies, and the S&P
500 (Grobys 2021; Grobys et al. 2021). This is the first study testing the power-law
hypothesis for realized variances of various time frequencies for a zero-cost invest-
ment vehicle such as the popular momentum strategy. The difference between a stock
portfolio such as the S&P 500 and the momentum strategy is that the momentum
strategy, according to Daniel and Moskowitz (2016), behaves at times like written call
options on the market, meaning that momentum risk may exceed the market risk by a
substantial margin.5

Next, earlier literature has documented that realized asset variances are typically
very close to a lognormal distribution (e.g., Andersen et al. 2001a, b). However, Renò
and Rizza (2003), who studied the unconditional volatility distribution of the Italian
futures market, concluded that the standard assumption of lognormal unconditional
volatility has to be rejected and that a much better description is provided by a Pareto
distribution. Recent studies have supported Renò and Rizza’s (2003) study by test-
ing the power-law null hypothesis for foreign exchange rate variances, commodity
variances, cryptocurrency variances, S&P 500 variances, and volatilities of stable
cryptocurrencies, often referred to as “stablecoins” (Grobys 2021; Grobys et al. 2021).

5 Power laws may reveal the latent risk hidden in the tails of some distribution. As pointed out by Taleb
(2020), the “empirical distribution” is not empirical because ofmisrepresentation of the expected realizations
of the distribution in the tails. Future maximums are poorly tracked by past data without some intelligent
extrapolation. However, power-law functions remedy this inference problem. The tail exponent of a power-
law function captures via extrapolation low-probability deviations not seen in the data. Such deviations play
a disproportionately large role in determining the mean of the distribution. As such deviations are not seen
directly in the data, it is referred to as implied risk.
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To clarify whether Pareto distributions, or power laws, are more appropriate than the
lognormal for describing realized momentum variances, we apply Bayes’ rule, as
recently proposed by Taleb (2020), to explicitly test the plausibility of the lognormal
distribution as opposed to power laws.

In the wake of Mandelbrot’s (1963a) seminal study documenting that the theo-
retical variance of cotton-price changes is infinite, or undefined, follow-up research
neglecting to account for this problem in choosing research methodologies has typi-
cally claimed the argument raised by Teichmoeller (1971), among others, who pointed
out that the variance stabilizes with increasing sample size because under time aggre-
gation, the overall shape of return distributions gets closer to the normal distribution.
Unsurprisingly, this issue was also acknowledged by Mandelbrot (2008): “Likewise
with financial data. Scaling works in the broad, macroscopic middle of the spectrum;
but at the far ends, in what you might call the quantum and cosmic zones, new laws of
economic life apply” (p. 219). On the other hand, Taleb (2020) posited that scholars
can’t argue with “Gaussian behavior” if kurtosis is infinite, even when lower moments
exist and even for a power-law exponent corresponding to α ≈ 3. Because the central
limit operates very slowly, n of the order of 106 is required to become acceptable. As
pointed out by Taleb (2020), the problem is that we do not have so much data in the
history of financial markets; as a consequence, we are not in a research environment
allowing us to use Gaussian methodologies. With earlier studies having focused on
financial return processes, the inevitable question arises: When does risk settle down?
Adding to this strand of literature, this is the first study that explicitly tests the effect
of time aggregation in realized-variance processes of the momentum strategy. Uncov-
ering the risk behavior of the momentum strategy is an important issue, especially
because many hedge funds rely on strategies like this, as pointed out by Kelly et al.
(2021) and Jegadeesh and Titman (2001), among others.

The results of this study show that realized momentum variance is scaling. Using
traditional log–log regressions, the power-law exponents for the variance processes
are estimated at α̂ < 2 regardless of the data frequency. This suggests that the the-
oretical mean of realized momentum variances is infinite. This result is in line with
Mandelbrot (1963a), who was the first to document that the variance for cotton-price
changes is infinite. The difference between Mandelbrot’s (1963a) study and the cur-
rent research is that the current study directly employs realized variances as opposed
to simple returns sorted into subsamples of positive and negative returns. Testing
for invariances across various variance time frequencies shows that the invariance
hypothesis cannot be rejected, meaning that the scaling behavior does not vanish as
we move from higher to lower frequented data. This is indeed a novel finding because
according to the effect of time aggregation, power-law exponents should be expected
to increase in their economic magnitudes as we move from higher to lower frequented
data. To explore this issue in more detail, power-law exponents are regressed on the
corresponding measured returns, respectively, number of observations used in the vin-
tages of data frequencies. Surprisingly, the regression results rather provide evidence
for the opposite effect; that is, as we move from higher to lower frequented data,
power-law exponents decrease. This starkly contrasts the literature on the effect of
time aggregation and suggests that momentum strategies are even riskier over longer
time horizons. Moreover, sample split tests reveal that the invariance hypothesis holds,
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even over time, because estimated power-law exponents for later subsamples fall into
the 95% confidence intervals derived from estimated power-law exponents and their
corresponding estimation uncertainty based on earlier subsamples. Again, this result
holds regardless of the data frequency examined and suggests that the scaling behavior
of momentum risk remains the same over time.

In contrast to Andersen et al. (2001a, b) and others, who argued that realized asset
variances follow a lognormal distribution, the results of the current research show that
even if we assume the likelihood of the lognormal distribution to be 70%, the odds
of the lognormal distribution generating the extreme events observed in the cross-
section of variance data frequencies are less than 50%, suggesting that the lognormal
distribution can be ruled out as an underlying variance-generating process. While this
result contrasts that of Andersen et al. (2001a, b), it aligns with that of Renò and Rizza
(2003), who found similar evidence for the volatility process governing the Italian
futures market.

Finally, using a more data-driven approach (Lux 2000) as opposed to employing
traditional log–log regressions supports the findings that (a) for most time frequencies,
the point estimates for power-law exponents are α̂ < 2 and (b) using a different
statistical test, for most time frequencies the power-law null hypothesis cannot be
rejected.Because the results of this study show the risk for themomentumstrategy to be
infinite, there are some inevitable implications forwhich scholars need to accountwhen
referring to “statistical significance.” First,wedonot observe themomentumpremium,
and second, average momentum returns do not have a defined t-statistic, regardless of
the time frequencyused in the estimation.Another consequence is that Sharpe ratios for
the momentum strategy are not defined either. Therefore, the inevitable conclusion of
this study is that the momentum literature seems to be subject to “story-telling” rather
than documenting scientific results because the common foundation for this literature
stays empirically on extremely shaky ground. “Statistically significant average returns
to the momentum strategy” are an illusion because in real life we don’t know anything
about the profitability of this investment vehicle.

This study is organized as follows. The next section presents the background for
this study. The empirical framework is provided in the third section and the last section
concludes.

2 Background discussion

Statistical inference based on standard methodologies in finance research, such as
ordinary least-squares (OLS) regressions or general autoregressive conditional het-
eroskedasticity (GARCH) models, are typically derived under Gaussian assumptions.
Interestingly, in a Gaussian world, the sum of the largest 1% observations account for
only 3.6% of the cumulative total.6 The Gaussian model tells us that large deviations
have a negligible impact on the cumulative total and that extremely large deviations
from the mean are virtually impossible to observe. For instance, the Gaussian model

6 The simulation experiment was based on 10,000,000 random drawings from the standard normal distri-
bution.
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suggests that the odds for observing a 5-sigma event are 1:3,500,000. As we move
from 1 to 2 to 2 to 3 standard deviations from the mean, the odds for observing such
deviations exponentially decelerate as we move away from the center. In this regard,
Taleb (2010, p. 232) argued that the rapid decline in the odds of large standard devi-
ations justifies ignoring outliers. But what does this look like in reality? Mandelbrot
(2008) highlighted, “Whatever the stock index, whatever the country, whatever the
security, prices only rarely follow the predicted normal pattern. My student, Eugene
Fama, investigated this for his doctoral thesis. Rather than examine a broad market
index, he looked one-by-one at the thirty blue-chip stocks in the Dow. He found the
same, disturbing pattern: Big price changes were far more common than the standard
model allowed. Large changes, of more than five standard deviations from the average,
happened two thousand times more often than expected. Under Gaussian rules, you
should have encountered such drama only once every seven thousand years; in fact,
the data showed, it happened once every three or four years” (p. 96).

In his 1963 paper entitled “Newmethods in statistical economics,” published in the
well-known Journal of Political Economy, Benoit Mandelbrot introduced power laws
in an effort to address the problem of large standard deviations from the mean, often
referred to as “extreme events.”7 Indeed, power laws are a distribution class allowing
for large standard deviations from the mean despite the remaining rare events. In the
same year, Mandelbrot (1963a) published another study proposing the usage of stable
Paretian distributions to model the variation of some asset returns. In a review article,
Fama (1963) commented on Mandelbrot’s proposition as follows:

… the infinite variance assumption of the stable Paretian model has extreme
implications. From a purely statistical standpoint, if the population variance of
the distribution of first differences is infinite, the sample variance is probably a
meaningless measure of dispersion. Moreover, if the variance is infinite, other
statistical tools (e.g., least-squares regression)which are based on the assumption
of finite variance will, at best, be considerably weakened and may in fact give
very misleading answers. (p. 421)

Paradoxically, despite knowing about the problems associated with financial anal-
ysis based on Gaussian frameworks, finance researchers (including Fama whom
Mandelbrot supervised) have continued to use techniques such as OLS for the vast
majority of scientific studies published in leading finance journals. Yet, another strand
of literature has emerged consistent withMandelbrot’s ideas incorporating power laws
in financial research. Often-cited studies in this field are those of Gopikrishna et al.
(1998), Jansen and de Vries (1991), Mantegna and Stanley (1995), and Lux (1996),
among others. A potential reason why leading finance scholars such as Fama—who
was Mandelbrot’s doctoral student and, hence, knew about this issue in detail—have
not adopted Mandelbrot’s new methods in financial research could be that more easily
applicable alternatives have gained increasing acceptance. For instance, Markowitz’s
(1952)modern portfolio theory based on aGaussian framework has appealed to finance
scholars, even though its assumptions do not reflect the reality of financial markets.

