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Abstract
Weestablish the asset pricing and hedging principle in a financial marketmodel, which
is a specific case of the von Neumann-Gale dynamical system, with both fixed and
proportional transaction costs and trading constraints. The main results are hedging
criteria stated in terms of consistent valuation systems, generalizing the notion of an
equivalent martingale measure.
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1 Introduction

The classical result in Mathematical Finance states that in a complete frictionless mar-
ket with no transaction costs and no portfolio constraints the "fair" (no-arbitrage) price
of a derivative security equals the expectation, with respect to the unique martingale
measure, of the security’s discounted payoff (see, for instance, Pliska (1997); Björk
(1998), or Föllmer and Schied (2002)). This result has been extended to financial mar-
kets with transaction costs and trading constraints by numerous researchers, including
Bensaid et al. (1992); Cvitanić and Karatzas (1996); Soner et al. (1995); Jouini and
Kallal (1995a, b, 1999); Jouini (2000, 2001); Föllmer and Kramkov (1997); Carassus
et al. (2001); Napp (2001); Jouini and Napp (2001); Kabanov and Stricker (2001);
Kabanov (1999, 2001); Stettner (2002); Schachermayer (2004); Roux (2011), and
others.

Dempster et al. (2006) established the pricing principle which unifies previous
results by leveraging the parallelism between paths of economic dynamics in the von
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Neumann-Gale model and hedging strategies in a dynamic model of a financial mar-
ket. Von Neumann-Gale dynamical systems, originally introduced by Von Neumann
(1937); Gale (1956), and Rockafellar (1967) for deterministic economic growth mod-
elling, have been extended to stochastic settings by Dynkin, Radner, and others in the
1970s Dynkin (1971, 1972); Dynkin and Yushkevich (1979); Radner (1971, 1972).
Recent advancements (see, e.g., Evstigneev and Schenk-Hoppé 2006, 2008; Bahsoun
et al. 2008; Zhitlukhin 2019) have surmounted earlier challenges, and shown that these
stochastic systems provide a natural framework for modelling financial markets with
frictions. Dempster et al. (2006) addressed no-arbitrage pricing and hedging with pro-
portional transaction costs, and later was extended to a broader context by Evstigneev
and Zhitlukhin (2013). Babaei et al. (2020a, b, 2021) explored von Neumann-Gale
dynamics in the capital growth theory under proportional transaction costs, further
extending the results in this field.

The primary contribution of this paper lies in the extension of the hedging and pric-
ing principle in multiple directions: incorporating fixed and proportional transaction
costs, allowing short selling under specified constraints, including margin require-
ments, and accounting for assets paying dividends with potentially different rates for
long and short positions. The main results of the paper present general hedging crite-
ria expressed in terms of consistent discount factors and consistent valuation systems,
extending the notion of an equivalent martingale measure.

Let us briefly mention other results related to the topic of the present paper. The
equivalence between the absence of arbitrage and the existence of risk-neutral mea-
sures under fixed transaction costs has been studied by Jouini et al. (2001). Lépinette
and Tran (2016, 2017) investigated the separation of risk measures in the same con-
text. Brown and Zastawniak (2020) extended this analysis to situations where both
fixed and proportional transaction costs apply concurrently. They demonstrated that
the absence of arbitrage in a model consisting of one risky asset and one risk-free
asset with both fixed and proportional transaction costs is equivalent to the existence
of a family of absolutely continuous single-step probability measures. This family,
together with an adapted process within the bid-ask intervals satisfying the martingale
property for each measure, ensures the absence of arbitrage.

The paper’s structure is as follows. Section 2 describes the model. Section 3 states
the hedging problem and provides some basic results about it in the model at hand.
Section 4 establishes the hedging criteria in terms of consistent discount factors. Sec-
tion 5 defines and discusses the notion of a consistent valuation system and its relation
to the hedging problem. The Appendix assembles general mathematical facts used in
this work.

2 Themodel

We consider a model of a financial market with fixed and proportional transaction
costs, as well as portfolio constraints, which is based on vonNeumann-Gale dynamical
systems.

Let (�,F , P) be a finite probability space and F0 ⊆ F1 ⊆ ... ⊆ FT = F a
sequence of algebras representing a filtration on this space. Sets in the algebra Ft
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are interpreted as events observable prior to date t . Without loss of generality the
probability of each ω ∈ � is positive. Equalities and inequalities for random variables
will be understood to hold for all ω.

We consider a market where m assets are traded at dates t = 0, 1, . . . , T . The
positions of a portfolio a ∈ R

m will be expressed in terms of their value.
For each t = 0, 1, . . . , T and i = 1, . . . ,m the following Ft -measurable random

variables are given: market prices st,i > 0, transaction cost rates for selling and buying
assets 0 ≤ λ+

t,i < 1, λ−
t,i ≥ 0, fixed transaction costs Ct ≥ 0, dividend yield for long

and short positions 0 ≤ D+
t,i ≤ D−

t,i . Let Rt,i = st,i/st−1,i denote the return of assets.

