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Abstract
We present a new quadratic Gaussian short rate model with a stochastic lower bound
to capture changes in the yield curve including negative interest rates, associated with
changes in monetary policy stances. We model the lower bound by a Brownian bridge
pinned at zero at the initial time and at a random termination time, representing the first
appearance of negative interest rates and the end date of an unconventional monetary
policy, respectively. Within this framework, we derive a semi-analytical pricing for-
mula for zero coupon bonds under the no-arbitrage condition. Our model estimation
results using Japanese yield curve data show a good fit to themarket data. Furthermore,
the expected excess bond returns and the posterior distribution of the unconventional
monetary policy duration computed from the model parameter and state variable esti-
mates clarify the market’s perspective on monetary policy developments.

Keywords No-arbitrage condition · Quadratic Gaussian term structure model ·
Brownian bridge · Negative interest rate · Unconventional monetary policy

JEL Classification E43 · E52 · G12

1 Introduction

A term structure interest rate model is often used to extract market expectations of
future interest rate movements from a time series of yield curve observations. To
achieve this, such a model should fit the market yield curves at each point in time and
capture the probability distribution of future interest rate levels.

The affine Gaussian term structure model (ATSM) is one such tool, and is widely
used for analyzing the time series of yield curves, primarily owing to its analytical
simplicity and ease of estimation. For example, the studies by Ang and Piazzesi (2003)
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and Kim and Orphanides (2012) apply the ATSM to extract market expectations from
US Treasury yield data. A common assumption in many empirical analyses using the
ATSM, including the aforementioned studies, is that the state variables adhere to a
normal distribution with a constant variance-covariance matrix. Consequently, future
interest rates also follow a normal distribution. This characteristic suggests that the
ATSMmight overestimate the probability of future interest rates turning negative in a
low-interest-rate environment in which short-term interest rates are close to zero. As
a result, time series analyses conducted in the low-interest-rate environment post the
2007–2008 global financial crisis have transitioned fromusing theATSM to alternative
models, such as the shadow ratemodel (SRM) or the quadratic Gaussian term structure
model (QTSM). Thesemodels, unlike theATSM, incorporate a lower bound on interest
rates.

In the SRM, the short rate is defined as the higher value between a latent variable
known as the shadow rate and a threshold that acts as a lower bound for interest rates.
This model was first proposed by Black (1995) and later expanded upon by Gorovoi
and Linetsky (2004). Empirical studies that use the SRM include those of Kim and
Singleton (2012), Kripnner (2013), Bauer and Rudebusch (2016), Wu and Xia (2016),
Kortela (2016), Lemke andVladu (2017), Ueno (2017), andWu andXia (2020). These
studies analyze time series data from the United States, Europe, or Japan, and they
encompass periods of quantitative easing. During these periods, a central bank buys
financial assets from the financial market to increase liquidity and stimulate economic
growth.

In the QTSM, as studied by Ahn et al. (2002) and Leippold and Wu (2002), the
short rate is characterized as a quadratic function of the state variables. This model is
unique in that a term structure of interest rates has a lower bound and their volatilities
fluctuate stochastically based on the state variables. In empirical analyses, Nyholm
and Vidova-Koleva (2012) estimate the QTSM using US yield curve data, and Kim
and Singleton (2012) conduct similar estimations using Japanese yield curve data.

Empirical studies using theSRMand theQTSMhavemade significant contributions
to the time series analysis of yield curves in low-interest rate environments, such as
during the period of quantitative easing in the United States. However, except for the
studies by Kortela (2016), Lemke and Vladu (2017), Ueno (2017), and Wu and Xia
(2020), most of these studies use models with a constant lower bound on interest
rates. This approach often misestimates the probability of future interest rate levels.
For instance,when a large number ofmarket participants anticipate a further deepening
of the negative interest rate policy (NIRP), a model with a constant lower bound on
interest rates would estimate the probability of future interest rates falling below a
certain threshold as zero, potentially underestimating the actual probability.

To avoid misestimating the probabilities of future interest rate levels associated
with changes in monetary policy stances, in particular, a deepening of NIRP, Wu
and Xia (2020) develop an SRM based model. This model allows the lower bound
of short-term interest rates to vary stochastically. In their model, two Markov chains
representing the short- and long-term policy stances influence the lower bound on
interest rates through the European Central Bank (ECB) deposit rate. They base their
model on an approximate analytical solution for forward rates, which Wu and Xia
(2016) previously derived. They then estimate their model using time series data from
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the Euro Overnight Index Averages (EONIA) forward curves from July 2005 to June
2017. The estimation results fit the observed data well and show how the ECB’s short-
and long-term policy stances change.

This study adopts the idea proposed by Wu and Xia (2020) of making the lower
bound on interest rates stochastic to capture changes in the probability distributions
of future interest rates in response to monetary policy stances. Although their model
focuses only on a deepening ofNIRPwithout considering the exit fromunconventional
monetary policy (UMP), we incorporate the stochastic lower bound on interest rates
varying with both a deepening of NIRP and the exit from the UMP. Our model extends
the QTSM. Specifically, it characterizes the short rate as the sum of a positive interest
rate component represented by a quadratic function of the state variables and a state
variable driven by a Brownian bridge.1 A model with only the first term would yield
a QTSM with a zero lower bound. However, the second term brings a random lower
bound for the interest rate. We assume that a Brownian bridge, which sets the lower
bound on interest rates, is anchored at zero at two distinct time points. t = 0 denotes the
date when negative interest rates were first observed, and t = τ denotes the effective
end date of the UMP.2 During the UMP period, market participants cannot predict
precisely when the UMPwill end. Therefore, our model treats τ as a random variable.3

The setting of this Brownian bridge has been studied in Bedini et al. (2017), and we
use their results to derive the pricing of zero-coupon bonds under the no-arbitrage
condition.

Ourmodel proves effective in empirical analyses.Wedemonstrate this by estimating
themodel using time series data from the Japanese government bond (JGB) yield curve
including negative interest rates. The results show that the model fits the observed
data with high accuracy. Additionally, because our model is formulated in both risk-
neutral and physical probability measures, it can handle risk premiums that reflect
market expectations. As bond risk premiums, we calculate the expected JGB excess
returns using estimates of model parameters and state variables to extract market
expectations. The most significant feature of our model, which is not found in other
term structure models, is its ability to calculate a probability distribution of the UMP’s
duration. Our empirical research uncovers shifts in market sentiments towards the
UMP implemented by the Bank of Japan (BOJ) from October 2015 to June 2022 by

1 Our modeling of the lower bound of interest rates is inspired by the work of Ajevskis and Vitola (2010).
They use a Brownian bridge defined on [0, r ] to model the spread of short-term interest rates between the
members of the European Monetary Union (EMU) and its candidate countries. The time r corresponds
to when the candidate countries officially join the EMU, and their spreads converge to zero as the date
approaches.
2 The UMP might persist even after NIRP ends. As long as the UMP is in effect, market participants
will anticipate the possibility of encountering negative interest rates again, even if the interest rates for all
maturities momentarily exceed zero. Thus, in our research, we assume that the termination time τ of the
Brownian bridge, which represents the lower bound on interest rates, corresponds to the last day of the
UMP, not the last day of the NIRP.
3 This assumption is similar to that of Marumo et al. (2003), who assume that the short rate remains at zero
until the end of a central bank’s zero interest rate policy (ZIRP) and follows the Vasicek model once the
ZIRP ends. They also treat the exit time from the ZIRP as a random variable and derive the bond pricing
formula under the no-arbitrage condition.
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calculating probability distributions for the duration of the UMP using estimates of
model parameters and state variables.

