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Abstract
We revisit two classical problems: the determination of the law of the underlying with
respect to a risk-neutralmeasure on the basis of option prices, and the pricing of options
with convexpayoffs in termsof prices of call optionswith the samematurity (all options
are European). The formulation of both problems is expressed in a language loosely
inspired by the theory of inverse problems, and several proofs of the corresponding
solutions are provided that do not rely on any special assumptions on the law of
the underlying and that may, in some cases, extend results currently available in the
literature. Furthermore, we consider a related problem, arising from nonparametric
option pricing, on the reconstruction of put option prices in an approximation scheme
where a sequence of measures converges to the (image) measure of the underlying’s
return at fixed maturities.

Keywords Option pricing · Breeden-Litzenberger formula · Convex payoffs ·
Distributions (generalized functions)

JEL Classification G13 · CO2

1 Introduction

Let S, β : � × [0, T ] → R+ denote the price processes of a risky asset and of a
numéraire (that we shall assume to be the money-market account, for simplicity),
respectively, in an arbitrage-free market, modeled on a filtered probability space
(�,F , (Ft )t∈[0,T ],P), where T > 0 is a fixed time horizon and F0 is the trivial
σ -algebra. Assuming that pricing takes place with respect to a risk-neutral probability
measure Q, the price at time zero of a European option with maturity T and payoff
profile g : R+ → R on the asset with price process S is given by

π(g) = EQβ−1
T g(ST ).
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92 C. Marinelli

We shall call the map g �→ π(g), defined on the set of all measurable functions g such
that the right-hand side is finite, the pricing functional.

A rather general and natural question, of clear relevance also for practical purposes,
is the following: suppose that the action of π is known on a set of functions G, i.e. that
π(g) is known for every g ∈ G. Is it possible to enlarge the set of functions G where
π is determined, i.e. to compute π( f ) for some functions f that do not belong to G?
We are going to discuss some questions of this type (although not in this generality),
through the representation of the pricing functional as a Lebesgue–Stieltjes measure,
that is

π(g) =
∫
R+

g(x) d F(x),

where F is the right-continuous version of the distribution function of ST with respect
to the measure (dQ/dP)β−1

T · P, i.e. the measure with density with respect to P equal
to the stochastic discount factor.

If a collectionG of payoff profiles g is such that the pricesπ(g) of the corresponding
options are known, the set M := (g, π(g))g∈G will be called a measurement set, and
a measurement set that determines F will be called a representation. That is to say, if
knowing M allows one to reconstruct F , then knowing M is equivalent to knowing
the pricing functional itself, which is why we say that it is a representation (of d F , or
of π ). An interesting and important example of a representation is given by prices of
put options: if G is composed of all functions gk : x �→ (k − x)+, k ∈ R+, then M
as defined above is a representation. More precisely, it is shown in Sect. 4 (see also
Sect. 6 for an alternative derivation) that if P(k) = π(gk) denotes the price at time
zero of the put option with maturity T and strike k ≥ 0, then D+ P(k) = F(k) for
every k ∈ R+, where D+ P(k) denotes the right derivative of P at k. The problem of
reconstructing the law of the underlying from option prices was probably considered
first in Breeden and Litzenberger (1978), where the authors showed that, denoting
the price of a call option with maturity T and strike k by C(k), the second derivative
of C is the density of ST with respect to the measure (dQ/dP)β−1

T · P, i.e. the first
derivative of F (the function C is implicitly assumed to be of class C2 in Breeden
and Litzenberger 1978). This result, known as the Breeden–Litzenberger formula, has
found many applications, e.g. in static hedging, nonparametric density estimation,
and local volatility models (see, e.g., Ait-Sahalia and Lo 1998; Bossu et al. 2021;
Itkin 2020; Marinelli and d’Addona 2017 and references therein, as well as Talponen
and Viitasaari 2014, where an interesting extension to the multidimensional setting
is presented and further references regarding static hedging are given). In general, F
is not of class C1, hence C is not of class C2, but, if they are, then the Breeden–
Litzenberger formula follows immediately from D+ P = F and the put-call parity
relation. Note, however, that for pricing purposes it suffices to determine F rather
than its derivative, and the relation D+ P = F is obtained here without any a priori
assumptions on F .