7 See Mandelbrot (1963b).
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It is noteworthy that Markowitz’s (1952) study was published a decade before Man-
delbrot’s (1963a, b) contributions; incorporating Mandelbrot’s ideas could have had
possibly devasting consequences for thefinance lobbybynullifying a decade of follow-
up research based on Markowitz’s (1952) foundation. Is it possible that the high rate
of replication failure for financial studies is a manifestation of researchers’ reliance
on Gaussian methodologies, which, in the presence of sample-specific variances, give
very misleading results, as noted in Fama’s (1963) early paper?

It is important to note thatLuxandAlfarano (2016) argued that power-lawexponents
for the return-generating processes of most asset classes are greater than 2 and close to
3, thereby rejecting the infinite-variance hypothesis. However, Mandelbrot’s (1963a)
infinite-variance hypothesis has been confirmed for the returns on venture capital and
research and development (R&D) investments (Lux and Alfarano 2016). On the other
hand, Taleb (2020) conjectured that if the fourth moment is unknown, the stability of
the second moment is not ensured. This implies that if α < 5, we cannot work with
the variance, even if it exists in the theoretical distribution. Whereas the variance is
undefined for α < 3, α < 5 implies that the kurtosis is undefined, and hence, the variance
is unstable. Further, Taleb (2020, p. 187f) pointed out that for α ≈ 3, the central limit
operates very slowly and requires more than 106 observations to become acceptable.
As a consequence, α < 3 and α < 5 have qualitatively the same implications because
in real life we do not have that much data available in financial markets.

While previous literature has focused on the absolute amount of asset returns when
estimating power laws, Grobys et al. (2021) employed realized annualized daily cryp-
tocurrency volatilities based on their intraday quotes for estimating their power-law
models. Their approach was supported by Wan and Yang (2009), who documented
that.8

… realized volatility based on intraday quotes is a consistent and highly efficient
estimator of the underlying true volatility…a realized-volatility-based approach
is able to uncover volatility features (asymmetric volatility in particular) that the
conventional GARCH type models fail to reveal. (p. 600)

Grobys et al. (2021) found that the volatilities of major stablecoins are statistically
unstable because α < 3 for the volatility processes implies that the variance of the
volatilities is not defined. Another related study by Grobys (2021) computed realized
annualized daily financial asset market variances based on intraday quotes for esti-
mating power-law models. For five different markets, the study concluded that the
variances of variances do not exist as α < 3. Adopting this new approach, this is the
first study that explores the risk of a self-financing investment vehicle such as the
popular momentum strategy in terms of its realized variances. Unlike in the works of
Grobys et al. (2021) and Grobys (2021), the methodological approach for computing
realized variances chosen in this study uses the sum of squared daily returns for various
frequencies.9

8 The advantages of range volatility models have been noted by many scholars. As an example, Chou et al.
(2010) have argued that realized volatility estimators based on intraday quotes incorporate substantially
more information than two arbitrary points in the series (i.e., closing prices).
9 Note that intraday quotes for this investment strategy are not available.
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3 Empirical analysis

3.1 Data

I downloaded daily data for 10 value-weighted portfolios sorted by cumulative past
returns from Kenneth French’s data library. The portfolios are constructed daily using
NYSE prior (2–12) return decile breakpoints. According to the description provided
by Kenneth French’s data library, the portfolios constructed each day include NYSE,
AMEX, and NASDAQ stocks with prior return data. Daily data were obtained from
November 3, 1926 to June 30, 2022 corresponding to 25,171 observations. The zero-
cost momentum portfolio buys the portfolio consisting of stocks with the highest
cumulative prior return and sells the portfolio consisting of stocks with the lowest
cumulative prior return. I compute realizedmomentum variances (RMVs) for different
time frequencies using nonoverlapping squared daily returns:

RMVt =
N

∑

j=1

R2
j,t , (1)

where R j,t denotes the daily return of the momentum portfolio on day j in time
unit t and N ∈ (5, 20, 60, 90, 125). For instance, N = 5 corresponds to weekly
RMV, whereas N = 125 corresponds to semiannual RMV. Using nonoverlapping
observations to compute various RMVs, the range of RMVs is from t = 1, . . . , 200
for semiannual data to t = 1, . . . , 5,033 for weekly data . In the appendix in Fig. 4,
5, 6, 7 and 8, the RMVs are plotted for various data frequencies and Table 1 reports
the descriptive statistics. As expected, we observe from Table 1 that mean, median,
minimum,maximum, and standard deviation increase aswemove fromhigher to lower
frequented variance data (viz., as we move from weekly to semi-annually variance
data), whereas kurtosis and skewness decrease. Interestingly, we see that the share
of the top 20% of the cumulative total of the distribution only slightly decreases as
we move from more to less frequent realized-variance data. Specifically, the share of
the top 20% of the cumulative total of the distribution is 0.77 for RMV based on five
squared daily returns and 0.69 for RMV based on 125 squared daily returns. This is
an important issue because it tells us that a small fraction of observations has a large
impact. Note that for a normal distribution, the share of the top 20% of the cumulative
total of the distribution is only 0.44, whereas this figure is 0.56 for the lognormal
distribution. This means that the distributions appear to be closer to the well-known
Pareto 80/20 distribution, where the share of the top 20% of the cumulative total of
the distribution is 0.80.

3.2 Linear binning and estimation of power-law exponents

Awidelyusedway toquantify an empirical frequencydistribution is to bin the observed
data using bins of constant linear width, which generates the familiar histogram.
Specifically, linear binning entails choosing a bin, i, of constant width, counting the
number of observations in each bin, and plotting this count against the average value
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Table 1 Descriptive statistics of momentum-realized variances for various time frequencies

5 days 20 days 60 days 90 days 125 days LGN

Mean 10.61 42.16 126.82 189.88 264.06 1.66

Median 3.16 15.63 48.50 75.83 111.43 1.00

Minimum 0.02 1.28 5.58 11.93 15.77 0.01

Maximum 1,054.17 1,398.23 2,341.27 3,399.48 3,859.40 83.84

Std.Dev 33.98 99.57 254.66 378.14 481.46 2.15

Skewness 13.03 7.05 5.21 5.59 4.46 5.63

Kurtosis 265.49 66.83 33.27 39.50 24.28 73.52

Observations 5033 1255 418 278 200 100,000

Sum of 100%
obs

53,408.58 52,914.60 53,011.96 52,786.81 52,811.19 165,610.66

Sum of top
20% obs

41,028.83 38,534.11 37,503.74 37,016.59 36,594.11 93,226.79

Share of top
20%/100%

0.77 0.73 0.71 0.70 0.69 0.56

The variances of the momentum strategy are computed for different time frequencies. Daily data for 10
portfolios sorted by momentum were downloaded from Kenneth French’s website. For instance, the sum
of 5 squared and nonoverlapping daily returns are used for calculating the weekly momentum variance
series, whereas the sum of 125 squared and nonoverlapping daily returns are used for calculating the
semiannual momentum variance series. The table reports the mean, median, minimum, maximum, standard
deviation, skewness, kurtosis, and amount of sample observations for each momentum variance frequency.
Additionally, for eachmomentum variance frequency, this table reports the sum of all variance observations,
the sum of the top 20% of the cumulative total of the distribution, and the share of the top 20% of the
cumulative total of the distribution. In the last column, the corresponding statistics are reported for the
100,000 simulated drawing from the lognormal distribution (LGN). The sample period for daily data is
from November 3, 1926 to June 30, 2022

of realizations in each bin. The traditional approach to estimating the power-law expo-
nent, α̂, is then to fit a linear regression to log-transformed values of both frequency
and averaged realization with the slope of the line being the estimates exponent. This
approach requires that bins with zero observations are excluded because ln(0) is unde-
fined. Here, for each time frequency, the variance observations are binned into a series
of 10 equal intervals, and then the average variance within each interval is calculated
and the number of observations is counted. Denoting the natural logarithm of the
number of observations within each interval as yi and the natural logarithm of the
average realized variance within each interval as xi , where i = 1, . . . , N , we plot the
so-called log–log graphs for various time frequencies in Figs. 9, 10, 11, 12 and 13 in
the appendix.10 For each graph, a linear trend line is added. From visual inspection of
Figs. 9, 10, 11, 12 and 13, it becomes evident that the dots slope about the same way,

10 As pointed out by White, Enquist, and Green (2008, p. 906), in practice, the choice of bin width is
normally arbitrary; this choice represents a trade-off between the number of bins analyzed (i.e., the resolution
of the frequency distribution) and the accuracy with which each value of the frequency is estimated (fewer
observations per bin provide a poorer estimate). In the current research, a choice of 10 bins with equal
bin width seems to be an appropriate resolution because it ensures that the residuals of the corresponding
log–log regressions have t-distributed residuals with at least five degrees of freedom.
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which is, according to Mandelbrot (2008, p. 163), prima facie evidence of power-law
behavior.