The paper is organized as follows. Section2 introduces the framework of ourmodel.
Sections3 and4 describe the derivations of the zero coupon bond pricing formulae
for the cases where the end date of UMP is deterministic and random, respectively.
Section5 presents the estimation methodology, including the state space representa-
tion, parameter configuration, data set, and mathematical expressions for the expected
excess bond returns and the posterior distribution of the UMP duration. Section6
discusses the estimation results, and Section7 concludes the paper.

2 Setup

We define a filtered probability space (�,F , (Ft )0≤t ,P) where the filtration (Ft )0≤t

satisfies the usual conditions of right-continuity and completeness and is the natural
filtration generated by two stochastic processes Xt and yτ

t as defined below. P denotes
the physical measure. WP

t,x ∈ R
n and WP

t,y ∈ R
1 are independent standard Brownian

motions under P.
We assume that the market is complete and has no-arbitrage opportunities. This

implies the existence of the unique risk-neutral measure Q.
The state variable Xt satisfies the following stochastic differential equation under

P:

dXt = KP

X (θP − Xt )dt + �XdW
P

t,x , (1)

where all eigenvalues of themean reversion coefficientmatrix KP

X ∈ R
n×n are assumed

to be positive.
We assume that the risk-free short rate rt is the sum of a quadratic function of Xt

and yτ
t :

rt = X ′
t�Xt + yτ

t , (2)

where X ′
t represents the transposition of Xt and� is positive–definite. Since X ′

t�Xt >

0, Eq. (2) implies that yτ
t is the lower bound of rt .

We define yτ
t by the Brownian bridge process with yτ

0 = 0, yτ
τ = 0, and yτ

t = 0
for t ≥ τ . yτ

t can be represented as

yτ
t = σyW

P

t,y − σyt

τ ∨ t
WP

τ∨t,y, (3)

where τ ∨ t = max(τ, t). Since WP
t,x and WP

t,y are independent as described above,
yτ
t is independent of Xt . For the time being, we assume that τ is a strictly positive
constant value. Equation (3) is equivalent to the following Eq. (4) in the stochastic
differential equation form:
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dyτ
t = 1{t≤τ }

(
− yτ

t

τ − t
dt + σydW

P

t,y

)
. (4)

Since Eq. (2) indicates that the short rate always becomes positive after time τ ,
interest rates at all maturities also become positive after time τ . Therefore, we can
interpret τ as the date when the UMP ends.

The stochastic differential equation of Xt under Q is assumed to be

dXt = KQ

X (θQ − Xt )dt + �XdW
Q

t,x , (5)

whereWQ

t,x ∈ R
n is a standard Brownian motion underQ, and KQ

X ∈ R
n×n is a matrix

with all eigenvalues being positive.
From Eqs. (1) and (5), we have the following relationship between WQ

t,x and WP
t,x :

dWQ

t,x = dWP

t,x + �(Xt )dt, (6)

where �(Xt ) = (KP

XθP − KQ

X θQ) − (KP

X − KQ

X )Xt . Here, �(Xt ) can be interpreted
as the market price of factor risks. This affine form was first introduced in Duffee
(2002) as the essentially affine market price of risk.

We incorporate the constant market price of risk, denoted as λy , associated with

yτ
t . This can be expressed as dW

Q

t,y = dWP
t,y + λydt . As a result, the dynamics of yτ

t
under the Q measure is governed by the following equation:

dyτ
t = 1{t≤τ }

(
− yτ

t

τ − t
dt − σyλydt + σydW

Q

t,y

)
. (7)

As demonstrated in the Appendix, for t ≤ τ , the process yτ
t follows a Brownian

bridge with yτ
0 = 0 and yτ

τ = 0 under the Q measure, and its probability density

function ϕ
Q

t (τ, yτ
t ) has the following representation:

ϕ
Q

t (τ, yτ
t ) =

√
τ

2π t(τ − t)σ 2
y
exp

(
−τ(yτ

t − σyλy(τ − t) log τ−t
τ

)2

2t(τ − t)σ 2
y

)
. (8)

Setting λy = 0 in Eq. (8), we find that the probability density function ϕP
t (τ, yτ

t )

of yτ
t under P has the following representation:

ϕP

t (τ, yτ
t ) =

√
τ

2π t(τ − t)σ 2
y
exp

(
− τ yτ

t
2

2t(τ − t)σ 2
y

)
. (9)

Remark 1 Although yτ
t can be positive for t < τ , yτ

t is estimated to be negative
if market yields are negative for at least one maturity. In simulating the path of yτ

t
based on the model, yτ

t can be positive. This seems to cause a problem in that the
probability that future interest rates will be positive becomes large, no matter if the
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actual market participants believe that the UMP will persist. However, given that the
posterior distribution of τ given in Eq. (39) is updated based on the value of yt , the
probability of τ arriving soon increases as yτ

t approaches zero. This suggests that the
above problem will not be significant.

3 Bond pricing in the case in which � is deterministic

In this section, we derive a bond pricing formula in the case where τ is deterministic.
We assume that τ is a strictly positive constant. From this point forward, we use a
superscript of ‘n’ to represent a normal policy period, τ ≤ t (the post-UMP period),
and a superscript of ‘unc’ to denote a UMP period, t < τ (the UMP period).

3.1 Bond pricing in a normal policy period, post unconventional monetary policy
period

In this subsection, we derive a zero coupon bond pricing formula in a normal policy
period, τ ≤ t . This period corresponds to the post-UMP period.

An infinitesimal generator of Xt for τ ≤ t is provided as

Dn
t = (KQ

X (θQ − Xt ))
′ ∂

∂Xt
+ 1

2
Tr

(
�X�′

X
∂2

∂Xt∂X ′
t

)
. (10)

Applying the Feynman–Kac theorem to the zero coupon bond price Pn
t,u with maturity

date T = t + u leads to the following partial differential equation (PDE):

[
∂

∂t
+ Dn

t

]
Pn
t,u = rt P

n
t,u, Pn

t,0 = 1. (11)

We guess the solution form of Eq. (11) as follows:

Pn
t,u = exp(X ′

t A
n
u Xt + (bnu)

′Xt + cnu). (12)

Substituting Eq. (12) into Eq. (11), we obtain the following system of ordinary differ-
ential equations (ODEs) for An

u , b
n
u , and cnu :

Ȧn
u = −2KQ

X

′
An
u + 2An

u�X�′
X A

n
u − �,

(ḃnu)
′ = 2(KQ

X θQ)′An
u − bnu

′KQ

X + 2bnu
′
�X�′

X A
n
u,

ċnu = (KQ

X θQ)′bnu + Trace

(
�X�′

X

(
An
u + 1

2
bnu(b

n
u)

′
))

,

(13)

where Ȧn
u , ḃ

n
u , and ċnu represent the derivatives of An

u , b
n
u , and cnu with respect to the

variable u, and the boundary conditions are An
0 = 0, bn0 = 0, and cn0 = 0, respectively.
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3.2 Bond pricing under a UMP

In this subsection, we derive a zero coupon bond pricing formula in the case where
t < τ . This corresponds to the period when a central bank is conducting UMP.