The reconstruction of F from a set of option prices is interesting in its own right,
but sometimes less information is enough for the problem at hand (roughly speaking,
this is just the idea behind static hedging). Using the above terminology, if one needs
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a measurement set M , it may be possible to determine a measurement set M ′ that
contains M , without necessarily recovering F first. The simplest example is the pricing
of options with continuous piecewise linear payoff profile (such as straddles, strips,
and strangles—see, e.g., Hull 2015, §12.4). Another one is the pricing of options with
payoff function equal to the difference of convex functions in terms of call options.
Even though, in the latter case, the measurement set of all call options is already a
representation, there is an alternative pricing formula that avoids the differentiation
of C , which might be preferable for numerical purposes. Such pricing formula for
options with convex payoff profiles is not new, but we give nonetheless several proofs:
a very concise one, a longer one that highlights the role of convexity, and a third one
that is extremely simple if sufficient regularity is present. We also show that similar
ideas can be used to “localize” the pricing formula, i.e. to price options with payoff
profiles that are piecewise the difference of convex functions.

The main content is organized as follows: we collect in Sect. 2 some auxiliary facts
from measure theory, convexity, and the theory of distribution. Definitions, motiva-
tions, basic properties, and examples pertaining to pricing functionals, measurement
sets, and representations are given in Sect. 3. Qualitative properties of the functions
P and C , as defined above, are discussed in Sect. 4, without any assumption on F .
Moreover, we show that F is the right derivative of P by two methods, that is, using
the integration-by-parts formula for càdlàg functions of finite variation and by a dense-
ness argument, respectively. In Sect. 5 we revisit the fact that prices of options with
convex profile are determined by prices of call options for all positive strikes. This is
proved in two ways: by an integration argument, that uses essentially only the Fubini
theorem, and via the above-mentioned integration-by-parts formula. The results of the
previous two sections are derived by yet another approach in Sects. 4–5, that is, using
the theory of distributions. An interesting aspect of this method is that it provides a
particularly handy way to make computations, also in cases that do not directly follow
from the setups of the previous two sections. We conclude in Sect. 7 where, motivated
by empirical issues in nonparametric pricing of European options treated in Marinelli
and d’Addona (2017), we consider a kind of representation where a sequence of mea-
sures converging towards d F intervenes. In particular, assume that the distribution of
logarithmic returns admits a density f and that there exists a sequence of functions
( fn) converging to f in L2(R). Considering fn as an approximation of f and comput-
ing approximating put prices for all strikes accordingly, we show that the knowledge
of such approximating prices suffices to uniquely determine the true put option prices
for all strikes.

2 Preliminaries

We shall use some elementary facts frommeasure theory and convexity, that we recall
for convenience. Let (X ,A ) and (Y ,B) bemeasurable spaces, andμ ameasure on the
former. Ifφ : X → Y is ameasurable function, then the imagemeasure or pushforward
of μ through φ is the measure on (Y ,B) defined by φ∗μ : B �→ μ(φ−1(B)). If
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g : Y → R is a measurable function, then

∫
Y

g dφ∗μ =
∫

X
g ◦ φ dμ, (2.1)

in the sense that g is φ∗μ-integrable if and only if g ◦ φ is μ-integrable, and in this
case the integrals coincide (see, e.g., Cohn 2013, §2.6.8). Interpreting precomposition
as pullback, hence writing φ∗g := g ◦ φ, and using the notation m( f ) := 〈m, f 〉 :=
〈 f , m〉 := ∫

f dm for any function f integrable with respect to a measure m, the
identity (2.1) can be written in the simple and suggestive form

〈
φ∗g, μ

〉 = 〈
g, φ∗μ

〉
.