Portfolio constraints in the model are specified by the cones1

Xt (ω) =
{
a ∈ R

m :
m∑
i=1

(
1 − λ+

t,i (ω)
)
ai+ ≥ μt (ω)

m∑
i=1

(
1 + λ−

t,i (ω)
)
ai−

}
, (1)

where μt (ω) > 1 are Ft -measurable random variables which can be interpreted as
margin requirement coefficients: a trader must be able to liquidate the long positions
of her portfolio to cover the short positions with excess determined by μt .

Trading in the model at hand goes on as follows. At each date t , t = 1, . . . , T − 1,
a trader pays Ct as fixed transaction costs. We will assume that C0 = CT = 0. Then
she receives the dividend on her portfolio a(ω) that she purchased at the previous date.
The amount of dividend is specified by the function dt (ω, a) defined by the formula

dt (a) =
m∑
i=1

(
D+
t,i a

i+ − D−
t,i a

i−
)

.

Here D±
t,i specify the amount of dividend received or returned2 for each dollar invested

in asset i . The amount of dividend received or returned for 1 physical unit of asset i
will be D±

t,i st−1,i .
After that, the trader rearranges her portfolio a(ω) with added dividend to a port-

folio b(ω) subject to the self-financing constraint. The possibility of rearrangement is
specified by the inequality

m∑
i=1

(
1 − λ+

t,i

) (
Rt,i a

i − bi
)

+ + dt (a) ≥
m∑
i=1

(
1 + λ−

t,i

) (
Rt,i a

i − bi
)

− + Ct .

(2)

The left-hand side of (2) is the amount of money the trader receives for selling the
assets plus the dividends, the right-hand side is the amount of money she pays for
buying the assets, including fixed transaction costs. This inequality means that the
trader does not use external funds to rearrange her portfolio, so it can be regarded as
a self-financing condition (with a possibility of free disposal).

1 A set X in a linear space is called a cone if it contains with any its elements x, y any non-negative linear
combination λx + μy (λ, μ ≥ 0) of these elements. The cone X is called pointed if the inclusions x ∈ X
and −x ∈ X imply x = 0.
2 We assume that dividend on short positions must be returned.
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Let

ψt (ω, a, b) =
m∑
i=1

(
1 − λ+

t,i

) (
Rt,i a

i − bi
)

+

−
m∑
i=1

(
1 + λ−

t,i

) (
Rt,i a

i − bi
)

− + dt (a). (3)

Then inequality (2) can be stated as ψt (ω, a, b) ≥ Ct (ω). The above description of
the model corresponds to the requirement that pairs of portfolios (a, b) belong to the
sets

Zt (ω) := {(a, b) ∈ Xt−1(ω) × Xt (ω) : ψt (ω, a, b) ≥ Ct (ω)} . (4)

A natural instance of this model is when asset 1 represents cash deposited with a
bank account, and the other assets represent holdings in shares of stock. Then it is
natural to put st,1 = 1, λ±

t,1 = 0 (value is expressed in terms of cash, and there are

no transaction costs for cash). The random variables D±
t,1 may be Ft−1-measurable

and represent risk-free interest rates for lending and borrowing money. The random
variables D±

t,i , i ≥ 2, may be Ft -measurable and represent dividend yield rates on
stock. The possibility to have different dividend rates for long and short positions may
be used e.g. when some assets pay dividends in a currency different from asset 1 and
there is a bid–ask spread in the exchange rates.

Observe that Zt (ω) is a convex set but not a cone: it is convex, since the function
ψt (a, b) is concave as follows from the representation

ψt (a, b) =
m∑
i=1

[(
1 − λ+

t,i

) (
Rt,i a

i − bi
)

+ D+
t,i a

i
]

−
m∑
i=1

[(
λ−
t,i + λ+

t,i

) (
Rt,i a

i − bi
)

− +
(
D−
t,i − D+

t,i

)
ai−

]
,

where the first sum is a linear function of a, b and the second sum is a convex function
of a, b. However, it does not contain with any pair (a, b) all pairs λ(a, b), where λ ≥ 0.

The sets Xt (ω) and Zt (ω) described above generate a stochastic dynamical system
over the time interval t = 0, 1, . . . , T . Let Lm

t (t = 0, 1, ...) be a linear space of
Ft -measurable vector functions x(ω)with values inRm . We say that a vector function
x(ω) is a random state of the system and write x ∈ Xt if x ∈ Lm

t and x(ω) ∈ Xt (ω).
A sequence of random states x0 ∈ X0, x1 ∈ X1, ... is called a feasible trading

strategy if

(xt−1(ω), xt (ω)) ∈ Zt (ω), t = 1, . . . , T − 1.

Note that a feasible trading strategy in the model is nothing but a path of the dynamical
system under consideration. Thus, this model is a version of a von Neumann-Gale
model in which the sets Xt are cones, but the sets Zt are just convex. This extends
previous literature on applications of von Neumann-Gale models to mathematical
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finance which dealt with conic models (see, e.g., Dempster et al. 2006; Evstigneev
and Zhitlukhin 2013).