To investigate the scaling behavior of RMVs given various data frequencies, the
following power-law model is employed:

p(x) = Cx−α (2)

where x = RMV and C = (α − 1)xα−1
MI N with α ∈ {R+|α > 1}, x ∈

{R+|xMI N ≤ x < ∞}, xMI N is the minimum value of RMV that is governed by the
power-law process, and α is the magnitude of the specific tail exponent.11 Regarding
α, Taleb (2020, p. 34) observed that the tail exponent of a power-law function cap-
tures via extrapolation the low-probability deviation not seen in the data, which plays,
however, a disproportionately large role in determining the mean. Using this model, it
can be shown that the conditional expectation of RMV defined as E[X |X ≥ xMI N ],
is given by

E[X |X ≥ xMI N ] = ∞∫
xMIN

xp(x)dx = (α − 1)

(α − 2)
xMIN, (3)

whereas the conditional second moment, E[X2|X ≥ xMI N ], or the variance of the
conditional variance, is defined as

E[X2|X ≥ xMI N ] = ∞∫
xM I N

x2 p(x)dx = (α − 1)

(α − 3)
x2MI N . (4)

Conditional higher moments of order k are analogously defined as

E[Xk |X ≥ xMI N ] = (α − 1)

(α − 1 − k)
xkM I N . (5)

From Eq. (3), it follows that the mean of the RMV only exists for α > 2, whereas
the variance of RMV only exists for α > 3. Denoting the natural logarithm of the
number of observations within each interval as yi and the natural logarithm of the
average RMV within each bin as xi , where i = 1, . . . , N , the following regression
model is run for each time frequency:

yi = c + αxi + εi . (6)

Panel A in Table 2 reports the point estimates for α and c, as well as the cor-
responding t-statistics and the values for the coefficient of determinations for each
data frequency. Note that in the regression models, only bins with nonzero entries are
accounted for. Further, 95% confidence intervals for α̂ estimates are reported, too.

11 This study follows the notation of Clauset et al. (2009). To keep the notations clear, index i, denoting
the respective RMV for a specific time frequency, is dropped.
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Table 2 Estimating power-law exponents using OLS regressions

Days 5 20 60 90 125

Panel A. Point estimates from OLS regressions

ĉ 12.27*** 12.78*** 12.56*** 12.51*** 12.21***

(t-statistic) (19.70) (19.48) (10.79) (8.03) (12.43)

α̂ 1.79*** 1.77*** 1.64*** 1.60*** 1.51***

(t-statistic) (16.22) (16.73) (9.43) (7.11) (10.97)

95% CI for α [1.51, 2.07] [1.51, 2.03] [1.23, 2.05] [1.05, 2.15] [1.17, 1.85]

R-squared 0.99 0.99 0.96 0.94 0.98

Panel B. Cutoffs and statistical tests

xM I N 2.29 7.98 13.83 17.60 18.30

Observations 3,030 895 387 269 199

(in percent) (60.20%) (71.31%) (92.58%) (96.76%) (99.50%)

λ̂ 0.21 0.23** 0.36** 0.40 0.49***

(t-statistic) (1.90) (2.15) (2.06) (1.79) (3.55)

Nonzero bins 7 9 9 8 8

Critical value 2.02 1.89 1.89 1.94 1.94

The variances of the momentum strategy are computed for different time frequencies. For instance, the
sum of 5 squared and nonoverlapping daily returns are used for calculating the weekly momentum variance
series, whereas 125 squared and nonoverlapping daily returns are used for calculating the semiannual
momentum variance series. For each time frequency, the variance observations are binned into a series of
N = 10 equal intervals, and then the average variance within each interval is calculated and the number of
observations is counted. Denoting the natural logarithm of the number of observations within each interval
as yi and the natural logarithm of the average variance within each interval as xi , where i = 1, . . . , N , the
following regression model is run for each time frequency:
yi = c + αxi + εi
Panel A reports the point estimates for α and c for each time frequency, as well as the corresponding
t-statistics and the values for the coefficient of determinations (e.g., R-squared). Note that in the regression
models only bins with nonzero entries are accounted for. Further, 95% confidence intervals for α̂ estimates
are reported, too. The confidence interval uses the critical values for a t-distribution with degrees of freedom
equal to the number of nonzero bins lowered by 2. Panel B reports the values for xMIN for power-law
functions:
p(x) = Cx−α ,

where C = (α − 1)xα−1
MI N and x denotes the respective for a given time frequency providedx ∈

{R+|xM I N ≤ x < ∞}. The corresponding values for xM I N are retrieved from the Hill plots. Moreover,
the number of sample observations for which xMIN ≤ x < ∞ is satisfied are reported. Additionally, for
each time frequency, the following hypothesis is tested:
H0 : α̂ > 2 versus H1 : α̂ ≤ 2.

Test statistic λ̂ = (

2 − α̂
)

and the corresponding t-statistic using a one-sided t-test are reported. The test

statistic accounts for the number of nonzero bins. For example, for testing the hypothesis forweekly variance
data, the t-distribution with five degrees of freedom is used as reference distribution. The corresponding
critical values for each reference distribution are reported as well.
***Statistically significant on a 1% level
**Statistically significant on a 5% level
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From Panel A in Table 2, we observe that point estimates α̂ are below 2 (̂α < 2) for
all time frequencies. This suggests (a) prima facie evidence of a power law behavior
and (b) that the theoretical means for RMVs are, according to Eq. (3), undefined.
Moreover, the values for the coefficients of determination range between 0.94 and
0.99, suggesting an excellent data fit.

Next, setting up the power-law model as defined in Eq. (2) requires a value for
xMI N . Hence, the question arises: Which value for xMI N should be chosen? The Hill
estimator, which coincides with the maximum likelihood estimator (MLE), gives us
the corresponding α̂ for each value of x selected for xMI N , given by

α̂ = 1 + T

(

T
∑

i=1

ln

(

xi
xMIN

)

)−1

(7)

where α̂ denotes theMLE for a given xMI N , T is the number of observations exceeding
xMI N , and other notations are as before. In the appendix, Figs. 14, 15, 16, 17 and 18
show theHill plots for various time frequencies, and Panel B in Table 2 shows the value
for xMI N matched with the corresponding α̂ obtained from OLS regressions. Using
these cutoffs, we see from Panel B of Table 2 that the part of the distributions governed
by a Paretian tail ranges from 60.20% for the highest data frequency to 99.50% for the
lowest data frequency, which is a surprising finding because one might have expected
the percentage of observations governed by a power law rather to decrease.

3.3 Can the infinite-variance hypothesis be statistically rejected?

The question arises whether the point estimates from the log–log regression are sta-
tistically below the value of 2, which is, obviously, a critical issue. Recall that Fama
(1963) reviewed Mandelbrot’s proposition and commented,

From a purely statistical standpoint, if the population variance of the distribu-
tion of first differences is infinite, the sample variance is probably a meaningless
measure of dispersion. Moreover, if the variance is infinite, other statistical tools
(e.g., least-squares regression) which are based on the assumption of finite vari-
ancewill, at best, be considerablyweakened andmay in fact give verymisleading
answers. (p. 421)

Hence, to test the infinite-variance hypothesis, the following hypothesis is tested
for each data frequency:

H0 : α > 2 versus H1 : α ≤ 2.

The one-sided test statistiĉλ = (2 − α̂) is distributed as t-distribution with degrees
of freedom equal to the number of nonzero bins lowered by 2. For example, for testing
the hypothesis for weekly variance data, the t-distributionwith five degrees of freedom
is used as a reference distribution. The corresponding critical values for each reference
distribution and test results are reported in Panel B of Table 2. The results suggest that
for the majority of data frequencies (e.g., monthly, quarterly, and semiannually), the
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null hypothesis is rejected. Hence, the RMVs appear to be governed by power laws
with no theoretically defined means. This result supports Mandelbrot’s (1963a) early
finding of the infinite variance of cotton-price changes, starting an intense debate in
the financial literature.

3.4 Testing for invariance

3.4.1 Testing for invariance across time frequencies

As pointed out by Mandelbrot (2008), the slopes of the log–log regression lines being
statistically the same is evidence of power-law behavior. Note that in a time-series
context, a process is a fractal, that is, statistical self-similar, if the exponent does not
change with increasing or decreasing data frequency. Hence, for each time frequency,
a 95% confidence interval is estimated. The confidence interval uses the critical val-
ues for a t-distribution with degrees of freedom equal to the number of nonzero bins
lowered by 2. For example, a confidence interval for weekly variance data uses the
corresponding critical values of the t-distribution with five degrees of freedom mul-
tiplied by the standard deviation of the α̂ obtained from the regression model. For
instance, the 95% confidence interval for weekly RMV is α̂ ∈ [1.51, 2.07]. The results
for all time frequencies are reported in Panel A of Table 2. Using the confidence inter-
val for weekly RMV as a reference, we observe that point estimates α̂ for other data
frequencies (e.g., 1.77, 1.64, 1.60, 1.51) are all inside this interval, regardless which
time frequency is considered. Hence, the invariance hypothesis cannot be rejected. In
the same manner, the confidence interval for any other time frequency could be used
as a reference, too. The results do not change.