We shall extensively use an integration-by-parts formula for Lebesgue–Stieltjes
integrals (see, e.g., Dellacherie andMeyer 1980, p. 343). Let the functions F , G : R →
R be càdlàg (i.e. right-continuous with left limits) and with finite variation (i.e. having
bounded variation on every bounded interval). Then, for any two real numbers a < b,

F(b)G(b) − F(a)G(a) =
∫

]a,b]
G(x−) d F(x) +

∫
]a,b]

F(x) dG(x). (2.2)

If G is continuous, one can obviously replace G(x−) by G(x). Whenever dG is an
atomless measure we shall just write

∫ b
a F dG instead of denoting the interval of

integration as a subscript. Moreover, we set R+ := [0,+∞[.
Let us recall a few facts about convex functions (see, e.g., Simon 2011, Chapter 1).

Let I ⊂ R be an open interval and f : I → R be a convex function. Then f is
everywhere left- and right-differentiable, that is, for any x ∈ I the left and right
derivatives

D− f (x) := lim
h→0−

f (x + h) − f (x)

h
, D+ f (x) := lim

h→0+
f (x + h) − f (x)

h

exists and are finite, and D− f (x) ≤ D+ f (x). Moreover, both D− f and D+ f are
increasing functions, D− f is left-continuous, and D+ f is right-continuous. It follows
that f is differentiable except at the countable set of points where D− f and D+ f do
not coincide. The subdifferential of f at x is defined as

∂ f (x) = {
z ∈ R : f (y) − f (x) ≥ z(y − x) ∀y ∈ I

}
.

It can be shown that ∂ f (x) = [D− f (x), D+ f (x)] and that, for any x1, x2 ∈ I ,
x1 < x2, it holds D+ f (x1) ≤ D− f (x2), hence ∂ f (x1) ∩ ∂ f (x2) is either empty, if
the last inequality is strict, or equal to {D− f (x2)}, if the last inequality is an equality.
The right derivative D+ f , being increasing, hence of bounded variation, and right-
continuous, defines a (Lebesgue–Stieltjes) measure m via the prescription

D+ f (b) − D+ f (a) =: m(]a, b]), a, b ∈ I , a ≤ b.
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In this sense, the positive measure m can be interpreted as the second derivative of f .
We shall also use elementary properties of distributions, for which we refer, e.g.,

to Schwartz (1966) or Duistermaat and Kolk (2010). If E is an open subset of the
real line, the space of infinitely differentiable functions from E to R with compact
support will be denoted by D(E). Elements of the dual D ′(E) of D(E), i.e. linear
continuous functionals on D(E), are called distributions. The indication of the set E
will be omitted if it coincides with R. The pairing between distributions and infinitely
differentiable functions with compact support will be denoted by 〈·, ·〉. We recall that,
given a distribution F ∈ D ′(E), its distributional derivative F ′ is the distribution
defined by

〈
F ′, φ

〉 = − 〈
F, φ′〉 ∀φ ∈ D(E).

A function f ∈ L1
loc(R) induces the distribution, denoted by the same symbol, defined

by

〈 f , φ〉 :=
∫
R

f φ ∀φ ∈ D .

Assume that f : R → R is piecewise of class C1, with discontinuity points (xn).
Denoting theDiracmeasure at a ∈ R by δa , and using the standard notations	 f (x) :=
f (x+) − f (x−), one has (see Schwartz 1966, p. 37)

f ′ =
∑

n

	 f (xn)δxn + [ f ′],

where f ′ stands for the derivative of f in the sense of distributions, and [ f ′] for
the derivative in the classical sense over the open intervals ]xn, xn+1[ where f is
continuously differentiable (a corresponding result for higher-order derivatives can be
obtained by induction). If f is a function with finite variation, then f ′ coincides, in
the sense of distributions, with the Lebesgue–Stieltjes measure d f . We shall need to
consider functions f that are piecewise differences of convex functions, i.e. of the
form

f =
∑

n

fn, fn : [an, an+1[→ R,

where the sum is (at most) countable, and for every n there exist convex functions
h1

n , h2
n on R such that fn = h1

n − h2
n on [an, an+1[. Then f is càdlàg and has finite

variation. We are going to compute the first and second distributional derivatives of
f . It is clear that it is enough to consider, without loss of generality, f with support
equal to [a, b] and f = h1 − h2 on [a, b[, for h1 and h2 convex functions on R.