3 The hedging problem

Let us define the following cones describing possibilities of constructing initial
portfolios and liquidating terminal ones:

V0(ω) = {(a, b) ∈ R+ × X0 : a ≥ −ψ0(ω, 0, b)}, (5)

and

VT (ω) = {(a, b) ∈ XT−1(ω) × R : ψT (ω, a, 0) ≥ b}, (6)

where ψ0 and ψT are defined by (3) (in the formula for ψ0 one can formally put
R0,i = 1 and d0(a) ≡ 0, since we only consider ψ0(ω, 0, ·)).

Thus, we state that to create a portfolio b at time 0, it is essential to have at least
an amount of money −ψ0(ω, 0,−b). When liquidating a portfolio a created at time
T − 1 to obtain funds at time T , one must ensure that the resulting amount of money
ψT (ω, a, 0) exceeds the value of b. This rationale underlies the definitions of the cones
V0 and VT in equations (5) and (6).

A sequence (v0, x0, x1, . . . , xT−1, vT ) is called a hedging strategy if

(a) (x0, x1, . . . , xT−1) is a feasible trading strategy,
(b) v0 ∈ L1

0 and (v0(ω), x0(ω)) ∈ V0(ω),
(c) vT ∈ L1

T and (xT−1(ω), vT (ω)) ∈ VT (ω).

We shall say that an initial endowment v0 ∈ L1
0 allows the hedging of a contingent

claim vT ∈ L1
T if there exists a hedging strategy of the form (v0, x0, x1, . . . , xT−1, vT ).

Denote by H the set of pairs (v0, vT ) ∈ L1
0 × L1

T such that v0 allows the hedging
of vT . The main question we are interested in is how to characterize the set H. This
question is of fundamental importance for asset pricing: the smallest element of the
set {v0 : (v0, vT ) ∈ H} represents the hedging price of the contingent claim vT .

Let us introduce two basic assumptions that will be assumed to hold throughout
the paper. Define �+

t,i (ω) = 1 − λ+
t,i and �−

t,i (ω) = 1 + λ−
t,i . Then we require the

following to hold.
(B1) For each t , there exist constants Rt , Rt ,�t ,�t , Dt , andCt such that 0 < Rt ≤

Rt,i (ω) ≤ Rt , 0 < �t ≤ �+
t,i (ω), �−

t,i (ω) ≤ �t , D
−
t,i (ω) ≤ Dt , and Ct (ω) ≤ Ct for

all i , ω.
(B2) For each t , we have μt > νt where

νt := max{(�t+1Rt+1 + Dt+1)/(�t+1Rt+1 + Dt+1);�t/�t }

and Dt ≥ 0 is a constant such that Dt ≤ D+
t,i (ω) for all ω, i .

These assumptions are not restrictive, and in fact, (B1) is always satisfied since the
probability space is finite.
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The following propositions prove some technical properties of the model that will
be used in what follows. For convenience of notation, denote

Z0(ω) := V0(ω), ZT (ω) := VT (ω).

The first proposition shows that the model has a property of "strict monotonicity".

Proposition 1 Suppose (a, b) ∈ Zt (ω) for some t = 0, . . . , T . Then for any a′ ≥ a
such that a′ �= a, there exists b′ such that b′ ≥ b, b′ �= b and (a′, b′) ∈ Zt (ω).

Proof We first prove it for t = 0. Let (a, b) ∈ Z0(ω) = V0(ω), and a′ > a. Let
r = ( a

′−a
�1

, 0, . . . , 0), and b′ = b + r . As Xt (ω) ⊇ Rm+ and is a cone, we have

b′ ∈ X0(ω). Then

−ψ0(ω, 0, b′) = −ψ0(ω, 0, b + r) ≤ −ψ0(ω, 0, b) − ψ0(ω, 0, r) ≤ a′,

where the first inequality holds because ψ0(ω, 0, x) is concave and positively homo-
geneous (of degree one) in x , and the second inequality holds by using condition

(B1) and the fact that −ψ0 (ω, 0, r) =
(
1 + λ+

0,1

)
a′−a
�1

≤ a′ − a. This proves that

(a′, b′) ∈ Z0(ω)

Let us prove it for t = T . Let (a, b) ∈ ZT (ω) = VT (ω), and a′ ≥ a, a′ �= a. We
can write a′ = a + r , where r = (

r1, . . . , rm
)
, r i ≥ 0 for all i , and r j > 0 for some

j . Then

ψT
(
ω, a′, 0

) ≥ ψT (ω, a, 0) + ψT (ω, r , 0) ≥ b + r j
(
DT + RT�T

)
> b.

Let b′ = b + r j
(
DT + RT�T )

)
. Then

(
a′, b′) ∈ ZT (ω).

We now consider t = 1, . . . , T − 1. Let (a, b) ∈ Zt (ω), and a′ ≥ a, a′ �= a.
Then we have ψt (ω, a, b) ≥ Ct , where ψt is defined by (3), and a′ = a + r , where
r = (r1, . . . , rm), r i ≥ 0 for all i , and r j > 0 for some j . Let b′ = b + r ′, where
r ′ = (0, . . . , Rtr

j , . . . , 0). Note that b′ ∈ Xt (ω). We will prove that (a′, b′) ∈ Zt (ω).
Indeed,

ψt (ω, a′, b′) ≥ ψt (ω, a, b) + ψt (ω, r , r ′) > Ct (ω),

where the first inequality holds because ψt (ω, x, y) is concave and positively homo-
geneous (of degree one) in (x, y), and the second inequality holds in view of condition
(B1) and the relation

ψt (ω, r , r ′) =
m∑
i �= j

(1 − λ+
t,i )(Rt,i r

i ) + (1 − λ+
t, j )(Rt, j r

j − Rtr
j ) + dt (r) > 0.