3.4.2 Testing for invariance over time: evidence from sample split tests

While the previous section tested the invariance of the power-law exponent across time
frequencies, this section addresses the question of whether the estimated power-law
exponents are stable over time. The problem with some fractal processes is that it
takes a long time to reveal their properties (Taleb 2010). To have at least 200 sample
observations available, only RMVs incorporating between 5 and 60 daily squared
returns are considered. Specifically, for each time frequency and each subsample, the
variance observations are again binned into a series of N = 10 equal intervals, and
then the average realized variance within each interval is calculated and the number of
observations is counted. Denoting the natural logarithm of the number of observations
within each interval as yi and the natural logarithm of the average RMV in each
bin as xi , where i = 1, . . . , N , the log–log regression model of Eq. (6) is run for
each time frequency and subsample. The results are reported in Table 3. Panel A of
Table 3 reports the log–log regression results for the first (e.g., earlier) subsample,
and Panel B of Table 3 reports the results for the second (e.g., later) subsample. Note
again that only bins with nonzero entries are accounted for in the log–log regressions.
Panel A reports 95% confidence intervals for α̂ estimates for the first subsample. The
corresponding t-statistic uses the critical values for a t-distribution with degrees of
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Table 3 Estimating power-law
exponents using OLS
regressions for subsamples

Days 5 20 60

Panel A. Point estimates from OLS regressions for the
first subsample

ĉ 10.72*** 11.81*** 11.28***

(t-statistic) (19.72) (12.84) (11.62)

α̂ 1.62*** 1.74*** 1.53***

(t-statistic) (16.31) (11.45) (10.23)

R-squared 0.94 0.97 0.97

Nonzero bins 6 8 7

Obs 2,517 628 209

95% CI for α̂ [1.34, 1.90] [1.37, 2.11] [1.14, 1.92]

Panel B. Point estimates from OLS regressions for the
second subsample

ĉ 11.34*** 11.49*** 11.24***

(t-statistic) (10.56) (14.22) (21.96)

α̂ 1.81*** 1.64*** 1.50***

(t-statistic) (8.97) (12.13) (19.54)

R-squared 0.69 0.98 0.99

Nonzero bins 10 8 8

Obs 2516 627 209

The variances of the momentum strategy are computed for different
time frequencies. For each time frequency, the variance observations
are sampled in two nonoverlapping subsamples of equal length. Then,
for each time frequency and each subsample, the variance observa-
tions are binned into a series of N = 10 equal intervals, and then the
average variance within each interval is calculated and the number of
observations is counted. Denoting the natural logarithm of the number
of observations within each interval as yi and the natural logarithm of
the average variance within each interval as xi , where i = 1, . . . , N ,
the following regressionmodel is run for each time frequency and each
subsample:
yi = c + αxi + εi .
Panel A reports the point estimates for α and c for various time fre-
quencies in the first (e.g., earlier) subsample, whereas Panel B reports
the corresponding estimates for the second (e.g., later) subsample.
Also, the corresponding t-statistics and the values for the coefficient of
determinations (e.g., R-squared) are reported. Note that in the regres-
sion models only bins with nonzero entries are accounted for. For
the first subsample, the 95% confidence intervals for α̂ estimates are
reported, too. The corresponding t-statistic use the critical values for a
t-distribution with degrees of freedom equal to the number of nonzero
bins lowered by 2. The critical values for the t-distribution with four,
five, or six degrees of freedom are 2.78, 2.57, and 2.45
***Statistically significant on a 1% level
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freedom equal to the number of nonzero bins lowered by 2. For instance, weekly RMV
(i.e., incorporating five 5-squared daily returns) exhibits a point estimate of α̂ = 1.62
and a 95% confidence interval of α̂ ∈ [1.34, 1.90]. The point estimate for the second
subsample is α̂ = 1.81, which clearly is in the confidence interval, implying that the
point estimates are statistically not different from each other. The same conclusion
is drawn concerning monthly and quarterly RMVs (i.e., incorporating 20 or 60 daily
squared returns). Overall, the invariance of the power-law exponents holds, even over
time.

3.5 Robustness checks

3.5.1 Lognormal or power law? Differentiating distributions using Bayes’ rule

So far, the current research has adopted Taleb’s (2020) viewpoint in using power laws
formodeling the distribution of RMVs because of the position that “power laws should
be the norm.”The informed readermight argue that this approach starkly contrastswith
earlier literature documenting that realized asset variances are typically very close to a
lognormal distribution (e.g., Andersen et al. 2001a, b). It is interesting to note that Renò
and Rizza (2003), who studied the unconditional volatility distribution of the Italian
futures market, concluded that the standard assumption of lognormal unconditional
volatility has to be rejected and that a much better description is provided by a Pareto
distribution. Hence, to clarify whether power laws are indeed more appropriate than
the lognormal, Bayes’ rule is applied, as proposed by Taleb (2020), to investigate the
plausibility of the lognormal distribution as opposed to power laws.

Table 4 Bayes’ rule

P(LGN ) 0.50 0.70 0.90 1

RMV based on 5 days 0.0375 0.0834 0.2597 1

RMV based on 20 days 0.1943 0.3601 0.6846 1

RMV based on 60 days 0.2898 0.4877 0.7860 1

RMV based on 90 days 0.2760 0.4707 0.7743 1

RMV based on 125 days 0.2537 0.4424 0.7537 1

Bayes’ rule is applied as outlined in detail by Taleb (2020, p. 52) to explore how likely it is that the
data-generating processes of RMVs are distributed as lognormal as opposed to power laws, given the
low-probability events observed in Table 10. According to Bayes’ rule, the conditional probability that
the underlying distribution governing those events follows a lognormal distribution (LGN), conditional on
extreme event occurrences, is defined as

P(LGN |E) = P(LGN )P(E |LGN )
(1−P(LGN ))P(E |PL) +P(LGN )P(E |LGN )

,

where P(LGN |E) is the probability that the distribution is lognormal given that the corresponding event
occurred, P(E |LGN ) is the probability of the event given that the distribution is lognormal, and P(E |PL)

is the probability of the event given that the distribution is governed by a power-law process with
(

α̂, xMIN
)

.

Assuming various probabilities for P(LGN ), the table reports the computed likelihoods P(LGN |E)
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Table 5 Estimating power-law exponents using MLE in association with the KS statistic

Days 5 20 60 90 125

α̂ 2.24 1.99 1.93 1.94 1.99

Std.Dev 0.05 0.04 0.06 0.07 0.09

xM I N 19.39 17.88 37.03 60.82 87.11

Obs 553 564 262 164 122

(in percent) (10.99%) (44.87%) (62.68%) (58.99%) (61.00%)

GoF test (p-value) 0.02 0.01 0.21 0.09 0.32

This table reports the estimates for power-law models p(x) = (α − 1)xα−1
MINx

−α using MLE. Tail exponent

α is estimated as

α̂ = 1 + N

(

N
∑

i=1
ln

(

xi
xMIN

)

)−1

,

where α̂ denotes the MLE estimator, and N is the number of observations provided xi ≥ xM I N . In this
model, the optimal xM I N is assessed via the KS statistic, which is the maximum distance between the
CDFs of the data and the fitted model:
D = MAXx≥xMIN |S(x) − P(x)|,
where S(x) is the CDF of the data for the observation with a value of at least xM I N , and P(x) is the
CDF for the power-law model that best fits the data in the region x ≥ xM I N . This approach selects the
corresponding xM I N that minimizes D. For each time frequency, this table reports estimated power-law

exponent α̂, estimated standard deviation σ̂ = (α̂−1)√
N∗ where N∗ denotes the number of sample observations

governed by a power-law process, and the p-value of the GoF test, which tests the power-law null hypothesis

First, in Table 10 in the appendix, extreme events for RMVs across all data fre-
quencies are collected and transformed into so-called sigma events. Doing so requires
standardizing each RMV time series and computing the standard deviations of data
frequency-specific extreme events. Then, the probabilities are computed for both
power-law functions—using the estimates for α̂ and xMI N from Table 1—and the
lognormal distribution. These probabilities are then used to derive the probabilities
of Bayes’ rule, as outlined in detail by Taleb (2020, p. 52), to explore the likeliness
of the data-generating processes of RMVs being distributed as lognormal as opposed
to power laws, given the low-probability events observed in Table 10. According to
Bayes’ rule, the conditional probability that the underlying distribution governing
those events follows a lognormal distribution (LGN), conditional on extreme event
occurrences, is defined as

P(LGN |E) = P(LGN)P(E |LGN )

(1 − P(LGN ))P(E |PL ) + P(LGN )P(E |LGN )
(8)

where P(LGN |E) is the probability that the distribution is lognormal given that the
corresponding event occurred, P(E |LGN ) is the probability of the event given that the
distribution is lognormal, and P(E |PL) is the probability of the event given that the
distribution is governed by a power-law process with (̂α, x̂M I N ). Assuming various
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Table 6 Block bootstrapped distributions for the estimated power-law exponents