Lemma 2.1 Let f : R → R be a càdlàg function with finite variation, and [a, b] ⊂ R

a compact interval. The distributional derivative of f[a,b] := f 1[a,b] is

f ′[a,b] = d f
∣∣]a,b[ + f (a)δa − f (b−)δb.
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Proof Let us denote f[a,b], for the purposes of this proof only, simply by f . The
distributional derivative f ′ is defined by the identity

〈
f ′, φ

〉 = − 〈
f , φ′〉 for every

φ ∈ D , where

〈
f , φ′〉 =

∫
R

f φ′ =
∫ b

a
f dφ =

∫
]a,b]

f dφ

and, thanks to the integration-by-parts formula (2.2),

f (b)φ(b) − f (a)φ(a) =
∫

]a,b]
f dφ +

∫
]a,b]

φ d f ,

hence

∫
]a,b]

f dφ = −
∫

]a,b]
φ d f + f (b)φ(b) − f (a)φ(a),

i.e.

〈
f ′, φ

〉 =
∫

]a,b]
φ d f + f (a)φ(a) − f (b)φ(b)

=
∫

]a,b[
φ d f + φ(b)( f (b) − f (b−)) + f (a)φ(a) − f (b)φ(b)

=
∫

]a,b[
φ d f + f (a)φ(a) − f (b−)φ(b). ��

Proposition 2.2 Let f : R → R be a difference of convex functions and let [a, b] ⊂ R

be a compact interval. Then the first and second distributional derivatives of f[a,b] :=
f 1[a,b] are

f ′[a,b] = d f
∣∣]a,b[ + f (a)δa − f (b)δb,

f ′′[a,b] = d D+ f
∣∣]a,b[ + f (a)δ′

a − f (b)δ′
b + D+ f (a)δa − D+ f (b−)δb.

Proof Let us write again f to denote f[a,b] for simplicity, and only for the purposes
of this proof. The function f is continuous on R and, being the difference of convex
functions, has finite variation. The previous lemma then yields the expression for f ′.
To compute f ′′, let us recall that f is absolutely continuous with classical derivative
equal to D+ f a.e., so that

〈
f ′′, φ

〉 = − 〈
f ′, φ′〉 = −

∫
]a,b[

φ′ d f − f (a)φ′(a) + f (b−)φ′(b)

= −
∫

]a,b[
D+ f dφ − f (a)φ′(a) + f (b−)φ′(b).
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Since D+ f is càdlàg and of finite variation, the integration-by-parts formula (2.2)
yields

D+ f (b)φ(b) − D+ f (a)φ(a) =
∫

]a,b]
D+ f dφ +

∫
]a,b]

φ d D+ f ,

hence

−
∫

]a,b[
D+ f dφ = −

∫
]a,b]

D+ f dφ

=
∫

]a,b]
φ d D+ f + D+ f (a)φ(a) − D+ f (b)φ(b)

=
∫

]a,b[
φ d D+ f + D+ f (a)φ(a) − D+ f (b−)φ(b).

Collecting terms concludes the proof:

〈
f ′′, φ

〉 =
∫
]a,b[

φ d D+ f − f (a)φ′(a) + f (b−)φ′(b) + D+ f (a)φ(a) − D+ f (b−)φ(b). ��

Remark 2.3 Let a < b be real numbers and I be any interval with endpoints a and
b. Note that f 1[a,b] coincides in D ′ with f 1I , for any choice of I . Therefore their
distributional derivatives are also the same.

3 Pricing functionals, measurements and representations

3.1 Pricing functionals

Let (�,F ,P) be a probability space endowedwith a filtration (Ft )t∈[0,T ], with T > 0
a fixed time horizon, and let S : � × [0, T ] → R+ be the price process of an asset.
We assume also that β : � × [0, T ] →]0,∞[ is the price process of a further asset
used as numéraire, normalized with β0 = 1 and uniformly bounded from below, and
that the market where both assets are traded is free of arbitrage, so that the set Q of
probability measuresQ equivalent to P such that the discounted price process β−1S is
a Q-local martingale is not empty. For any FT -measurable claim X such that β−1