�
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Let |·| denote the norm of a vector in a finite-dimensional space defined as the sum
of the absolute values of its coordinates. For a finite-dimensional vector a, we will
denote by B(a, r) the ball {b : |b− a| ≤ r}. In the next proposition, we prove that the
sets Zt have non-empty interior.

Proposition 2 For each t = 1, 2, . . . , T − 1, there exists an Ft -measurable vector
function z̊t = (x̊t , ẙt ) such that for all ω ∈ �, we have

B(z̊t , εt ) ⊆ Zt (ω), (7)

where εt > 0 is some constant.

We will need the following auxiliary result to prove Proposition 2.

Lemma 1 (a) For each t there exists a constant τt > 0 such that if a ∈ Xt (ω) then
|a+| − νt |a−| ≥ τt |a|.

(b) For each t there exist positive constants κ1
t and κ2

t such that if a ∈ Xt−1(ω),
b ∈ Xt (ω) and |b| ≤ κ1

t |a| − κ2
t , then (a, b) ∈ Zt (ω).

Proof (a)Observe that Xt (ω) ⊆ X̃t , where X̃t = {a ∈ R
m : μt |a−| ≤ |a+|}, and since

μt > 1 we have X̃t ∩ (−X̃t ) = {0}. The continuous function ht (a) = |a+| − νt |a−|
is strictly positive on the compact set X̂t = X̃t ∩ {a : |a| = 1}. Indeed, since ht (a) ≥
(μt − νt )|a−| on X̃t , then the equality ht (a) = 0 would imply |a−| = 0, and hence
|a+| = ht (a) = 0, so that |a| = 0. Then ht (a) attains a strictly positive minimum on
X̂t , which can be taken as τt .

(b) Let b ∈ Xt (ω). It is straightforward to check that for any numbers x, y we
have (x − y)+ ≥ x+ − y+ and (x − y)− ≤ x− + y+. Using this, we obtain for any
a ∈ Xt−1(ω)

ψt (a, b) ≥
m∑
i=1

((�+
t,i Rt,i + D+

t,i )a
i+ − (�−

t,i Rt,i + D−
t,i )a

i−) −
m∑
i=1

(�+
t,i + �−

t,i )b
i+

≥ (�t Rt + Dt )|a+| − (�t Rt + Dt )|a−| − 2�t |b+|
≥ (�t Rt + Dt )(|a+| − νt−1|a−|) − 2�t |b|
≥ τt−1(�t Rt + Dt )|a| − 2�t |b|,

(8)
where the third inequality follows from (B2). Then statement (b) can be fulfilled with
the constant κ1

t = τt−1(�t Rt + Dt )/(2�t ) and κ2
t = Ct/2�t , since in that case

ψt (a, b) ≥ Ct , implying (a, b) ∈ Zt . 
�

Proof of Proposition 2 Let x̊t = 2κ2t
κ1t m

(1, ..., 1) ∈ R
m . Put z̊t = (x̊t , ẙt ) with ẙt =

(κ1
t /4)x̊t . Note that |x̊t | = 2κ2

t /κ1
t , and |ẙt | = κ2

t /2 < κ1
t |x̊t | − κ2

t = κ2
t , thus

statement (b) of Lemma 1 implies z̊t ∈ Zt . Observe that there exists δt > 0 such that
B(z̊t , δt ) ⊂ R

2m+ and therefore B(z̊t , δt ) ⊂ Xt−1 × Xt . Since |ẙt | < κ1
t |x̊t | − κ2

t , then
one can find 0 < εt ≤ δt such that |b| ≤ κ1

t |a|−κ2
t for any (a, b) ∈ B(z̊t , εt ). Indeed,

we have
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266 E. Babaei

|b| ≤ |b − ẙt | + |ẙt | ≤ εt + κ2
t /2 = εt + 2κ2

t − 3κ2
t /2

≤ εt + κ1
t |a| + κ1

t εt − 3κ2
t /2 ≤ κ1

t |a| − κ2
t .

The third inequality holds because |a| ≥ |x̊t |−εt , and the last inequality holds as long
as εt ≤ κ2

t /2(1 + κ1
t ). Hence, z̊t and εt satisfy conditions of proposition. 
�

Proposition 3 For any b ∈ Xt (ω), we have ψt (ω, 0,−b) ≥ 0, and ψt (ω, 0, b) ≤ 0.
If b �= 0, then ψt (ω, 0,−b) > 0, and ψt (ω, 0, b) < 0.

Proof This follows from conditions (B1), (B2) and Lemma 1. Indeed,

ψt (ω, 0,−b) =
m∑
i=1

(1 − λ+
t,i (ω))bi+ −

m∑
i=1

(1 + λ−
t,i (ω))bi−

≥ �t |b+| − �t |b−| ≥ �t (|b+| − νt |b−|) ≥ �tτt |b|.