First, we deal with the bond price with maturity date T that arrives before τ , the
end date of the UMP. Denote the zero coupon bond price by Punc,1

t,u,w , where u = T − t

and w = τ − T . The price Punc,1
t,u,w is provided as follows:

Punc,1
t,u,w = EQ

[
exp

(
−

∫ T

t
rsds

)
|Ft

]

= EQ

[
exp

(
−

∫ T

t
(X ′

s�Xs + yτ
s )ds

)
|Ft

]

= EQ

[
exp

(
−

∫ T

t
X ′
s�Xsds

)
|Ft

]
EQ

[
exp

(
−

∫ T

t
yτ
s ds

)
|Ft

]

= Pn
t,u E

Q

[
exp

(
−

∫ T

t
yτ
s ds

)
|Ft

]
,

(14)

where EQ[ ] is the expectation operator underQ. The third equality in Eq. (14) holds
by the independence between Xt and yτ

t .
Since Pn

t,u on the right-hand side of Eq. (14) is obtained from Eqs. (12) and (13),
calculating the left-hand side of Eq. (14) reduces to calculating Py

t,u,w as follows:

Py
t,u,w = EQ

[
exp

(
−

∫ T

t
yτ
s ds

)
|Ft

]
. (15)

An infinitesimal generator of yτ
t over t < τ for Eq. (7) is provided as

Dunc
t = − yτ

t

τ − t

∂

∂ yτ
t

− σyλy
∂

∂ yτ
t

+ 1

2
σ 2
y

∂2

∂ y2t

= − yτ
t

u + w

∂

∂ yτ
t

− σyλy
∂

∂ yτ
t

+ 1

2
σ 2
y

∂2

∂ y2t
.

(16)

Applying the Feynman–Kac theorem to Py
t,u,w in Eq. (15), we obtain the following

PDE:

[
∂

∂t
+ Dunc

t

]
Py
t,u,w = yτ

t P
y
t,u,w, Py

t,0,w = 1. (17)

We guess the solution of Eq. (17) as being in the following form:

Py
t,u,w = exp(dunc,1u,w yτ

t + f unc,1u,w ). (18)
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Substituting Eq. (18) into Eq. (17), we obtain the following ODEs:

ḋunc,1u,w + dunc,1u,w

u + w
+ 1 = 0,

ḟ unc,1u,w = 1

2
σ 2
y (dunc,1u,w )2 − σyλyd

unc,1
u,w ,

(19)

where the boundary conditions are dunc,10,w = 0 and f unc,10,w = 0, and ḋunc,1u,w and ḟ unc,1u,w

represent the derivatives of dunc,1u,w and f unc,1u,w , respectively, with respect to the variable
u. The first equation in Eq. (19) is known as d’Alembert’s equation, and its solution
is given as follows:

dunc,1u,w = −u(u + 2w)

2(u + w)
. (20)

Equation (20) and the second equation in Eq. (19) lead to the solution of f unc,1u,w :

f unc,1u,w =
∫ u

0

{
1

2
σ 2
y (dunc,1v,w )2 − σyλyd

unc,1
u,w

}
dv

= σ 2
y

2

∫ u

0

v2(v + 2w)2

4(v + w)2
dv + σyλy

2

∫ u

0

v(v + 2w)

v + w
dv

= σ 2
y

24

(
(u + w)3 − 6uw2 + 2w3 − 3w4

u + w

)

+ σyλy

4

(
u2 + 2uw − 2w2 log

u + w

w

)
.

(21)

Next, we derive the price representation of a zero coupon bond with a maturity date
on or after the end date of the UMP, i.e., t < τ ≤ T . In this case, we denote the zero
coupon bond price by Punc,2

t,u,w , where u = T − t and w = τ − T . Then, Punc,2
t,u,w is given

by:

Punc,2
t,u,w = EQ

[
exp

(
−

∫ T

t
rsds

)
|Ft

]
= EQ

[
exp

(
−

∫ T

t
(X ′

s�Xs + yτ
s )ds

)
|Ft

]

= EQ

[
exp

(
−

∫ T

t
X ′
s�Xsds

)
|Ft

]
EQ

[
exp

(
−

∫ T

t
yτ
s ds

)
|Ft

]

= EQ

[
exp

(
−

∫ T

t
X ′
s�Xsds

)
|Ft

]
EQ

[
exp

(
−

∫ τ

t
yτ
s ds

)
|Ft

]

= Pn
t,u P

y
t,u+w,0.

(22)

Note that Py
t,u,w = Py

t,u+w,0 when w ≤ 0.
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Thus, Py
t,u+w,0 in Eq. (22) is calculated from Eqs. (18), (20), and (21) as follows:

Py
t,u+w,0 = exp(dunc,1u+w,0y

τ
t + f unc,1u+w,0)

= exp

(
−u + w

2
yτ
t + σ 2

y

24
(u + w)3 + λyσy

4
(u + w)2

)
.

(23)

4 Bond pricing in the case in which � is random

In this section, we derive a zero coupon bond pricing formula in the case where the
end date of the UMP τ is random. Instead of Eq. (2), we define the risk-free short rate
rt as rt = X ′

t�Xt + yt . By this definition, yt becomes the lower bound of interest
rates. In this section, we model the lower bound of interest rates yt as the Brownian
bridge with the random interval length τ , which is studied in Bedini et al. (2017).

To price the zero coupon bonds, we need the probability distribution of τ underQ.
Thus, in this section, we focus on τ underQ rather than P. Let τ : � → (0,+∞) be a
strictly positive randomvariablewith a distribution functiondenotedby F(t) = Q(τ ≤
t).We assume that τ is independent ofWQ

t,x andW
Q

t,y .F y
t denotes the completed natural

filtration generated by yt ; that is, F y
t = σ(ys; 0 ≤ s ≤ t) ∨ N , where N denotes

the collection of Q-null sets. When we denote (C,C) as the space of continuous
real-valued functions on R+ endowed with the σ -algebra generated by the canonical
process, we define a Brownian bridge with the random interval length τ as the map
from (�,F) to (C,C) as follows:

Definition 1 The process yt (ω) given by

yt (ω) = yτ(ω)
t (ω)

is the Brownian bridge with the random interval length τ(ω), where yrt is the Brownian
bridge defined in Eq. (3).

Bedini et al. (2017) prove that the mapping y : (�,F) → (C,C) is measurable,
{yt = 0} = {τ ≤ t} for any t > 0, Q-a.s., and the process y is a Markov process
with respect to the natural filtration generated by y. We present their lemmas which
are useful for deriving the zero coupon bond pricing formula in our setting below.