T X
is bounded, the value EQβ−1

T X is an arbitrage-free price at time zero of X for every
Q ∈ Q. From now on we shall fix a measure Q ∈ Q. For any measurable bounded
function g : R+ → R, the bounded FT -measurable random variable g(ST ) is the
payoff of a European option on S with payoff profile g, the price of which at time zero
is EQβ−1

T g(ST ).
We shall call pricing functional the map

π : g �−→ EQβ−1
T g(ST ) = E

dQ

dP
β−1

T g(ST ),
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98 C. Marinelli

defined first on the set of measurable bounded functions g : R+ → R. Let μ be the
measure on FT defined by

μ(A) := EQβ−1
T 1A, (3.1)

that is, μ is the measure onFT the Radon-Nikodym derivative of which with respect
to P is

dμ

dP
= dQ

dP
β−1

T .

Note that μ is (in general) not a probability measure: in fact, μ(�) = EQβ−1
T need

not be one, and could be interpreted as the price at time zero of a zero-coupon bond
maturing at time T with face value equal to one. In this case, μ is a sub-probability
measure, i.e. μ(�) ≤ 1. The pricing functional can then be written as

π : g �−→
∫

�

g(ST ) dμ.

Denoting the pushforward of μ through ST by S∗μ, i.e. the measure on the Borel
σ -algebra of R defined by

S∗μ : B �−→ μ(S−1
T (B)),

one has

EQβ−1
T g(ST ) =

∫
�

g(ST ) dμ =
∫
R

g d(S∗μ).

Therefore, denoting the distribution function of the measure S∗μ by F , i.e.

F(x) := μ(ST ≤ x) = EQβ−1
T 1{ST ≤x},

the pricing functional can be written as

π : g �−→
∫
R+

g d F .

In other words, the pricing functional can be identified with F , or with S∗μ. Note also
that the pricing functional can naturally be extended to every g ∈ L1(d F). If g ≥ 0, as
is mostly the case for payoff functions, then π(g) is simply the norm of g in L1(d F).

Remark 3.1 If one just assumes that there exists a pricing functional, defined as a
positive linear functional on a certain set of functions, then an integral representation
of π holds in many cases. This is essentially the content of various forms of the Riesz
representation theorem. For instance, ifπ is continuous onC0(R), the Banach space of
continuous functions onR that are zero at infinity, endowed with the supremum norm,
then there exists a unique finite Radon measure m on R such that π(g) = ∫

g dm for
every g ∈ C0(R). If π is continuous on Cc(R), the space of continuous functions on
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R with compact support with the topology of uniform convergence on compact sets,
then there exists a unique Radon measure m on R (not necessarily finite) such that
π(g) = ∫

g dm for every g ∈ Cc(R). On the other hand, if π is just assumed to be
continuous on L ∞(R), the Banach space of bounded measurable functions with the
supremum norm, then an integral representation of π is only possible with respect
to a bounded additive set function, not a measure. A completely analogous situation
arises if continuity of π is assumed on L∞(R). On the other hand, if π is assumed to
be weak* continuous on L∞(R), then there exists φ ∈ L1+(R) such that π(g) = ∫

φg
for every g ∈ L∞(R). However, the weak* convergence of a sequence (gn) in L∞,
i.e. the existence of g ∈ L∞ such that

lim
n→∞

∫
f gn =

∫
f g ∀ f ∈ L1(R),

does not seem to have a clear economic interpretation.

3.2 Measurements and representations

Depending on the problem at hand, the pricing functional π : g �→ d F(g)may or may
not be known. If d F is assumed a priori to be known, as, for instance, in the Black-
Scholes model with given volatility, then π is trivially known. An analogous situation
arises in the case where d F is assumed to belong to a family of finite measures
(d Fθ )θ∈� parametrized by a finite-dimensional parameter θ : once an estimate θ̂ is
obtained, so that d F

θ̂
is used in the definition of π , one falls back into the previous

(quite tautological) case. On the other hand, in many other situations, for instance
when no parametric assumptions on d F are made, the pricing functional π is only
known through its action on a set of “test functions” (g j ) j∈J , e.g. with g j the payoff
profile of a call or put option with a strike price indexed by j ∈ J . The next definition
is hence natural.