In this chain, the first inequality follows from (B1), the second follows from (B2), and
the last one follows from Lemma 1.

The second claim of the proposition follows from the chain of relations

−ψt (ω, 0, b) =
m∑
i=1

(1 + λ−
t,i (ω))bi+ −

m∑
i=1

(1 − λ+
t,i (ω))bi−

≥ |b+| − |b−| ≥ |b+| − νt |b−| ≥ τt |b|.


�

4 Consistent discount factors and solution of the hedging problem

Let us call consistent discount factorswith a transaction costs term (hereinafter, simply
consistent discount factors) any triple (q0, qT , r), where q0 ∈ L1

0, qT ∈ L1
T are strictly

positive functions and r ≥ 0 is a constant such that

Eq0v0 ≥ EqT vT + r for any (v0, vT ) ∈ H.

The next theorem provides the general solution to the hedging problem in terms of
consistent discount factors.

Theorem 1 (a) Consistent discount factors exist.
(b) We have (v0, vT ) ∈ H if and only if Eq0v0 ≥ EqT vT + r for all consistent

discount factors (q0, qT , r).

To prove the theorem, we will need several auxiliary definitions and preparatory
results.

In what follows, let us fix the market prices, proportional transaction cost rates and
dividend yields, but allow the transaction costs Ct ≥ 0 to vary. Introduce the set U ⊆
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L1
0×L1

1×· · ·×L1
T−1×L1

T which consists of sequences u = (v0,C1, . . . ,CT−1, vT )

such that in the market with transaction costs Ct the initial endowment v0 allows the
hedging of the contingent claim vT . Observe that U is a cone.

Proposition 4 The cone U is closed.

To prove this result, we first establish a lemma.

Lemma 2 There exist a constant γ > 0 not depending on the transaction costs Ct

such that for any hedging strategy (v0, x0, . . . , xT−1, vT ) it holds that |xt | ≤ γ v0 for
all t = 0, . . . , T − 1.

Proof First observe that there exists a constant δ > 0 such that if b ∈ Xt (ω), then
|b| ≤ δ

∑m
i=1 b

i . Indeed, since the underlying probability space is finite, we can find
a constant μ > 1 such that μ ≤ μt for all t = 0, . . . , T − 1. If b ∈ Xt (ω), then, as
follows from the definition of Xt , we have |b+| ≥ μt |b−| ≥ μ|b−|. Consequently,∑m

i=1 b
i = |b+| − |b−| ≥ (1− 1

μ
)|b+| and |b| = |b+| + |b−| ≤ (1+ 1

μ
)|b+|. Hence,

we can take δ = (μ + 1)/(μ − 1).
Next observe that the inequality ψt (a, b) ≥ c implies

m∑
i=1

(Rt,i a
i − bi + D−

t,i a
i ) ≥ c.

Let R = maxt Rt and D = maxt Dt be constants such that Rt,i ≤ R and D−
t,i ≤ D for

all t = 1, . . . , T −1 and i = 1, . . . ,m. Consequently, if ψt (a, b) ≥ c and b ∈ Xt (ω),
then

|b| ≤ δ

m∑
i=1

bi ≤ δ((R̄ + D̄)|a| − c).

Suppose (v0, x0, . . . , xT−1, vT ) is a hedging strategy. For t = 0, from the condition
ψ(0, x0) ≥ −v0, we find that |x0| ≤ δv0. For t = 1, . . . , T − 1, the condition
ψt (xt−1, xt ) ≥ Ct implies |xt | ≤ δ(R̄ + D̄)|xt−1|, since it is assumed that Ct ≥ 0.
Now the claim of the proposition follows by induction. 
�
Proof of Proposition 4 Consider un = (vn0 ,C

n
1 , . . . ,Cn

T−1, v
n
T ) ∈ U such that un →

u = (v0,C1, . . . ,CT−1, vt ). We have to show that u ∈ U .
Let hn = (vn0 , x

n
0 , . . . , xnT−1, v

n
T ) be the corresponding hedging strategies. From

Lemma 2, it follows that xnt are bounded sequences for each t = 0, . . . , T − 1. The
sequences vn0 and vnT are also bounded, which follows from the convergence un → u.

Consequently, it is possible to choose a convergent subsequence hnk → h =
(v0, x0, . . . , xT−1, vT ). In view of the continuity of the functionsψt (ω, a, b), we have
v0 ≥ −ψ0(0, x0),ψt (xt−1, xt ) ≥ Ct for all t = 1, . . . , T −1, andψT (xT−1, 0) ≥ vT .
Thus h is hedging strategy in the model with transaction costs Ct . Consequently,
u ∈ U . �
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268 E. Babaei

Next introduce the closed cone

K = {(ṽ0,C1, . . . ,CT−1, vT ) :
ṽ0 ∈ L1

0, ṽ0 ≤ 0, Ct ∈ L1
t , Ct ≥ 0 for all t, vT ∈ L1

T , vT ≥ 0}.

The following result can be regarded as the no-arbitrage hypothesis for the model
at hand.