Lemma 2 Let σ(τ) denote the σ -algebra generated by τ and B(A) denote the Borel
set of A.

If h : ((0,+∞) × C,B((0,+∞)) ⊗ C) → (R,B(R)) is a measurable function
such that E[|h(τ, y)|] < +∞, then E[h(τ, y)|σ(τ)](ω) = E[h(r , yr )]|r=τ(ω),Q-a.s.

Lemma 3 Let 0 ≤ t ≤ u and g(τ, yu) be a σ(ys; s ≥ t) measurable nonnegative
function under Q where σ(ys; s ≥ t) is a sigma algebra generated by the future
evolution of the process y. Then,

EQ[g(τ, yu)|F y
t ] = EQ[g(τ, yu)|yt ], Q-a.s.
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Let f Q(x) be the prior density function of τ under Q. We define GQ(t, yt ) as
follows:

GQ(t, yt ) =
∫ ∞

t
ϕ
Q

t (v, yt ) f
Q(v)dv, (24)

where ϕ
Q

t (r , y) is the density of yrt as in Eq. (8).
We present another lemma that was proved in Bedini et al. (2017) to use for the

derivation of the zero coupon bond price representation:

Lemma 4 Let t > 0 and g(τ, yt ) be a measurable function such that g(τ, yt ) is
integrable. Then, Q-a.s.

EQ[g(τ, yt )|F y
t ] = g(τ, 0)1{τ≤t} +

∫ ∞

t
g(r , yt )

ϕ
Q

t (r , yt ) f Q(r)

GQ(t, yt )
dr1{t<τ }. (25)

Note that Bayes’ theorem implies that the expression ϕ
Q

t (r ,yt ) f Q(r)
GQ(t,yt )

in Eq. (25) can
be interpreted as the posterior density of τ conditioned on yt .

We derive the pricing formula for the zero-coupon bond price Pt,T−t with amaturity
date of T at time t during a UMP period.

Proposition 5 The following equation holds Q-a.s.:

1{t<τ }Pt,T−t = Pn
t,T−t E

Q

[
exp

(
−

∫ T

t
ysds

)
1{t<τ }|F y

t

]

= 1{t<τ }
GQ(t, yt )

(∫ +∞

T
Punc,1
t,T−t,v−T ϕ

Q

t (v, yt ) f
Q(v)dv +

∫ T

t
Punc,2
t,T−t,v−T ϕ

Q

t (v, yt ) f
Q(v)dv

)
.

Proof The first equality holds, owing to the independence between Xt and yt . The
term excluding Pn

t,T−t on the right-hand side of the first equality is calculated Q-a.s.
as follows:

EQ

[
exp

(
−

∫ T

t
ysds

)
1{t<τ }|F y

t

]
= EQ

[
exp

(
−

∫ T

t
ysds

)
|yt

]
1{t<τ }

= EQ

[
EQ

[
exp

(
−

∫ T

t
yrs ds

)
|yrt

]
r=τ

|yt
]
1{t<τ }

= EQ

[
Py
t,T−t,τ−T (yrt )|yt

]
1{t<τ }.

(26)

Since exp
(
− ∫ T

t ysds
)
1{t<τ } is a σ(ys; s ≥ t) measurable nonnegative function, we

obtain the first equality by applying Lemma 3. The second equality in Eq. (26) holds
true due to Lemma 2. Third equality is given by Eqs. (15), (18), (22), and (23). Lemma
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4 introduces the right-hand side of the final equality in the above equation into the
following representation:

EQ

[
Py
t,T−t,τ−T (yt )|yt

]
1{t<τ } = 1

GQ(t, yt )(∫ +∞

T
P y
t,T−t,v−T ϕ

Q

t (v, yt ) f
Q(v)dv +

∫ T

t
P y
t,T−t,v−T ϕ

Q

t (v, yt ) f
Q(v)dv

)
1{t<τ }.

Thus, Eqs. (14), (22), and (26) lead to the conclusion of this proposition. 
�

We obtain the following pricing formula for Pt,T−t by Proposition 5.

Theorem 6 The following equation holds Q-a.s.:

Pt,T−t = Pn
t,T−t1{τ≤t}

+ 1{t<τ }
GQ(t, yt )

(∫ +∞

T
Punc,1
t,T−t,v−T ϕ

Q

t (v, yt ) f
Q(v)dv +

∫ T

t
Punc,2
t,T−t,v−T ϕ

Q

t (v, yt ) f
Q(v)dv

)
.

(27)

The first integrand on the right-hand side of Eq. (27) can be computed by applying
the Gauss-Laguerre quadrature rule:

∫ +∞

T
Punc,1
t,T−t,v−Tϕ

Q

t (v, yt ) f
Q(v)dv

=
n∑

i=1

wGLa
i Punc,1

t,T−t,vGLa
i

ϕ
Q

t (vGLa
i + T , yt ) f

Q(vGLa
i + T )evGLa

i , (28)

where vGLa
i and wGLa

i are the nodes and weights of the Gauss-Laguerre quadrature,
respectively.

The Gauss-Legendre quadrature rule is applied in the second integrand on the right-
hand side of Eq. (27) as follows:

∫ T

t
Pa,2
t,T−t,v−Tϕ

Q

t (v, yt ) f
Q(v)dv

= T − t

2

n∑
i=1

wGLe
i Pa,2

t,T−t,vGLe
i −T

ϕ
Q

t (vGLe
i , yt ) f

Q(vGLe
i ), (29)

where vGLe
i and wGLe

i are the nodes and weights of the Gauss-Legendre quadrature,
respectively.

Equations (28) and (29) contribute to an efficient computation of bond prices.
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5 Estimationmethodology

In this section, we first present a state space representation of our proposed model.
Next, we explain the assumptions wemake for the model parameters and the historical
data of the Japanese yield curve that we use to estimate the model. Additionally,
we provide mathematical expressions for the expected excess bond returns and the
posterior distributions of the UMP duration, which are plotted using the estimated
state variables in the next section.

5.1 State spacemodel representation

To estimate the latent factors Xt and yt of our model, we apply a filtering method to
a state space representation of the model. In this subsection, we formulate our model
as a state space model.

The invariant transforms of Dai and Singleton (2000); Ahn et al. (2002), and Leip-
pold and Wu (2002) are applicable to our model. This allows us to assume that θP is
a zero vector, �X is the identity matrix, and KP

X is the lower triangular matrix with
positive diagonal elements. After applying the invariant transformation, we estimate
the model.

The state equation of Xt describes the dynamics of Xt under the physical measure
P, as shown in Eq. (1). Replacing Eq. (1) with the discrete time representation under
the time step �t , we obtain the following equation:

Xt+�t = exp(−KP

X�t)Xt + wX ,t+�t , (30)

where wX ,t+�t ∼ N (0, V ) and V is provided as follows:

(KP

X + (KP

X )′)−1(I − exp(−(KP

X + (KP

X )′)�t)).