Definition 3.2 A measurement (of d F) is a pair (g, π(g)), where g : R+ → R is a
measurable function integrable with respect to d F . A measurement set (of d F) is a
collection of measurements.

A typical situation of practical relevance is given by (g j ) being a collection of
payoff profiles of (European) options. For instance, for any j ≥ 0, let g j be the payoff
function of a put option with strike price j , that is, g j : x �→ ( j − x)+. If the price of
the put option with strike j is known for every j > 0, then we have a measurement
M = (g j , π j ) j∈J setting J =]0,+∞[, g j : x �→ ( j − x)+, and π j = d F(g j ).

Remark 3.3 a) A measurement set is just a subset of the graph of π .
b) The term “measurement”, by no means standard, somewhat mimics an analogous
one used in the theory of inverse problems, where, in a (usually) more rigid functional
setting, the expression “measurement operator” is sometimes used.
c) In view of the linearity of integration, if π is known on a set G ⊆ L1(d F), then it
is known also on the vector space generated by G. Similarly, it would seem natural
to augment M with its accumulation points, i.e. to take its closure, in L1(d F) × R.
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100 C. Marinelli

However, since we treat d F as unknown, this operation would not be plausible. Some
accumulation points can be added nonetheless, as we shall see below, so long as they
are constructed without using d F or, more precisely, assuming that all is known about
d F is (the vector space generated by) M .

Measurement sets can be ordered by inclusion, hence they can be compared. If M
is a measurement set, the vector space generated by M , itself a measurement set, will
be denoted by M̂ .

Definition 3.4 Let M1 and M2 be two measurement sets. One says that M1 is finer
than M2 if M̂1 contains M2, and that M1 and M2 are equivalent if M1 is finer than M2
and M2 is finer than M1, i.e. if M̂1 = M̂2. A representation is a measurement set finer
than (1A, d F(A))A∈A , where A is the Borel σ -algebra of R+.

Remark 3.5 It would be enough to take asA any collection of subsets ofR+ generating
the Borel σ -algebraB(R+) such that, for any two finite measures m and n onB(R+)

with m(R+) = n(R+), m(A) = n(A) for every A ∈ A implies m = n. This is the
case, for instance, if A is stable with respect to finite intersection (see, e.g., Cohn
2013, Corollary 1.6.3).

Apart from the natural inverse problem of recovering the measure d F from a suffi-
ciently rich collection of option prices, possibly providing an algorithm to do so, it is
interesting also to describe relations between measurement sets. For instance, if one
needs F only to price a certain set of options, instead of reconstructing F it could
suffice to identify a measurement set that already allows to accomplish the task. In
the simplest case, if g is the payoff profile of the option to price and g belongs to the
vector space generated by an available measurement set M , there is clearly no need
to recover F . In spite of its simplicity, this is precisely how one can proceed to price
options with continuous piecewise linear payoff profile. In fact, as is well known, these
options can be priced in terms of linear combinations (independent of F!) of prices of
put options with strikes at the “juncture” points of the piecewise linear profile. A more
sophisticated fact is that call option prices for every positive strike price allow to price
option with arbitrary convex payoff. In this case, however, if g is an arbitrary convex
function and pr1M , the projection on L1(d F) of the measurement set M , is the vector
space generated by (x �→ (x − k)+)k∈R+ , it is not true in general that g ∈ pr1M . It is
true, however, that g is an accumulation point of pr1M , as discussed in Sect. 5 below.

It was mentioned above that it would not be meaningful to extend a measurement
set M taking its closure in L1(d F)×R, as F is considered unknown. However, one can
indeed add some cluster points, if they are defined by procedures that do not involve
F . In particular, at least two possibilities exist:

(a) let (gn) ⊆ pr1M be a sequence that converges pointwise to g and for which there
exists h ∈ L1(d F) such that |gn(x)| ≤ h(x) for all x ∈ R+. The dominated con-
vergence theorem then implies that g ∈ L1(d F) and that π(g) = limn→∞ π(gn);

(b) let (gn) ⊆ pr1M be such that gn ↑ g, i.e. (gn) is an increasing sequence that
converges pointwise to g, and such that (π(gn)) is bounded from above, i.e.
supn π(gn) < ∞. Then 0 ≤ gn − g0 ↑ g − g0 and, by the monotone conver-
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gence theorem,

π(g − g0) = lim
n

π(gn − g0) = sup
n

π(gn) − π(g0) < ∞,

hence g − g0 ∈ L1(d F), i.e. g ∈ L1(d F) with π(g) = supn π(gn).