Proposition 5 We have U ∩ K = {0}.
Proof If u = (v0, x0, . . . , xT−1, vT ) ∈ U ∩ K, then necessarily v0 = 0 as follows
from the definition of a hedging strategy. Proposition 2 implies that in this case x0 =
· · · = xT−1 = 0. Consequently, the inequality ψt (xt−1, xt ) ≥ Ct implies that Ct = 0
for all t , and vT ≤ 0. Thus u = 0. 
�
Proposition 6 Let u = (v0,C1, . . . ,CT−1, vT ) ∈ U − K be such that Ct ≥ 0 for all
t = 1, . . . , T . Then u ∈ U .
Proof Let u = u′ − k, where u′ = (v′

0,C
′
1, . . . ,C

′
T−1, v

′
T ) ∈ U and k ∈ K. Denote

by h = (v′
0, x0, . . . , xT−1, v

′
T ) the corresponding hedging strategy which allows the

hedging of the contingent claim v′
T from the initial endowment v′

0 in the market with
transaction costs C ′

t .
We have v′

0 ≥ −ψ0(0, x0), hence v0 ≥ −ψ0(0, x0), since v0 ≥ v′
0. From the

condition ψt (xt−1, xt ) ≥ C ′
t , we find that ψt (xt−1, xt ) ≥ Ct for all t = 1, . . . , T − 1.

Finally, as ψT (xT−1, 0) ≥ v′
T , we have ψT (xT−1, 0) ≥ vT because v′

T ≥ vT .
As a result, we see that h is a strategy which allows to hedge vT from the initial

endowment v0 in the market with transaction costs Ct . Consequently, u ∈ U . 
�
Proof of Theorem 1 We apply Proposition 7 (see Appendix) to the cones U andK. The
conditions of applicability of this proposition are met in view of the above results.

Both cones U and K are contained in the linear space L1
0 × L1

1 × · · · × L1
T . Since

the probability space is finite, this space is finite dimensional.
Any linear functional l(u) on this space can be represented as

l(u) = −Eq0v0 +
T−1∑
t=1

EqtCt + EqT vT , (9)

where qt ∈ L1
t .

By virtue of Proposition 7, there exists a linear functional l of the form (9) such that
l(u) > 0 for any u ∈ K\{0}, and l(u) ≤ 0 for any u ∈ U . The first property implies that
all qt > 0. Then the triple (q0, qT , r) with r = ∑T−1

t=1 EqtCt is a consistent discount
factor in the model with given transaction costs Ct . This proves the first claim of the
theorem.

Let us prove the second claim. If (v0, vT ) ∈ H, then Eq0v0 ≥ EqT vT + r for
any consistent discount factors as follows from their definition. Conversely, suppose
Eq0v0 ≥ EqT vT + r for any consistent discount factors. Then, in particular, this
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inequality holds for any (q0, qT , v) for which there exists a functional l(u) defined
through factors (q0, q1, . . . , qT ) by formula (9) such that r = ∑T−1

t=1 EqtCt andwhich
is strictly positive on K \ {0} and non-positive on U . Let u = (v0,C1, . . . ,CT−1, vT )

with given transaction costs Ct . By Proposition 8, we have u ∈ U − K. Then u ∈ U
by Proposition 6. Consequently, (v0, vT ) ∈ H. This proves the second claim. 
�

5 Consistent valuation systems

Now we provide a solution of the hedging problem in terms of consistent valuation
systems, a notion which extends the notion of consistent discount factors.

A consistent price system with transaction costs terms (which we will call simply
a consistent price system) is pair consisting of a sequence of non-negative vector
functions p0(ω), . . . , pT (ω) such that pt ∈ Lm

t , and a sequence of non-negative
constants r1, . . . , rT−1 which satisfy the relations

p̄1(ω)a ≤ p0(ω)a for all a ∈ X0(ω), (10)

p̄t+1(ω)b + rt ≤ pt (ω)a for all (a, b) ∈ Zt (ω), t = 1, ..., T − 1, (11)

where p̄t+1(ω) := Et pt+1(ω) and Et (·) = E(·|Ft ).
Note that by virtue of conditions (10) and (11), for any trading strategy

x0, x1, . . . , xT−1, the sequence

p0x0, p1x0, p2x1 + r1, p3x2 + r1 + r2, . . . pT xT−1 + (r1 + · · · + rT−1)

is a non-negative supermartingale.
The idea of the notion of a consistent price system goes back to the notion of

competitive prices supporting competitive paths maximizing profits over each time
period t−1, t in the theory of economic dynamics – see, e.g.Malinvaud (1953);Radner
(1967); Gale (1967); Peleg (1974); Dasgupta and Mitra (1999), and Clark (2008).
Consistent price systems generalize the concept of an equivalent martingale measure
in classical no-arbitrage criteria pertaining to frictionless markets, see Dempster et al.
(2006).