According to a theorem indicated in Bedini et al. (2017), yt for t < τ satisfies the
following equation:

yt = y0 +
∫ t

0
EP

[
ys

τ − s

∣∣∣∣ ys
]
ds +

∫ t

0
σydW

P

s,y

= y0 −
∫ t

0
ds ys

∫ ∞

s
dr

ϕP
s (r , ys)

(r − s)GP(s, ys)
f P(r)1{s<τ } +

∫ t

0
σydW

P

s,y,

(31)

where f P(τ ) is the prior density function for τ , the end time of the UMP under P,
ϕP
t (τ, yt ) is the density function for yτ

t under P indicated in Eq. (9), and

GP(t, yt ) =
∫ ∞

t
ϕP

t (v, yt ) f
P(v)dv. (32)
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Let us denote
∫ ∞
s dr

ϕP
s (r , ys)

(r − s)GP(s, ys)
f P(r) by g(s). Then, Eq. (31) is rewritten in

the following discrete time form:

yt+�t = e− ∫ t+�t
t g(s)ds yt + wy,t+�t , (33)

where wy,t+�t ∼ N (0, Vy) and Vy is σ 2
y

∫ t+�t
t e−2

∫ t+�t
u g(s)dsdu.

Let Y ielduit be the zero coupon yield with the time to maturity ui at time t observed
in a bond market. The vectors Yo

t = (Y ieldu1t , . . . ,Y ieldumt )′ and

Yt (Xt , yt ) =
(

− 1

u1
log Pu1

t (Xt , yt ), . . . ,− 1

um
log Pum

t (Xt , yt )

)′

computed from Eq. (27) constitute the observation equation of a state space model:

Yo
t = Yt (Xt , yt ) + ηt , ηt ∼ N (0, η2 Im), (34)

where Im is the identity matrix of size m. Errors ηt in the observation equation are
assumed to follow a normal distribution with a zero mean vector and a diagonal
covariance matrix η2 Im , and are assumed to be independent of other random variables.

Our state space model has a nonlinear observation equation; thus, we estimate the
model parameters and latent factors Xt and yt using the unscentedKalman filter (UKF)
proposed by Julier and Uhlmann (1997). The extended Kalman filter (EKF) is a well-
known filter that relies on the Taylor expansion of the nonlinear function. While the
EKF is a derivative-based method, the UKF is a derivative-free method. Therefore,
when it is difficult to differentiate the nonlinear function analytically, the UKF has
an advantage over the EKF. In our case, because it is difficult to derive derivatives of
the observation equations for yt , we estimate the model parameters using the quasi-
maximum likelihood method, while simultaneously estimating the latent variables Xt

and yt using the UKF.4

5.2 Parameter setting

We estimate the model using interest rates in the JGB market. To this end, this sub-
section presents the parameter settings.

Zero coupon interest rates withmaturities of less than one year, estimated from JGB
price data, often turned negative beginning in October 2015. Therefore, we establish
the initial time of our model as September 30, 2015.

The duration of an event is frequently represented using an exponential distribution
model. For instance, Ajevskis and Vitola (2010) presume that the time it takes for
a country to become a member of the EMU follows an exponential distribution. A
key characteristic of the exponential distribution is that the random variable generated

4 The UKF is used to estimate latent factors in some works in the finance literature (e.g., Leippold and Wu
2007; Christoffersen et al. 2014; Filipović et al. 2016; Branger et al. 2021).
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Fig. 1 Probability density functions of exponential distribution and gamma distribution

from the distribution ismost likely to be zero, as dipicted by the solid blue line in Fig. 1.
However, this characteristic does not alignwith our findings, because numerousmarket
participants believed the BOJ’s UMPwould persist when negative interest rates began
to be observed.

Figure1 shows the density function of a gamma distribution with the shape param-
eter α = 3 and the scale parameter β = 3 in the solid red line. The density peaks at a
point away from zero, and its expectation is αβ.

For this reason, we prefer a gamma distribution to an exponential distribution as the
prior distribution of τ , denoted as f P(τ ). We assume that the prior distribution of τ

follows a gamma distribution with the shape parameter α = 3 and the scale parameter
β = 3, reflecting the expectations that the BOJ’s UMP will continue for a prolonged
period. Its density function is provided as follows:

f P(τ ) = τα−1e− 1
β
τ

βα�(α)
= τ 2e− 1

3 τ

27�(3)
. (35)

To maintain simplicity in estimation, we assume that f Q(τ ) = f P(τ ) and that KQ

X
is the lower triangular matrix with positive diagonal elements as with KP

X .
Considering Xt as a three-dimensional latent state variable, we perform estimates

under two conditions: (i) when the constraint λy = 0 is imposed, and (ii) when the
constraint on λy is free.

5.3 Data

We estimate the model using market data for zero coupon yields of JGBs with matu-
rities of 6 months, and 1, 2, 3, 5, 7, 10, and 20 years. The data spans from October
1, 2015, to June 8, 2022, with a frequency of every five business days starting from
October 1, 2015. We estimate these yields based on B-spline regression, as detailed
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Table 1 Summary statistics of bond yields: The data are JGB yields expressed as annual percentages

Maturity Mean Std. Dev Skew Kurt Auto. Correl

0.5 −0.166 0.0852 −0.697 −0.139 0.962

1 −0.159 0.0729 −0.640 0.114 0.953

2 −0.147 0.0652 −0.207 0.898 0.931

3 −0.138 0.0685 −0.254 1.230 0.926

5 −0.126 0.0876 −0.608 0.905 0.939

7 −0.0864 0.106 −0.420 0.751 0.949

10 0.0423 0.119 −0.0867 0.932 0.964

20 0.532 0.213 0.901 1.841 0.982

Maturity is indicated in years. Mean is the sample mean, Std. Dev. is the standard deviation, Skew is the
skewness, Kurt is the excess kurtosis, and Auto. Correl. is the first order autocorrelation

in Steeley (1991) and Kikuchi and Shintani (2012), using JGB prices from the Japan
Securities Dealers Association.

Table 1 displays the summary statistics of the JGB yields used for our estimation.
The results show that the mean term structure is upward sloping, the yields are neg-
atively skewed, except for the 20-year rate, and the distributions of the medium and
long-term rates exhibit thicker tails than the normal distribution.

5.4 Mathematical expressions for the expected excess bond returns and the
posterior distribution of the duration of the UMP

Once all the parameters and state variables are estimated using the UKF and quasi-
maximum likelihoodmethods, it is possible to compute suitable measures to shed light
on the expectation formation of bond market participants. As examples, the following
section presents estimates of the expected excess bond returns and the posterior dis-
tributions of the duration of the UMP (i.e., the time to exit the UMP). In preparation,
this subsection offers mathematical expressions for the expected excess bond returns
and the posterior distribution of the UMP duration.

First, we derive the expected excess return representation of the bond. Note that the
sources of the expected excess returns in our model lie in Xt and yt . Since Xt and yt
are independent, we consider the expected excess returns associated with Xt and yt
separately.