The cluster points constructed in (a) and (b) do not depend on knowing F , hence they
could reasonably be added to the measurement set M . The measurement sets obtained
by adding to M̂ the cluster points described in (a) and (b) will be denoted by Md and
Mm , respectively. We shall see that if M1 is the measurement set of all call options,
and M2 themeasurement set of all convex options, then Mm

1 is finer than M2. Since M2
is finer than Mm

1 (the pointwise supremum of a family of convex functions is convex),
Mm

1 and M2 are equivalent measurement sets. In other words, one cannot replicate a
convex payoff with just call payoffs, but one can approximate a convex payoff by a
combination of call payoffs with any pricing accuracy.

Taking suitable limits of sequences of measurements is not the only possible way
to enrich a measurement set. In fact, one can also perform several operations on
(π j ) j∈J ⊆ R, using the structure of R: they can for instance be added, multiplied,
and functions φ : Rn → X can be applied to n of them, with X suitable sets, and so
on. Note that M could also be seen as a linear map from the space of finite measures
M 1(R+) to R

J , mapping d F to (d F(g j )) j∈J . Viewing elements of RJ as functions
from J toR, the problem at hand may imply that these functions in the codomain have
additional properties, for instance they may be monotone, or convex, or continuous,
or differentiable, depending on the inputs (g j ). Depending on the range of M in the
codomainRJ , different operations may be applied. For instance, taking derivatives on
R

J or on C(J ) would not make sense, but it would make sense on C1(J ), or in the
a.e. sense if we knew that the range is made of Lipschitz continuous functions. We
shall see that this point of view is also fruitful, showing that the right derivative of put
prices, seen as a function P of the strike price, is equal to F . We shall also see that the
price of an option with arbitrary convex payoff can be written in terms of an integral
of C , where C(k) is the price of the call option with strike k.

In some cases one does not observe a measurement directly, but a function of a
measurement. This is the case, for instance, of implied volatility. If gk : x �→ (k − x)+
is the payoff function of a put optionwith strike k, there is a one-to-one correspondence
between πk := π(gk) and the Black-Scholes implied volatility, given by a function
v : R+ → R+ such that πk = BS(S0, k, T , v(πk)). Here BS(S0, k, T , σ ) denotes the
Black-Scholes price at time zero of a put option on an underlying with price at time
zero equal to S0, strike k, time to maturity T , volatility σ , and interest rate as well
as dividend rate equal to zero. In particular, if the implied volatility is known for
every strike k > 0, inverting the function v we obtain the measurement set of put
prices M = (gk)k≥0, which is a representation. In other words, implied volatility for
all strikes uniquely determines the pricing functional or, equivalently, the measure
d F . We may then say, with a slight abuse of terminology, that implied volatility is a
representation.

Let X be a locally compact space and φ : R → X be a measurable isomorphism,
i.e. a bijection such that both φ and φ−1 are measurable. This is the case, for instance,
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if φ is a homeomorphism. Then, for any g ∈ L1(d F), one has

d F(g) = 〈g, d F〉 = 〈
φ∗(φ−1)∗g, d F

〉 = 〈
(φ−1)∗g, φ∗d F

〉
.