Let q0 ∈ L1
0 and qT ∈ L1

T be strictly positive scalar functions, and
((p0, . . . , pT ), (r1, . . . , rT−1)) be a consistent price system. Then the pair of
sequences ((q0, p0, . . . , pT , qT ), (r1, . . . , rT−1)) is called a consistent valuation
system if

p0(ω)b ≤ q0(ω)a for all (a, b) ∈ V0(ω), (12)

pT (ω)a ≥ qT (ω)b for all (a, b) ∈ VT (ω). (13)

According to (12) and (13), the prices and discount factors under consideration are
such that the profit one can get in the course of portfolio creation or liquidation cannot
be strictly positive.
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Theorem 2 The following claims hold true.

(a) If ((q0, p0, . . . , pT , qT ), (r1, . . . , rT−1)) is a consistent valuation system, then
(q0, qT , r), where r = r1 + . . . + rT−1, are consistent discount factors.

(b) If (q0, qT , r)are consistent discount factors, then there exists a consistent valuation
system ((q0, p0, . . . , pT , qT ), (r1, . . . , rT−1)) with r = r1 + . . . + rT−1.

From Theorems 1 and 2, we immediately get the following corollary.

Corollary 1 Consistent valuation systems exist and we have (v0, vT ) ∈ H if
and only if Eq0v0 ≥ EqT vT + ∑T−1

t=1 rt for all consistent valuation systems
((q0, p0, . . . , pT , qT ), (r1, . . . , rT−1)).

In the course of proof of Theorem 2, the following notion will be needed. We shall
call a sequence of vector functions

ξ := {v0, x0, y0, x1, y1, . . . , xT−1, yT−1, xT , vT }, (14)

where

v0 ∈ L1
0, (xt , yt ) ∈ Lm

t × Lm
t [t = 0, . . . , T − 1], xT ∈ Lm

T , vT ∈ L1
T , (15)

a generalized hedging strategy if

(v0, x0) ∈ V0(ω), y0 ∈ X0(ω), (16)

(xt , yt ) ∈ Zt (ω) [t = 1, . . . , T − 1], (17)

(xT , vT ) ∈ VT (ω), (18)

x0 ≥ y0, y0 ≥ x1, y1 ≥ x2, . . . , yT−1 ≥ xT . (19)

Note that if the inequalities in (19) hold as equalities, we obtain an ordinary hedging
strategy.

Lemma 3 For any generalized hedging strategy, there is a hedging strategy
(v′

0, y
′
0, . . . , y

′
T−1, v

′
T ) such that v′

0 = v0, y′
t ≥ yt [t = 0, . . . , T − 1] and v′

T ≥ vT .

Proof This is easily proved by induction using Proposition 1. 
�
Lemma 4 There exists a generalized hedging strategy

ξ̂ = {v̂0, x̂0, ŷ0, x̂1, ŷ1, . . . , x̂T−1, v̂T−1, x̂T , v̂T }

such that

x̂0 > ŷ0, ŷ0 > x̂1, ŷ1 > x̂2, . . . , ŷT−1 > x̂T .

Furthermore, there exists a hedging strategy (v′
0, y

′
0, . . . , y

′
T−1, v

′
T ) such that v′

0 >

0, y′
t > 0 [t = 0, . . . , T − 1] and v′

T > 0.

123



Asset pricing and hedging in financial markets... 271

Proof In the proof of Proposition 2, we have constructed constant vectors x̊t and ẙt for
each t = 1, 2, . . . , T − 1. These vectors can be expressed as x̊t = αt (1, . . . , 1) and
ẙt = βt (1, . . . , 1), where αt and βt are positive constants. Importantly, for all ω ∈ �,
it holds that (x̊t , ẙt ) ∈ Zt (ω).

Now, let us proceed with a backward induction argument. We begin by set-
ting (x̂T−1, ŷT−1) = (x̊T−1, ẙT−1), x̂T = 1

2 ẙT−1, and v̂T = ψT (ω, x̂T , 0). Note
that (x̂T , v̂T ) ∈ VT (ω), ŷT−1 > x̂T , (x̂T−1, ŷT−1) ∈ ZT−1(ω), and according to
Proposition 3, v̂T > 0.

Now, if ẙT−2 > x̊T−1 (βT−2 > αT−1), we can simply set (x̂T−2, ŷT−2) =
(x̊T−2, ẙT−2). However, if ẙT−2 ≤ x̊T−1, we can find a λ > 1 such that λẙT−2 >

x̊T−1. In this case, we set (x̂T−2, ŷT−2) = λ(x̊T−2, ẙT−2). Since λ > 1 and
(x̊T−2, ẙT−2) ∈ ZT−2(ω), it follows that (x̂T−2, ŷT−2) ∈ ZT−2(ω).

By induction, let us assume that we have already constructed vectors x̂1 and ŷ1
such that (x̂1, ŷ1) ∈ Z1(ω), and ŷ1 > x̂2. Now, let ŷ0 = 2x̂1, x̂0 = 4x̂1, and
v0 = −φ0(ω,−x̂0). Notably, according to Proposition 3, v̂0 > 0. With this, we
have successfully constructed

ξ̂ = {v̂0, x̂0, ŷ0, x̂1, ŷ1, . . . , x̂T−1, v̂T−1, x̂T , v̂T }

that satisfies all the required conditions. The second part of the proof is immediate
from Lemma 3. 
�

Lemma 4 is an analogue of Slater’s constraint qualification. It says that there exists
a generalized hedging strategy (which can be regarded as a hedging strategy with
consumption) such that an investor following it can sell, with a view to consumption,
strictly positive amounts of assets of each type at every date. In the literature, such
models are called regular (see, e.g., Dempster et al. 2006).