Metric/Data frequency 5 days 20 days 60 days 90 days 125 days

Min 1.7770 1.7833 1.7216 1.7601 1.7913

< 2.5% 1.9570 1.8575 1.8272 1.8227 1.8967

< 5.0% 2.0241 1.8886 1.8462 1.8614 1.9319

Median 2.2209 2.0678 2.0863 2.1517 2.1732

> 5.0% 2.5152 2.4415 2.5776 2.7726 3.4826

> 97.5% 2.5809 2.5772 2.6642 2.9866 4.0193

Max 2.9970 3.0017 3.6043 4.5162 4.7691

Mean 2.2368 2.1053 2.1375 2.2135 2.3227

Std.Dev 0.1554 0.1824 0.2355 0.3086 0.4873

Skewness 0.7159 1.4608 1.2869 2.0617 2.5946

Kurtosis 1.7425 3.2789 2.8907 7.6970 7.1766

p-value (H0 : α < 2vs.H1 : α ≥ 2) 0.0390 0.3080 0.3190 0.2390 0.1450

Using block bootstraps as proposed by Grobys and Junttila (2021, Sect. 4), for each time frequency, I
simulate B = 1000 artificial time series of RMVs with randomly chosen block lengths. A block length of
10% of the corresponding sample length is used to address the presence of persistent regimes in the RMV
processes. Following Grobys and Junttila (2021), the randomly drawn block length follows a geometric
distribution. For example, for the RMV incorporating five daily data increments, the expected block length is
E[h] = 503 because the sample length of the data vector is T = 5, 033. Because the geometric distribution
is defined by parameter p and E[h] = (1 − p)/p, the distribution of the randomly drawn block length is
governed by GEO(p) with p = 0.0020. Then, for each b = 1, . . . , B artificial RMV time-series vectors,

the corresponding α̂ is computed using the optimized KS distance as outlined earlier. Then, based on the
earlier findings, the infinite-theoretical-variance hypothesis is tested as follows:
H0 : α < 2vs.H1 : α ≥ 2.

Counting the number of estimated α̂ for which α̂ < 2 is satisfied and dividing them by B corresponds here
to the empirical p-value. The distributional properties and the corresponding p-values for the statistical tests
are reported in this table

probabilities for P(LGN ), Table 4 reports the computed conditional probabilities
P(LGN |E). We observe from Table 4 that if it is assumed that the likelihood of the
lognormal distribution is 50%—which is “fair”—the probability that the distribution
is lognormal given the occurrence of extreme events is less than 30%, regardless which
time frequency is considered. Remarkably, even if we assume that the likelihood of
the lognormal distribution is 70%—which is rather “unreasonably high” as opposed
to “fair”—the probability that the distribution is lognormal given the occurrence of
extreme events is still less than 50%, regardless which time frequency is considered.
From Table 4, it becomes evident that one needs to assume a likelihood of 90% so
that the probability of the distribution being lognormal given the occurrence of the
extreme events would exceed 50%—at least for four out of five time frequencies. I
regard this as strong evidence in favor of power laws as opposed to the time-honored
lognormal distribution.
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Table 7 Bayes’ rule for discriminating between different power-law functions

P
(

PLDD
)

0.50 0.70 0.90 1

RMV based on 5 days 0.4698 0.6740 0.8886 1

RMV based on 20 days 0.4174 0.6258 0.8658 1

RMV based on 60 days 0.3601 0.5676 0.8351 1

RMV based on 90 days 0.3492 0.5559 0.8284 1

RMV based on 125 days 0.2646 0.4564 0.7641 1

Bayes’ rule is applied as outlined in detail by Taleb (2020, p. 52) to explore how likely it is that the data-
generating processes of RMVs are distributed as power-law processes where parameters are estimated via a
data-driven approach as opposed to a power law with parameter estimates retrieved from traditional log–log
regression, given the low-probability events observed in Table 10. According to Bayes’ rule, the conditional
probability that the underlying distribution governing those events follows a power law with parameters

estimated via a data-driven approach
(

P
(

PLDD |E
))

conditional on extreme event occurrences, is defined

as

P
(

PLDD |E
)

= P
(

PLDD
)

P(E
∣

∣

∣PLDD )
(

1−P
(

PLDD
))

P(E
∣

∣PLOLS ) +P
(

PLDD
)

P(E
∣

∣PLDD )
,

where P
(

PLDD |E
)

is the probability that the distribution is governed by a power law with parameters

estimated via a data-driven approach given that the corresponding event occurred, P(E
∣

∣

∣PLDD) is the

probability of the event given that the distribution is governed by a power law with parameters estimated

via a data-driven approach, and P(E
∣

∣

∣PLOLS) is the probability of the event given that the distribution is

governed by a power law with parameter estimates retrieved from traditional log–log regressions. The table

reports the computed likelihoods P
(

PLDD |E
)

3.5.2 Time aggregation: does the unconditional distribution converge toward
normal?

Concerning time aggregation—that is, as RMV data move from more to less frequen-
t—Segnon andLux (2013, p. 5f) argued on the one hand that “… the variance stabilizes
with increasing sample size and does not explode. Falling into the domain of attraction
of the Normal distributions, the overall shape of the return distribution would have to
change, i.e. get closer to the Normal under time aggregation. This is indeed the case,
as has been demonstrated by Teichmoeller (1971) and many later authors. Hence, the
basic finding on the unconditional distribution is that it converges toward the Gaus-
sian, but is distinctly different from it at the daily (and higher) frequencies.”Moreover,
the authors mentioned in Footnote 3, “While, in fact, the tail behavior would remain
qualitatively the same under time aggregation, the asymptotic power law would apply
in a more and more remote tail region only, and would, therefore, become less and
less visible for finite data samples under aggregation. There is, thus, both convergence
towards the Normal distribution and stability of power-law behavior in the tail under
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Table 8 Two-sample tests

Time frequency (TF) 5 20 60 90 125

α̂ 2.2368 2.1053 2.1375 2.2135 2.3227
(

α̂i − α̂ j
)

α̂i = 2.2368

0.1315 0.0993 0.0233 − 0.0859

ni (in %) 0.1099 0.4487 0.6268 0.5899 0.6100

σ̂ 2
α̂i

0.0241 0.0333 0.0555 0.0952 0.2375

√

σ̂2
α̂i
ni

+
σ̂2
α̂ j
n j

0.1680 0.2522 0.3208 0.4669

z 0.7827 0.3937 0.0726 − 0.1840

We employ two-sample tests to test the invariance across time frequencies. The corresponding test statistic
z is defined as,

z =
(

α̂i−α̂ j
)

√

√

√

√

σ̂2
α̂i
ni

+
σ̂2
α̂ j
n j

,

where α̂i (α̂ j ) denotes the estimate for α for time frequency i (j), σ̂ 2
α̂i

(σ̂ 2
α̂ j

) denotes the corresponding

estimated sample variance, and ni (n j ) denotes the number of observations in relative terms. For each time
frequency, we collect the estimates for sample averages (viz., means) for the point estimates as well as
the estimates for the corresponding variances − which are simply the squared standard deviations − from
Table 6. We then use the highest time frequency incorporating 5 squared daily observations as α̂i (viz.,

α̂i = 2.2368) in the formula above. The relative sample sizes of observations governed by power laws are
collected from Table 5. Then we test whether the estimates for all other time frequencies j are statistically
not different from the estimate α̂i . The results are reported in this table

aggregation. While the former governs the complete shape of the distribution, the lat-
ter applies further and further out in the tail only and would only be observed with a
sufficiently large number of observations.”

On the other hand, Taleb (2020, p. 187f) argued, “In a note ‘What can Taleb learn
fromMarkowitz’…, Jack L. Treynor, one of the founders of portfolio theory, defended
the field with the argument that the data may be fat tailed ‘short term’ but in something
called the ‘long term’ things become Gaussian. Sorry, it is not so. (We add the ergodic
problem that blurs, if not eliminates, the distinction between long term and short
term). The reason is that, simply we cannot possibly talk about ‘Gaussian’ if kurtosis
is infinite, even when lower moments exist. Further, for α ≈ 3, Central limit operates
very slowly, requires n of the order of 106 to become acceptable, and is not what we
have in the history of markets.” It becomes evident that opinions on this issue differ
among scholars. So what does the empirical evidence in the current research suggest?

To begin with, the hypothesis tests for finding the invariance of variances, as pre-
sented in Sect. 3.3, favor in the first instance Taleb’s (2020) point of view. However,
to explore this issue in more detail, I collect the point estimates for α from Table 2 and
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Fig. 3 Power-law exponents under time aggregation. The point estimates for α from Table 2 are collected
and plotted against the number of observations used in the vintages of data for variance comparisons
(‘resolution’), that is, 5, 20, 60, 90, and 125 squared daily returns. Weekly realized momentum variance
is the highest resolution incorporating the sum of 5 squared daily returns, whereas semiannual realized
momentum variance represents the lowest resolution incorporating the sum of 125 squared daily returns.
Moreover, a linear trend line is added to the graph

plot them against the corresponding data frequency, that is, fromweekly to semiannual
data frequency. The graph is shown in Fig. 3. Note again that here weekly RMV is
the highest data frequency incorporating the sum of 5 squared daily returns, whereas
semiannual realized momentum variance represents the lowest data frequency incor-
porating the sum of 125 squared daily returns. Moreover, a linear trend line is added
to the graph. Visual inspection reveals that the slope of the trend line decreases as we
move from higher to lower data frequency. Fitting an OLS regression shows that the
point estimate for the slope parameter is 2.38E–03 with a t-statistic of –15.27, indicat-
ing statistical significance on any level.12 That is, the regression model predicts, for
instance, that if we wish to analyze annual RMV, the expected power-law exponent
should be, accordingly, α̂ = 1.22. This suggests, in turn, that as we move from higher
to lower RMVdata frequency, wewould expect rathermore extreme events as opposed
to a vanishing of extreme events.