Regarding the expected excess returns attributable to Xt , the volatility matrix of a
zero-coupon bond with a maturity date of T at time t with respect to the Brownian
motion WP

t,x is given by:

1

Pn
t,T−t

∂Pn
t,T−t

∂X ′
t

�X = (
(An

T−t + (An
T−t )

′)Xt + bnT−t

)′
�X .

123



K. Kikuchi

This equation, along with Eq. (6), leads to the following representation of the excess
return of bonds associated with Xt :

(
(An

T−t + (An
T−t )

′)Xt + bnT−t

)′
�X�(Xt ), (36)

where �(Xt ) is defined in Eq. (6).
The excess returns attributable to yt are given as follows:

1

Pt,T−t

∂Pt,T−t

∂ yt
σyλy . (37)

Since Pt,T−t is nonlinear in yt as shown in Eq. (27), it is difficult to have an ana-
lytical derivative representation of ∂Pt,T−t

∂ yt
in Eq. (37). Hence, we apply numerical

differentiation for its computation in the following section.
The expected excess returns are obtained by taking the expected value under the

physical probability measure in the sum of Eqs. (36) and (37). For computational
simplicity, we use the filtered values Xt |t for X in Eq. (36), and yt |t for y in Eq. (37).
Thus, the expected excess bond return representation is given as follows:

(
(An

T−t + (An
T−t )

′)Xt |t + bnT−t

)′
�X�(Xt |t ) +

(
1

Pt,T−t

∂Pt,T−t

∂ yt

)
|yt=yt |tσyλy .

(38)

The density function of the posterior distribution of τ under P is expressed as:

ϕP
t (τ, yt ) f P(τ )∫ ∞

t ϕP
t (v, yt ) f P(v)dv

, (39)

where ϕP
t (τ, yt ) and f P(τ ) are given in Eqs. (9) and (35), respectively.

Thus, at time t < τ , Eq. (39) leads to the following density of the posterior distri-
bution of the duration s = τ − t of UMP,

ϕP
t (t + s, yt ) f P(t + s)∫ ∞

0 ϕP
t (t + s′, yt ) f P(t + s′)ds′ . (40)

By denoting estimates of yt by yt |t , we can compute the posterior densities of the
time to exit from the UMP under P for each of the dates, using the estimates of the
model parameters and yt |t . From Eq. (40), these densities at time t are expressed as:

ϕP
t (t + τ̃ , yt |t ) f P(t + τ̃ )∫ ∞

0 ϕP
t (t + τ̃ , yt |t ) f P(t + τ̃ )d τ̃

. (41)
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6 Estimation results

This section presents the results of our estimations. We perform estimates under two
conditions: one with the constraint of λy = 0 and the other without it. We provide
parameter estimates for both cases, and evaluate the fit using root mean square errors
and comparisons between the observed and estimated values. Through these evalua-
tions, we determine the better model and show estimates of its latent variable Xt and
the lower bound of the interest rate yt . These estimates, especially the estimates of yt ,
provide insight into how the market perceived changes in the BOJ’s stance on UMP. In
addition, we present the expected excess returns of JGBs and the posterior probability
distributions for the duration of the UMP based on the estimated values of Xt and yt
for the chosen model.

6.1 Parameter estimates and fitting

In this subsection, we perform the estimation under two cases: the case where the
constraint λy = 0 is imposed, and the case where the constraint on λy is free. We
call the former case “Case I” and the latter case “Case II”. As a benchmark to see
how good both estimations are, we also show the estimation results in a model with a
constant lower bound on the short rate (i.e. a model assuming yτ

t = c in Eq. (2)). This
is the “benchmark” model.

Table 2 presents the parameter estimation results for the benchmark and Cases I and
II. The log-likelihood L of the model with the constant lower bound (the benchmark
model) is 17402 and its Bayesian information criterion (BIC) is −33779, indicating
that Cases I and II outperform the benchmark. Comparing Cases I and II, we find that
the unconstrained case for λy (Case II) has larger log-likelihood values and a lower
BIC than those of the λy = 0 case (Case I). Table 2 shows that the estimate of λy is
statistically significant, confirming the validity of the model that incorporates λy .

Table 3 presents the root mean squared errors (RMSEs) for the estimated yields in
the benchmark case, Case I, and Case II. The RMSEs of Cases I and II are smaller than
those of the benchmark case. Notably, the RMSEs for all maturities in Cases I and
II are consistently within two basis points in both cases, exhibiting strong in-sample
performance.

Table 4 shows the descriptive statistics of the fitting errors for the benchmark case,
Case I, and Case II. As shown, the maximum of the absolute values of the fitting errors
in the benchmark case exceeds 10 basis points, whereas those of Cases I and II are at
most around 7 basis points. Thus, Cases I and II exhibit good in-sample performance.

Tables 3 and 4 show that the estimation accuracy is equally good for Cases I and
II. Given this and considering that Table 2 shows that the unconstrained case for λy

has the lower BIC and the parameter estimate of λy is statistically significant, we
henceforth focus on estimation results for the unconstrained case for λy .

Figures2, 3, 4, and 5 compare the time series of observed and estimated yields of
short-, medium-, and long-term interest rates, respectively, based on the model with
the unconstrained case for λy . These figures demonstrate the high accuracy of our
estimates.
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Table 2 Parameter estimation results for the benchmark, Cases I, and II

Benchmark

� =
⎛
⎝ 3.9 × 10−3 (0.0012) −6.7 × 10−4 (8.2 × 10−5) −8.3 × 10−5 (4.3 × 10−5)

−6.7 × 10−4 (8.2 × 10−5) 1.1 × 10−4 (1.8 × 10−5) 1.5 × 10−5 (9.7 × 10−6)

−8.3 × 10−5 (4.3 × 10−5) 1.5 × 10−5 (9.7 × 10−6) 1.0 × 10−4 (2.0 × 10−5)

⎞
⎠,

KP

X =
⎛
⎝0.31 (0.20) 0 0

−1.2 (0.85) 0.74 (0.49) 0
−0.57 (1.6) −9.5 (2.2) 5.5 (0.69)

⎞
⎠,

KQ

X =
⎛
⎝ 9.6 (1.1) 0 0

2.0 (1.1) 0.0028 (0.0052) 0
−1.0 (2.2) 0.29 (0.052) 0.0024 (0.012)

⎞
⎠ ,

θQ =
⎛
⎝1.3 (0.24)
3.2 (0.40)
9.3 (0.60)

⎞
⎠ ,

c = −0.0072 (2.3 × 10−4), η = 0.0245%, L = 17402.0, BIC = −33779

Case I

� =
⎛
⎝ 3.5 × 10−8 (1.8 × 10−8) −4.7 × 10−9 (4.8 × 10−9) −8.0 × 10−9 (4.2 × 10−9)

−4.7 × 10−9 (4.8 × 10−9) 3.3 × 10−5 (1.0 × 10−5) 4.4 × 10−5 (2.5 × 10−5)

−8.0 × 10−9 (4.2 × 10−9) 4.4 × 10−5 (2.5 × 10−5) 5.2 × 10−4 (4.0 × 10−5)