Now we are ready to give a proof of Theorem 2.

Proof of Theorem 2 Claim (a) clearly follows from the definitions of consistent
valuation systems and consistent discount factors.

Let us prove claim (b). We will mainly follow the lines of the proof of Theorem 7.1
in Dempster et al. (2006). Consider consistent discount factors (q0, qT , r). By virtue
of their definition, we have EqT vT − Eq0v0 + r ≤ 0 for all (v0, vT ) ∈ H.

Denote by � the set of generalized hedging strategies. For ξ ∈ �, define

F(ξ) = EqT vT − Eq0v0 + r .

In view of Lemma 3, we have F(ξ) ≤ 0 for any ξ ∈ �. Thus, the maximum of F
over � is equal to zero (the maximum is attained since one can increase v0 without
changing the other components of ξ ). By applying the Kuhn–Tucker theorem (see
Proposition 9) to this maximization problem, we relax constraints (19) in the definition
of a generalized hedging strategy. The Kuhn–Tucker theorem can be applied in view
of the regularity of the model.
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As a result, there exist non-negative functions pt ∈ Lm
t such that

EqT vT − Eq0v0 + r + Ep0(x0 − y0) +
T∑
t=1

Ept (yt−1 − xt ) ≤ 0

for all sequences (v0, x0, y0, x1, y1, . . . , xT−1, yT−1, xT , vT ) satisfying conditions
(15)–(18). Rearranging the terms, we obtain

E(p0x0 − Eq0v0) + (Ep1y0 − Ep0y0)

+
T−1∑
t=1

(Ept+1yt − Ept xt ) + (EqT vT − EpT xT ) ≤ −r . (20)

Let−r0,−r ′
0,−r1, . . . ,−rT−1, and−rT denote themaximal values of the correspond-

ing terms in the left-hand side of this inequality, which are taken over, respectively,
(x0, y0) ∈ V0, y0 ∈ X0, (xt , yt ) ∈ Zt , t = 1, . . . , T − 1, and (xT , vT ) ∈ VT . Since
V0, X0 and VT are cones, we have r0 = r ′

0 = rT = 0. Therefore,
∑T−1

t=1 rt ≥ r . Also
observe that if (xt , yt ) ∈ Zt , then (αxt , αyt ) ∈ Zt for any α ≥ 1, which implies that
r1, . . . , rT−1 should be non-negative.

Consequently, we have inequalities

Ep0x0 − Eq0v0 ≤ 0 for all (v0, x0) ∈ V0(ω), (21)

E p̄1y0 − Ep0y0 ≤ 0 for all y0 ∈ X0(ω), (22)

E p̄t+1yt − Ept xt ≤ −rt for all (xt , yt ) ∈ Zt (ω), t = 1, . . . , T − 1, (23)

EqT vT − EpT xT ≤ 0 for all (xT , vT ) ∈ VT (ω). (24)

Then (21), (22), (23) and (24) imply (12), (10), (11) and (13), respectively. As a result,
((q0, p0, . . . , pT , qT ), (r1, . . . , rT−1)) is a consistent valuation system.

Finally, observe that if we decrease some of the values rt (but keeping them non-
negative), we will still have a consistent valuation system. Thus, we can choose
r1, . . . , rT−1 such that r1 + · · · + rT−1 = r . 
�

6 Appendix

In this appendix we collect well-known auxiliary results that were used in the proofs.

Proposition 7 Let H and K be two closed cones inRn, and the cone K being pointed.
Then the following assertions are equivalent.

(a) H ∩ K = {0}.
(b) There exists l ∈ R

n such that lh ≤ 0 for all h ∈ H, and lk > 0 for all k ∈ K \ {0}.
Proposition 8 Again, consider two closed cones H , K ⊆ R

n, with K being pointed.
Suppose that H ∩ K = {0}. Then, for any u ∈ R

n, the following assertions are
equivalent.
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(a) u ∈ H − K.
(b) lu ≤ 0 for all l ∈ R

n such that lh ≤ 0 for all h ∈ H and lk > 0 for all k ∈ K \{0}.
Let g1(x), . . . , gm(x) and F(x) be concave functions defined on a convex set X in

R
n . Put g(x) = (g1(x), . . . , gm(x)) and consider the following optimization problem:
(P) Maximize F(x) on X subject to g(x) ≥ 0.

Assume that the following assumption (Slater’s condition) holds.
(S) There exists an element y ∈ X such that g(y) > 0

(with all inequalities being componentwise).

Proposition 9 (Kuhn-Tucker theorem). Let x̄ be a point in X such that g(x̄) ≥ 0. Then
the following assertions are equivalent.

(a) x̄ is a solution to problem (P).
(b) There exists a vector p ∈ R

m with non-negative coordinates such that pg(x̄) = 0
and

f (x) + pg(x) ≤ f (x̄) for all x ∈ X . (25)
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