Finally, from Panel B of Table 1, we observe that the percentage of variance obser-
vations governed by a power-law process linearly increases as the data frequency
decreases. This starkly contrasts with Segno and Lux’s (2013) aforementioned argu-
ment that “the asymptotic power lawwould apply in amore andmore remote tail region
only, and would, therefore, become less and less visible for finite data samples under
aggregation.” Hence, the overall empirical evidence of the current research suggests
that the time aggregation hypothesis appears to be rather an illusion. Note that this
result could be a manifestation of the option-like behavior of momentum payoffs—a
phenomenon that perhaps results in incomputable riskiness of this investment vehicle.

12 The point estimate for the constant term is 1.81 with a t-statistic of 155.43. The coefficient of determi-
nation of that regression line is 99.90%.
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3.5.3 Alternative maximum likelihood estimation for estimating power-law
exponents

From Eq. (7), in association with the Hill plots reported in Figs. 14, 15, 16, 17 and
18, it becomes evident that α̂ depends on the chosen value for the cutoff, that is,
xMI N . Selecting a proper cutoff is, of course, a tricky matter. As an example, in an
attempt to replicate a study of Krämer and Runde (1996), who estimated the tail index
(e.g., power-law exponent) for the German stock index DAX, as well as 26 individual
constitutes over the 1960–1992 sample period, Lux (2000) argued that he couldn’t
obtain the same estimates. Further, he pointed out that the enormous discrepancies
between his replication attempt and the results documented by Krämer and Runde
(1996) are caused by differences in the chosen cutoffs. Moreover, Lux (2000, p. 646)
stated, “In view of these problems of implementations, the recent development of
methods for data-driven selection of the tail sample constitutes an important advance.”
Following Lux’s (2000) argument, this section employs a more recently developed
data-driven approach to select α̂, as proposed by the often-cited work of Clauset et al.
(2009).

Specifically, Clauset et al. (2009) proposed a goodness-of-fit (GoF) test based on
minimizing distance D between the power-law function and the empirical data. First,
the Kolmogorov–Smirnov (KS) distance is the maximum distance between the cumu-
lative density functions (CDFs) of the data and the fitted power-law model, as defined
by

D = MAXx≥xMIN |S(x) − P(x)|, (9)

where S(x) is the CDF of the data for the observationwith a value of at least xMI N , and
P(x) is theCDF for the power-lawmodel that best fits the data in the region x ≥ xMI N .
Estimate x̂M I N is then the value of xMI N thatminimizesD. Using the parameter vector
(̂α, x̂M I N ) that optimizes D, Clauset et al.’s (2009) GoF test generates a p-value that
quantifies the plausibility of the power-law null hypothesis. More precisely, this test
compares D with distance measurements for comparable synthetic data sets drawn
from the hypothesized model. The p-value is then defined as the fraction of synthetic
distances that are longer than the empirical distance. If we wish to use a significance
level of 5%, the power-law null hypothesis is not rejected for p-values exceeding 5%
because the difference between the empirical data and the model can be attributed to
statistical fluctuations alone. Implementation of this test is detailed in Clauset et al.’s
(2009, p. 675–678) study.

Using Clauset et al.’s (2009) approach to select the cutoffs, the results are reported
in Table 5.13 From Table 5, we observe that the estimated optimal power-law expo-
nents using Clauset et al.’s (2009) approach vary between 1.93 and 2.24. Specifically,
for all data frequencies that have a lower frequency than weekly data, α̂ < 2, which
supports the earlier results based on log–log regressions. Moreover, for all time fre-
quencies with a lower data frequency than monthly data, the GoF test cannot reject the

13 I used the Matlab scripts plfit.m and plpva.m provided by Aaron Clauset to estimate the power-law
exponents and to run the GoFs. The Matlab package is available for free at https://aaronclauset.github.io/
powerlaws/.
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power-law null hypothesis (i.e., p-values > 0.05), which supports the current study’s
results documented in Sect. 3.6. Furthermore, for the majority of time frequencies
(e.g., 60 days, 90 days, and 125 days), the point estimate for α̂ using Clauset et al.’s
(2009) approach falls in the 95% confidence interval for α̂ using traditional log–log
regressions, which suggests that—in most cases—Clauset et al.’s (2009) approach
selects power-law exponents that are statistically the same as those obtained from
log–log regressions. Interestingly, from Table 5 we observe that the percentage of
variance observations governed by a power-law process linearly increases as the data
frequency decreases which, again, supports the current study’s earlier documented
results using log–log regressions.

One could argue that using MLE, the assumption is made that the data are inde-
pendently distributed.

Hence, the MLE should be acknowledged here to be quasi-MLE (QMLE), as the
true MLE would require modeling the dynamics explicitly. Specifically, realized vari-
ances (or conditional variances) are typically subject to autocorrelation. To explicitly
address this issue, I make use of block bootstraps, as recently proposed by Grobys
and Junttila (2021, Sect. 4). The authors pointed out that t-statistics derived from
nonparametric block bootstraps are robust to unknown dependency structures in the
data. Therefore, for each time frequency, I simulate B = 1,000 artificial time series of
RMVs using nonparametric block bootstraps with randomly drawn block lengths. For
each given data frequency, I choose an expected block length of 10% of the sample
length to address the presence of persistent regimes in the RMVs. Following Grobys
and Junttila (2021), the randomly drawn block length follows a geometric distribu-
tion. For example, for the RMV incorporating five daily data increments, expected
block length E[h] corresponds to E[h] = 503 because the sample length of the data
vector is T = 5,033. Because the geometric distribution is defined by parameter p
and E[h] = (1 − p)/p, the distribution of the randomly drawn block length is gov-
erned by GEO(p) with p = 0.0020. Then, for each b = 1, . . . , B artificial RMV
time-series vector, I compute the corresponding α̂ using the optimized KS distance
as outlined earlier. Then, based on the earlier findings, I test the infinite-theoretical-
variance hypothesis

H0 : α < 2 vs. H1 : α ≥ 2,

by counting the number of estimated values α̂ for which α̂ < 2 is satisfied and dividing
them by B, which corresponds to the empirical p-value.14 The distributional properties
and the corresponding p-values for the statistical tests are reported in Table 6. From
Table 6 we observe that even though mean and median are above α̂ = 2 regardless
which frequency is considered, the infinite-theoretical-variance hypothesis cannot be
rejected for most data frequencies apart from for the RMV incorporating five daily
data increments. This finding strongly supports earlier documented results for log–log
regressions.

14 The data matrices obtained via the block bootstrap procedure are available from the author upon request.
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Finally, one may wonder why this study directly uses realized variances as opposed
to returns. The main argument here is that RMVs incorporate aggregated informa-
tion: whereas monthly returns incorporate information from only two closing prices,
monthly RMV incorporates information from (at least) 40 daily closing prices. To
illustrate the loss of information, I downloaded monthly data for 10 value-weighted
portfolios sorted by cumulative past returns fromKenneth French’s data library cover-
ing the period from January 1927 to June 2022. The portfolios are constructedmonthly
using NYSE prior (2–12) return decile breakpoints. The zero-cost momentum port-
folio buys the portfolio consisting of stocks with the highest cumulative prior return
and sells the portfolio consisting of stocks with the lowest cumulative prior return.
Using the absolute amount of the zero-cost momentum portfolio, I again estimated the
power-law exponent using Clauset et al.’s (2009) approach. Interestingly, α̂ = 3.15
with corresponding xMI N = 7.41, suggesting that both theoretical mean and theo-
retical variance for (absolute) monthly zero-cost momentum portfolio returns would
exist.15 Recall that using the data frequency-congruent RMV (e.g., 20 daily incre-
ments) suggests that the theoretical variance is undefined as α̂ = 1.99 (Table 5). It is
evident that neglecting information content from aggregated information can result in
misleading inference.

3.5.4 Data-driven estimation approach or traditional log–log regressions?

Given the slight discrepancy in point estimates, the question arises: Which point esti-
mates should one choose? Taleb (2010, p. 266) pointed out the following issue: “I
have learned a few tricks from experience: whichever exponent I try to measure will
likely be overestimated (recall that a higher exponent implies a smaller role for large
deviations) – what you see is likely to be less Black Swannish than what you don’t see.
I call this the masquerade problem. Let’s say I generate a process that has an exponent
of 1.7. You do not see what is inside the engine, only the data coming out. If I ask you
what the exponent is, odds are that you will compute something like 2.4. You would
do so even if you had a million data points. The reason is that it takes a long time for
some fractal processes to reveal their properties, and you underestimate the severity
of the shock.” Keeping in mind this problematic issue, it appears more reasonable to
choose the estimate that delivers the exponent with the lowest economic magnitude.