⎞
⎠,

KP

X =
⎛
⎝0.0075 (0.016) 0 0

0.23 (0.13) 1.3 × 10−5 (1.5 × 10−5) 0
0.027 (0.079) −0.28 (0.64) 3.2 × 10−5 (1.3 × 10−4)

⎞
⎠ ,

KQ

X =
⎛
⎝1.3 × 10−9 (1.3 × 10−9) 0 0

−0.20 (0.0057) 0.20 (0.037) 0
0.041 (0.0060) −0.26 (0.030) 0.29 (0.059)

⎞
⎠ ,

θQ =
⎛
⎝ 9.7 (0.26)

−1.0 (0.87)
1.1 (0.37)

⎞
⎠ ,

σy = 0.0018 (2.0 × 10−4), η = 0.0126%, L = 18361.2, BIC = −36589

Case II

� =
⎛
⎝ 1.5 × 10−5 (1.8 × 10−6) −2.1 × 10−5 (1.8 × 10−6) 7.8 × 10−6 (7.8 × 10−7)

−2.1 × 10−5 (1.8 × 10−6) 5.7 × 10−5 (2.4 × 10−7) 2.0 × 10−5 (2.3 × 10−6)

7.8 × 10−6 (7.8 × 10−7) 2.0 × 10−5 (2.3 × 10−6) 4.3 × 10−4 (2.2 × 10−6)

⎞
⎠ ,

KP

X =
⎛
⎝9.5 × 10−4 (1.3 × 10−3) 0 0

0.19 (0.012) 0.0017 (0.0036) 0
−0.0081 (0.025) −0.68 (0.0040) 1.7 × 10−4 (6.8 × 10−5)

⎞
⎠ ,

KQ

X =
⎛
⎝4.1 × 10−7 (1.3 × 10−7) 0 0

−0.18 (4.9 × 10−5) 0.20 (8.2 × 10−4) 0
0.028 (5.2 × 10−4) −0.31 (0.0022) 0.30 (0.0031)

⎞
⎠ ,

θQ =
⎛
⎝9.8 (0.0012)

−1.6 (0.015)
1.3 (0.082)

⎞
⎠ ,

σy = 0.0019 (6.2 × 10−5), λy = 0.25 (0.0083),

η = 0.0124%, L = 18422.8, BIC = −36707

The standard errors are indicated in parentheses. η is defined as Eq. (34); L is the optimal log-likelihood;
and BIC is the Bayesian information criterion
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Table 3 The rootmean squared errors (RMSE) for estimated yields are reported in basis pointswithmaturity
indicated in years

Maturity 0.5 1 2 3 5 7 10 20

Benchmark 1.54 1.59 1.93 1.70 2.24 2.83 3.16 2.42

Case I 1.16 0.714 0.860 0.953 1.05 1.54 1.41 0.858

Case II 1.08 0.626 0.842 0.950 0.993 1.48 1.31 1.01

“Benchmark” in the table corresponds to the model with a constant lower bound. “Case I” and “Case II”
correspond to the λy = 0 case and the unconstrained case for λy , respectively

Table 4 Fitting errors are reported in basis points with maturity indicated in years

Maturity 0.5 1 2 3 5 7 10 20

Benchmark

Mean −0.167 0.819 1.130 0.665 −1.530 −1.958 2.147 −0.300

Std 1.530 1.368 1.564 1.565 1.635 2.046 2.314 2.404

Min −5.014 −4.555 −3.462 −4.523 −9.516 −9.554 −4.303 −10.725

25% −0.930 0.241 0.160 −0.254 −2.287 −3.301 0.412 −1.565

50% −0.346 1.144 0.965 0.601 −1.450 −1.739 1.995 −0.254

75% 0.474 1.638 2.092 1.650 −0.650 −0.762 3.910 0.704

Max 10.306 4.925 6.643 8.859 5.228 4.733 9.930 10.010

Case I

Mean 0.338 −0.230 −0.106 0.429 0.116 −0.503 0.264 −0.0150

Std 1.108 0.676 0.853 0.851 1.048 1.455 1.388 0.857

Min −5.456 −4.619 −3.102 −1.946 −5.220 −6.471 −4.614 −6.107

25% −0.172 −0.393 −0.742 −0.207 −0.558 −1.445 −0.864 −0.316

50% 0.329 −0.148 −0.142 0.429 0.111 −0.504 0.320 0.0822

75% 0.860 0.0419 0.523 0.989 0.878 0.476 1.111 0.383

Max 5.306 2.362 3.670 3.823 3.014 3.465 7.126 3.364

Case II

Mean 0.401 −0.198 −0.0755 0.447 0.111 −0.510 0.278 −0.0249

Std 1.005 0.594 0.838 0.838 0.987 1.391 1.275 1.007

Min −3.531 −3.202 −2.772 −1.626 −3.346 −5.215 −3.284 −6.990

25% −0.193 −0.397 −0.721 −0.219 −0.531 −1.422 −0.804 −0.409

50% 0.328 −0.164 −0.093 0.487 0.104 −0.600 0.360 0.0756

75% 0.906 0.0324 0.530 1.022 0.891 0.486 1.094 0.429

Max 4.273 2.270 3.425 3.539 2.603 3.668 6.413 3.682

The mean represents the sample average of fitting errors, the standard deviation is denoted by Std, and the
minimum and maximum values are denoted by Min and Max, respectively. The fitting errors’ quartiles are
presented as 25%, 50%, and 75%
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Fig. 2 Comparison between observed and estimated values of 6-month and 1-year yields

Fig. 3 Comparison between observed and estimated values of 2-year and 3-year yields

6.2 State variable estimates

Our model has two state variables, Xt and yt . Since these variables are unobservable,
in this subsection, we estimate them using the unscented Kalman filter.

Figure6 shows the filtered value of X , or Xt |t . In the following subsection, we plot
the evolution of the expected excess bond returns with different maturities using this
filtered value, Xt |t and yt |t shown thereafter.

Figure7 displays the estimated values of the stochastic lower bound, y. As shown in
Fig. 7, y shows a significant decrease during the summers of 2016 and 2019. The first
decrease can be attributed to the growing belief that the BOJ would deepen its NIRP
during this period. Similarly, the second decrease is attributed to the BOJ’s forward
guidance on the policy rate at the Monetary Policy Meeting held in April 2019. The
Bank’s decision to clarify its forward guidance on the policy rate and to take some
policy actions to continue its strong monetary easing, as discussed in Bank of Japan
Financial Markets Department (2020), likely drove the decrease in 2019.