This would mean in the current study’s context that OLS estimates obtained from
employing traditional log–log regressions should be preferred as opposed to Clauset
et al.’s (2009) data-driven approach. Recall from Fig. 1 that in the sample used to
implementmomentum strategies in the original study of Jegadeesh and Titman (1993),
therewas anabsenceof evidence formomentumcrashes; however, that didn’tmean that
there was evidence of absence for momentum crashes. From Table 9 in the appendix,
we see that the top 1% of momentum payoffs exhibiting the highest volatility were
observed in the ex-post period of the original sample,which underpins the reasonability

15 The corresponding GoF shows a p-value of 0.1310, suggesting that the power-law null hypothesis
cannot be rejected for absolute momentum returns. Moreover, xM I N = 7.41, suggesting that 22.47% of
the 1,148 monthly sample observations were governed by a power-law process. Recall from Table 5 that the
corresponding data frequency for RMVs suggests that 44.87% of the sample observations were governed
by a power-law process.
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of Taleb’s (2010) point of view. Indeed, low-probability events that have an extreme
impact are not necessarily visible in the data ex-ante simply because these events have,
per definition, a low probability of occurrence.

Nevertheless, to explore this issue in more detail, I compute the posterior proba-
bilities using Bayes’ rule, as outlined in Sect. 3.5.1, to assess the likelihood of the
data-generating processes of RMVs being governed by power laws with parameters
derived from the data-driven approach, as elaborated on in this current section, as
opposed to power laws with parameter estimates retrieved from traditional log–log
regressions. In Table 11 in the appendix, the corresponding conditional probabilities
are reported for the arrival of the observed extreme events given that the underly-
ing distribution is either governed by power laws with parameters derived from the
data-driven approach or power laws with parameter estimates derived from tradi-
tional log–log regressions. Using Bayes’ rule and those conditional probabilities from
Table 11, I report in Table 7 the conditional probabilities that the distributions are gov-
erned by power lawswith parameters derived from the data-driven approach given that
the observed extreme events occurred. We observe from Table 7 that if it is assumed
that the likelihood of the power-laws model derived from the data-driven procedure
is 50%—which is “fair”—the probability that the distribution is governed by a power
law with parameters derived from the data-driven approach given the arrival of the
observed extreme events is less than 50%, regardless which time frequency is consid-
ered. Strikingly, considering the semiannual frequency, it becomes evident that even
if we assume that the likelihood of a power law with parameters derived from the
data-driven approach is 70%—which is rather “unreasonably high” as opposed to
“fair”—the probability that the distribution is governed by a power law with param-
eters derived from the data-driven approach is still less than 50%. Overall, given the
empirical evidence based on the results reported in Table 7, employing the data-driven
approach does not result in superior parametrizations for the power-law functions.

3.5.5 Two-sample tests

Finally, a reader could be concerned about the tests for invariance across time frequen-
cies, as performed in Sects. 3.4.1., because one could argue that testing whether the
estimates from one frequency fall into the CI of the other does not have the correct size,
as it ignores the estimation error in one sample. To address this issue, I use two-sample
tests given by,

z =
(

α̂i − α̂ j
)

√

σ̂ 2
α̂i
ni

+
σ̂ 2

α̂ j
n j

,

where α̂i (̂α j ) denotes the estimate for α for time frequency i (j), σ̂ 2
α̂i

(̂σ 2
α̂ j
) denotes

the corresponding estimated sample variance, and ni (n j ) denotes the number of
observations in relative terms. For each time frequency, I collect the estimates for
sample averages (viz., means) for the point estimates as well as the estimates for the
corresponding variances − which are simply the squared standard deviations − from
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Table 6. We then use the highest time frequency (TF) incorporating 5 squared daily
return observations as α̂i (viz., α̂i = 2.2368) in the formula above. The relative sample
sizes of observations governed by power laws are collected from Table 5. Then I test
whether the estimates for all other time frequencies j are statistically different from
the estimate α̂i . That is,

H0 : (

αi − α j
) = 0 vs. H1 : (

αi − α j
) 
= 0.

The results are reported in Table 8. As an example, testing TF 5 against
TF 20, the nominator for z is 0.1315. Since 0.1099 of the sample obser-
vations are governed by a power law for sample i, whereas 0.4487 of
sample observations are governed by a power law for sample j, I obtain
√

σ̂ 2
α̂i

/ni + σ̂ 2
α̂ j

/n j = √
0.1967 · 0.0241 + 0.8033 · 0.0333 = 0.1680 for the denom-

inator of z. We observe from Table 8 that we cannot reject the invariance hypothesis
because the differences (̂αi − α̂ j ) are statistically not different from each other.16 I
infer that the results of this robustness check strongly confirm the results documented
in Sect. 3.4.1.

4 Conclusion

This study tests whether RMVs are governed by power laws. In doing, various RMV
data frequencies were analyzed. The general findings of this study indicate that regard-
less of the methodology used to estimate power-law exponents, the power-law null
hypothesis cannot be rejected. Testing for invariance shows that power-law behavior
is present across all time frequencies. Various sample split tests provide further evi-
dence for the power-law behavior not being subject to any sample specificity because
the point estimates for the power-law exponents for the later subsample fall into the
95% confidence interval for the estimated power-law exponents for the first subsam-
ple. This result holds regardless of the data frequency analyzed. This implies that the
data-generating process is stable across time. This result is contrary to earlier research
documenting that realized variances are close to lognormally distributed. To test the
lognormal distribution against power laws, this study applies Bayes’ rule. Even if it is
assumed that the likelihood of the lognormal distribution is as unreasonably high as
70%, the probability that the RMV distributions are lognormal given the occurrence
of observed extreme events is still less than 50%, regardless which time frequency is
considered. In this study, this is interpreted as strong evidence in favor of power laws
as opposed to the lognormal distribution. Furthermore, the power law behavior does
not vanish for less frequent RMVs.

Surprisingly, the empirical outcome documented here suggests rather the opposite;
that is, the lower the time frequency, the more extreme events can be expected in
the variance processes, which is empirically manifested in a lower economic magni-
tude of the power-law exponent. Overall, the results of this study show that the risk

16 The results would of course not change if we used any other TF for α̂i because all other TFs exhibit
higher estimates uncertainties.
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for the momentum strategy is infinite, which is empirically manifested in power-law
exponents of α < 2 which has, in turn, some serious consequences. First, in finite sam-
ples, we do not observe the time-honored, pervasive “momentum premium,” which is
documented to correspond to 1% per month across various otherwise unrelated asset
classes; second, the momentum premium does not have a defined t-statistic regard-
less of time frequency. The claim raised by many scholars in numerous momentum
studies published in leading finance outlets that “the momentum premium exhibits a
statistically significant t-statistic” is therefore invalid. Moreover, other metrics incor-
porating variances or functions of it, such as Sharpe ratios, are not defined either for
this investment vehicle. As a result, this study argues that the momentum literature
seems to be subject to “story-telling” given the absence of a firm common foundation
supporting its fundamental claim. Taleb (2012) pointed out that “… theories come and
go; experience stays. Explanations change all the time, and have changed all the time
in history (because of casual opacity, the invisibility of causes) with people involved in
the incremental development of ideas thinking they had a definite theory; experience
remains constant” (p. 350). Keeping this in mind, while this study is empirical in its
nature, telling its “story” is left for future studies.

Appendix

See Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18.
See Tables 9, 10 and 11.

Fig. 4 Realized momentum variance based on five squared daily returns. Daily data for 10 value-weighted
portfolios sorted by cumulative past returnswere retrieved fromKennethFrench’s data library. Theportfolios
are constructed daily using NYSE prior (2–12) return decile breakpoints. The sample is from November 3,
1926 to June 30, 2022. The zero-cost momentum portfolio buys the portfolio consisting of stocks with the
highest cumulative prior return and sells the portfolio consisting of stocks with the lowest cumulative prior
return. The RMVs uses nonoverlapping squared daily returns:

RMV t =
N
∑

j=1
R2
j,t ,

where R j,t denotes the daily return of the momentum portfolio on day j in time unit t and N = 5. Using
nonoverlapping observations to compute the RMV gives us 5,033 realizations. This table plots the time
series of the corresponding RMV
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Fig. 5 Realized momentum variance based on 20 squared daily returns. Daily data for 10 value-weighted
portfolios sorted by cumulative past returnswere retrieved fromKennethFrench’s data library. Theportfolios
are constructed daily using NYSE prior (2–12) return decile breakpoints. The sample is from November 3,
1926 to June 30, 2022. The zero-cost momentum portfolio buys the portfolio consisting of stocks with the
highest cumulative prior return and sells the portfolio consisting of stocks with the lowest cumulative prior
return. The RMVs use nonoverlapping squared daily returns:

RMV t =
N
∑

j=1
R2
j,t ,

where R j,t denotes the daily return of the momentum portfolio on day j in time unit t and N = 20. Using
nonoverlapping observations to compute the RMV gives us 1,255 realizations. This table plots the time
series of the corresponding RMV
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Fig. 6 Realized momentum variance based on 60 squared daily returns. Daily data for 10 value-weighted
portfolios sorted by cumulative past returnswere retrieved fromKennethFrench’s data library. Theportfolios
are constructed daily using NYSE prior (2–12) return decile breakpoints. The sample is from November 3,
1926 to June 30, 2022. The zero-cost momentum portfolio buys the portfolio consisting of stocks with the
highest cumulative prior return and sells the portfolio consisting of stocks with the lowest cumulative prior
return. The RMVs use nonoverlapping squared daily returns:

RMV t =
N
∑

j=1
R2
j,t ,

where R j,t denotes the daily return of the momentum portfolio on day j in time unit t and N = 60. Using
nonoverlapping observations to compute the RMV gives us 1,255 realizations. This table plots the time
series of the corresponding RMV
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Fig. 7 Realized momentum variance based on 90 squared daily returns. Daily data for 10 value-weighted
portfolios sorted by cumulative past returnswere retrieved fromKennethFrench’s data library. Theportfolios
are constructed daily using NYSE prior (2–12) return decile breakpoints. The sample is from November 3,
1926 to June 30, 2022. The zero-cost momentum portfolio buys the portfolio consisting of stocks with the
highest cumulative prior return and sells the portfolio consisting of stocks with the lowest cumulative prior
return. The RMVs use nonoverlapping squared daily returns:

RMV t =
N
∑

j=1
R2
j,t ,

where R j,t denotes the daily return of the momentum portfolio on day j in time unit t and N = 90. Using
nonoverlapping observations to compute the RMV gives us 278 realizations. This table plots the time series
of the corresponding RMV
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Fig. 8 Realized momentum variance based on 125 squared daily returns. Daily data for 10 value-weighted
portfolios sorted by cumulative past returnswere retrieved fromKennethFrench’s data library. Theportfolios
are constructed daily using NYSE prior (2–12) return decile breakpoints. The sample is from November 3,
1926 to June 30, 2022. The zero-cost momentum portfolio buys the portfolio consisting of stocks with the
highest cumulative prior return and sells the portfolio consisting of stocks with the lowest cumulative prior
return. The RMVs use nonoverlapping squared daily returns:

RMV t =
N
∑

j=1
R2
j,t ,

where R j,t denotes the daily return of the momentum portfolio on day j in time unit t and N = 125. Using
nonoverlapping observations to compute the RMV gives us 200 realizations. This table plots the time series
of the corresponding RMV
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Fig. 9 Log–log graph for realized momentum variance based on five squared daily returns. Variance obser-
vations are binned into a series of N = 10 equal intervals, and then the average variance within each interval
is calculated and the number of observations is counted. Denoting the natural logarithm of the number of
observations within each interval as yi and the natural logarithm of the average variance within each interval
as xi , where i = 1, . . . , N , this figure shows the log–log graph for realized momentum variance based on
five squared daily returns

Fig. 10 Log–log graph for realized momentum variance based on 20 squared daily returns. Variance obser-
vations are binned into a series of N = 10 equal intervals, and then the average variance within each interval
is calculated and the number of observations is counted. Denoting the natural logarithm of the number of
observations within each interval as yi and the natural logarithm of the average variance within each interval
as xi , where i = 1, . . . , N , this figure shows the log–log graph for realized momentum variance based on
20 squared daily returns
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Fig. 11 Log–log graph for realized momentum variance based on 60 squared daily returns. Variance obser-
vations are binned into a series of N = 10 equal intervals, and then the average variance within each interval
is calculated and the number of observations is counted. Denoting the natural logarithm of the number of
observations within each interval as yi and the natural logarithm of the average variance within each interval
as xi , where i = 1, . . . , N , this figure shows the log–log graph for realized momentum variance based on
60 squared daily returns

Fig. 12 Log–log graph for realized momentum variance based on 90 squared daily returns. Variance obser-
vations are binned into a series of N = 10 equal intervals, and then the average variance within each interval
is calculated and the number of observations is counted. Denoting the natural logarithm of the number of
observations within each interval as yi and the natural logarithm of the average variance within each interval
as xi , where i = 1, . . . , N , this figure shows the log–log graph for realized momentum variance based on
90 squared daily returns
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Fig. 13 Log–log graph for realized momentum variance based on 125 squared daily returns. Variance obser-
vations are binned into a series of N = 10 equal intervals, and then the average variance within each interval
is calculated and the number of observations is counted. Denoting the natural logarithm of the number of
observations within each interval as yi and the natural logarithm of the average variance within each interval
as xi , where i = 1, . . . , N , this figure shows the log–log graph for realized momentum variance based on
125 squared daily returns

Fig. 14 Hill plot for realized momentum variance based on five squared daily returns. This figure shows
the evolution of the Hill estimator, which coincides with the MLE, giving us the corresponding α̂ for each
value of x selected for xM I N (e.g., variance cutoff):

α̂ = 1 + T

(

T
∑

i=1
ln

(

xi
xM I N

)

)−1

,

where α̂ denotes theMLEestimator, orHill estimator, for a given xM I N , and T is the number of observations
exceeding xM I N
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Fig. 15 Hill plot for realized momentum variance based on 20 squared daily returns. This figure shows the
evolution of the Hill estimator, which coincides with theMLE, giving us the corresponding α̂ for each value
of x selected for xM I N (e.g., variance cutoff):

α̂ = 1 + T

(

T
∑

i=1
ln

(

xi
xM I N

)

)−1

,

where α̂ denotes theMLEestimator, orHill estimator, for a given xM I N , and T is the number of observations
exceeding xM I N

Fig. 16 Hill plot for realized momentum variance based on 60 squared daily returns. This figure shows the
evolution of the Hill estimator, which coincides with theMLE, giving us the corresponding α̂ for each value
of x selected for xM I N (e.g., variance cutoff):

α̂ = 1 + T

(

T
∑

i=1
ln

(

xi
xM I N

)

)−1

,

where α̂ denotes theMLEestimator, orHill estimator, for a given xM I N , and T is the number of observations
exceeding xM I N
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Fig. 17 Hill plot for realized momentum variance based on 90 squared daily returns. This figure shows the
evolution of the Hill estimator, which coincides with theMLE, giving us the corresponding α̂ for each value
of x selected for xM I N (e.g., variance cutoff):

α̂ = 1 + T

(

T
∑

i=1
ln

(

xi
xM I N

)

)−1

,

where α̂ denotes theMLEestimator, orHill estimator, for a given xM I N , and T is the number of observations
exceeding xM I N

Fig. 18 Hill plot for realized momentum variance based on 125 squared daily returns. This figure shows
the evolution of the Hill estimator, which coincides with the MLE, giving us the corresponding α̂ for each
value of x selected for xM I N (e.g., variance cutoff):

α̂ = 1 + T

(

T
∑

i=1
ln

(

xi
xM I N

)

)−1

,

where α̂ denotes theMLEestimator, orHill estimator, for a given xM I N , and T is the number of observations
exceeding xM I N
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Table 9 1% of the
highest-volatility months Rank Date Return

1 April 2009 – 45.21

2 January 2001 – 42.11

3 March 2009 – 39.64

4 April 2020 – 28.75

5 November 2020 – 26.74

6 August 2009 – 25.78

7 February 2000 23.81

Monthly data for 10 value-weighted portfolios sorted by cumulative
past returns were downloaded from Kenneth French’s data library.
The portfolios are constructed daily using NYSE prior (2–12) return
decile breakpoints. According to the description provided by Kenneth
French’s data library, the portfolios constructed each month include
NYSE, AMEX, and NASDAQ stocks with prior return data. The data
sample is from January 1965 to April 2022. This table collects 1% of
the monthly payoffs with the highest volatilities

Table 10 Probabilities of extreme events

Days 5 20 60 90 125

Maximum 1,054.17 1,398.23 2,341.27 3,399.48 3,859.40

Sigma 30.71 13.62 8.70 8.49 7.47

P(E |PL) 7.90E–03 1.87E–02 3.75E–02 4.25E–02 6.53E–02

P(E |LGN ) 3.08E–04 4.51E–03 1.53E–02 1.62E–02 2.22E–02

The variances of the momentum strategy are computed for different time frequencies. For instance, the
sum of 5 squared and nonoverlapping daily returns are used for calculating the weekly momentum variance
series, whereas the sum of 125 squared and nonoverlapping daily returns are used for calculating the
semiannual momentum variance series. The table reports extreme events for each momentum variance
frequency, as well as deviations in terms of sigma events. Moreover, the probabilities are computed for
power-law functions—using the estimates for α̂ and xM I N from Table 1—and the lognormal distribution
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Table 11 Probabilities of extreme events for different power-law functions

Days 5 20 60 90 125

Maximum 1,054.17 1,398.23 2,341.27 3,399.48 3,859.40

Sigma 30.71 13.62 8.70 8.49 7.47

P(E
∣

∣

∣PLOLS) 7.90E–03 1.87E–02 3.75E–02 4.25E–02 6.53E–02

P(E
∣

∣

∣PLDD) 7.00E–03 1.34E–02 2.11E–02 2.28E–02 2.35E–02

The variances of the momentum strategy are computed for different time frequencies. For instance, the
sum of 5 squared and nonoverlapping daily returns are used for calculating the weekly momentum variance
series, whereas the sum of 125 squared and nonoverlapping daily returns are used for calculating the
semiannual momentum variance series. The table reports extreme events for each momentum variance
frequency, as well as deviations in terms of sigma events. Moreover, the probabilities are computed for
power-law functions—using the estimates for α̂ and xM I N from Table 1 (log–log regressions) and using

the estimates for α̂ and xM I N from Table 5 (data-driven approach). In this table, P(E
∣

∣

∣PLDD) is the

probability of the event given that the distribution is governed by a power law with parameters estimated

via a data-driven approach, and P(E
∣

∣

∣PLOLS) is the probability of the event given that the distribution is

governed by a power law with parameter estimates retrieved from traditional log–log regressions
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