6.3 Expected excess bond returns

Once we obtain estimates of the state variables Xt and yt , we can compute informative
indicators to clarify the expectation formation of bond market participants. As an
example of such indicators, this subsection shows the expected excess returns on
JGBs using the estimates of the model parameters and state variables in Sects. 6.1 and
6.2, respectively. The computation is implemented using Eq. (38).
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Fig. 4 Comparison between observed and estimated values of 5-year and 7-year yields

Fig. 5 Comparison between observed and estimated values of 10-year and 20-year yields

Fig. 6 Estimates of Xt , denoted as Xt |t , with its components labeled x1, x2, and x3

Figure8 shows the expected excess returns for bonds with maturities of one, two,
five, ten, and twenty years. The figure reveals that the expected excess returns for all
bond maturities remain consistently low throughout the sample period, with negative
values for much of the time. The figure also shows a deeper plunge into negative
territory for expected excess bond returns in 2016 and 2019, possibly indicating the
market’s belief that the BOJwas leaning toward furthermonetary easing. Additionally,
the expected excess return for short-term bonds becomes positive in 2021, followed
by a positive turn for long-term bonds in 2022. This shift could reflect the BOJ’s
decision to expand the target range for the 10-year JGB rate under the yield curve
control (YCC) policy at the March 2021 monetary policy meeting.
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Fig. 7 Estimates of the stochastic lower bound yt , or yt |t

Fig. 8 Expected excess bond returns

Fig. 9 Factor decomposition of the expected excess returns of two-year bond (left figure) and 10-year bond
(right figure). In the figure, the gray portion represents the expected excess return attributed to X , and the
yellow portion indicates the expected excess return attributed to y
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Fig. 10 Changes in the distribution of UMP duration over time

In our model, expected excess returns can be decomposed into factors associated
with Xt and yt based onEqs. (36) and (37), respectively. Figure9 shows the decomposi-
tion of expected excess returns on two-year and 10-year bonds into factors attributable
to Xt and yt . The figure shows that the contribution of yt puts downward pressure on
the expected excess returns for both bonds. We also find that the relative contribution
of yt to the total is more outstanding for the 10-year bond than it is for the two-year
bond throughout the period.

6.4 Implied posterior distribution of the UMP duration

Market participants showa strong interest inwhen aUMPwill end. To examine this,we
present how market participants’ perceptions of the duration of UMP have changed
over time, based on the posterior distributions of the duration of UMP provided in
Eq. (41).

Figure10 shows the changes in the posterior distribution of the duration of the UMP
over time, which we compute by substituting the estimates of the model parameters
and state variables in Sects. 6.1 and 6.2 into Eq. (41), respectively. The figure shows
that the posterior distribution of the UMP duration shifts toward shorter durations as
the sample period approaches its end.

We compute the expected values and modes of the UMP duration from the distribu-
tions in Fig. 10, and plot them in Fig. 11. The figure shows that, compared with Fig. 7,
the expected values and modes exhibit a reversal and a decreasing trend from the end
of September 2019. In particular, the decrease is significant and pronounced from the
beginning of 2022.

Figure12 shows a comparison of the implied posterior distributions for the duration
of the UMP on four selected days from the sample. The BOJ introduced NIRP in
January 2016, and by the middle of that year, there was increasing market speculation
that the policy would be intensified. This speculation might have caused the peak of
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Fig. 11 Estimated values and modes computed from implied posterior distributions of UMP duration

Fig. 12 Implied posterior distributions of UMP duration

the distribution in Fig. 12 on June 28, 2016, to shift to the right compared with its
position on October 2015. However, the BOJ did not intensify the NIRP. Instead, it
introduced the YCC policy in September 2016. Figure12 indicates that this action
by the BOJ resulted in shorter forecasts for the duration of the UMP. In early 2022,
the market became more conscious of the potential for a YCC revision by the BOJ,
causing the implied distribution in June 2022 to shift leftward compared with other
distributions. By 2023, the market’s interest in the possibility of the BOJ revising the
YCC had become even more noticeable. Therefore, if we extend the sample period
to 2023 and estimate the model, the resulting posterior probability distribution might
differ from the one obtained in 2022.

7 Conclusion

This paper has presented a novel model of the term structure of interest rates to analyze
time series data of yield curves, including the period of negative interest rate policy
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in the sample. The model defines the short rate as the sum of a quadratic function of
Gaussian state variables and a stochastic lower bound on interest rates modeled by
a Brownian bridge anchored at zero at time zero and at a random positive time. The
former time represents the first appearance of negative interest rates in the market and
the latter time represents the end of a UMP. The inclusion of such a Brownian bridge
lower bound is intended to allow the term structure model to capture changes in the
actual yield curves associated with both the strengthening and loosening of the UMP.
Within this framework, we have derived a semi-analytical pricing formula for zero
coupon bonds under the no-arbitrage condition.

In an empirical study, we have used time series data on the Japanese yield curve to
estimate the state variables and parameters, thereby demonstrating the effectiveness
of our proposed model. The model aligns well with the data, as evidenced by the
small RMSEs between the estimated and observed yield curves. Furthermore, our
estimates reveal a significant drop in the lower bound of the interest rate during the
middle of 2016 and around September 2019. This finding aligns with the speculation
about the deepening of the NIRP that prevailed in the financial market in 2016. It is
also consistent with the growing market expectations in September 2019 that the BOJ
would take further monetary easing.

After estimating the parameters and state variables of the model, we calculated the
expected excess returns of JGBs across variousmaturities, which serve as indicators of
interest in the financial market. Our findings reveal that the expected excess returns of
JGBs remain consistently low throughout the sample period, even becoming negative
for much of the time. This trend is largely due to the BOJ’s ongoing large-scale mon-
etary easing policy. Additionally, we calculated the posterior probability distributions
for the duration of the UMP based on the estimated parameters and state variables.
This helps to show how financial market participants form their expectations for the
UMP. Our findings indicate that participants anticipated a longer duration of the UMP
in the middle of 2016 and September 2019. They also show that expectations for the
duration decreased rapidly from the beginning of 2022.

While we have demonstrated the application of our proposed model using time
series data of the Japanese yield curve, it could also be applied to analyze the yield
curves of European countries that have experienced negative interest rates. Although
Europe returned to positive interest rates in 2022, it had experienced negative interest
rates in the past. Therefore, it would be worthwhile for future research to investigate
how the model performs using time series data that includes both negative and positive
interest rate periods in Europe.
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Appendix

A proof that y�
t is the Brownian bridge with y

�
0 = 0 and y�

� = 0 underQ and its
density follows Eq. (8) for t ≤ �.

We first compute the Ito derivative of
yτ
t

τ − t
as follows:

d
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t

τ − t
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τ − t
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t

(τ − t)2
dt − σyλy
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The second equality holds from Eq. (7).
Integrating both sides of the above equation from 0 to t , we obtain the following

equation:
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Since yτ
0 = 0, we have

yτ
t = σyλy(τ − t) log

τ − t

τ
+ σy(τ − t)

∫ t

0

dWQ

s,y

τ − s
.

Hence, yτ
t follows a normal distribution with the expectation

EQ[yτ
t ] = σyλy(τ − t) log

τ − t

τ

and the variance

VarQ[yτ
t ] = σ 2

y (τ − t)2
∫ t

0

ds
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= σ 2
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τ
.
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This means that Eq. (8) holds.
Since lim

t→τ
(τ − t) log(τ − t) = 0, lim

t→τ
yτ
t = 0. Therefore, yτ

t is the Brownian bridge

with yτ
0 = 0 and yτ

τ = 0 under Q.
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