This change of parametrization can also be interpreted in terms of measurement sets,
saying that the measurement set M = (g j , d F(g j )) of d F is in bijective correspon-
dence with the measurement set

M ′ = (
(φ−1)∗g j , φ∗d F((φ−1)∗g j )

) = (
(φ−1)∗g j , d F(g j )

)

of φ∗d F . Even though the two measurements are isomorphic (as sets), they may have
quite different properties. Let us consider, for instance, the reparametrization from
price to logarithmic return: setting ST = S0 exp(σ XT + m), where σ > 0 and m are
constants, the pricing functional can be written as

π : g �−→
∫
R

g(S0eσ x+m)d FX (x),

where FX is the distribution function of the measure (XT )∗μ, the support of which is
R. If g is the payoff function of a put option with strike k, then x �→ g(S0eσ x+m) =
(k − S0eσ x+m)

+ does not have compact support. This is clearly in stark contrast to
the expression of π(g) in terms of d F , where the intersection of the supports of g and
d F is compact. As will be seen, several analytic arguments strongly depend on this
property, that hence cannot be used with the new parametrization, even though the
values of the corresponding integrals are the same.

Finally, we remark that it is sometimes useful to extend the definition of measure-
ment set allowing for an extra collection (d Fj ) of (possibly signed)measures forwhich
a relation to d F is known. For instance, let gk , for any k ≥ 0, be the payoff function
of a put option with strike price k, that is, gk : x �→ (k − x)+. Moreover, let (d Fn) be
a sequence of Radon measures converging weakly to d F as n → ∞. Each measure
d Fn can be thought of as an approximation to the law d F , and d Fn(gk) as the price
of a put option with strike k under the approximating law d Fn . If all such prices can
be observed, then we have an “extended” measurement set M̃ := (g j , π j , d Fj ) j∈J ,
where J = R+ ×N, Fj = Fkn , Fkn = Fn for every k, g j = gkn = gk for every n, and
π j = πkn = Fn(gk). Note that gk ∈ Cb(R) for every k, hence Fn(gk) → F(gk) as
n → ∞. In particular, if we define the (standard) measurement set M = (g j , π j ) j∈R+
as g j : x �→ ( j − x)+ and π j = d F(g j ), then we could say that M̃ “implies” M . That
is, for every g ∈ pr1M there exists a sequence (d Fn) ⊂ pr3M such thatπ(g) = d F(g)

is the limit of d Fn(g) ⊂ pr2M . An example of this type, motivated by empirical non-
parametric option pricing, is discussed in Sect. 7 below.
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4 Put and call option prices and the pricing functional

Let us define the functions P, C : R+ → [0,+∞] by

P(k) :=
∫
R+

(k − x)+ d F(x), C(k) :=
∫
R+

(x − k)+ d F(x).

Note that P(k) is finite for all k as R+ � x �→ (k − x)+ is bounded (in fact, it is
continuous with compact support), but C(k) is finite if and only

∫ ∞

k
x d F(x) < ∞,

hence C is everywhere finite if and only d F has a finite mean

d F :=
∫
R+

x d F(x).

The financial interpretation of d F < ∞ is that EQβ−1
T ST is finite. This is clearly

not a limitation. Moreover, we recall that F(∞) := limx→∞ F(x) can be identified
with the price at time zero of a zero-coupon bond expiring at time T and with unit
face value, therefore F(∞) ≤ 1. However, we shall explicitly mention hypotheses
on F because some of the considerations to follow may be interesting for general F ,
independently of the underlying financial interpretation.

The functions P andC will play a central role, sowediscuss someof their properties.
They are all rather basic, but they are fully justified for completeness.

Proposition 4.1 The function P is increasing, locally Lipschitz continuous, Lipschitz
continuous if d F is finite, convex, and satisfies the inequality P(k) ≤ k F(k) for every
k ≥ 0. Moreover, P(0) = 0 and

lim
k→∞

P(k)

k
= F(∞),

hence, in particular, limk→∞ P(k) = ∞.

Proof Since k �→ (k −x)+ is increasing for every x ∈ R+ and integration with respect
to a positive measure is positivity preserving, P is increasing. Similarly, as k �→ k+
is 1-Lipschitz continuous, k �→ (k − x)+ is 1-Lipschitz continuous uniformly with
respect to x , hence P is locally Lipschitz continuous as well and globally Lipschitz
continuous if F(∞) < ∞. To prove convexity, note that, for any x ∈ R+, k �→ k − x
is affine, in particular convex, and y �→ y+ is convex increasing, hence the composite
function k �→ (k−x)+ is convex. Finally, integrationwith respect to a positivemeasure
preserves convexity, hence P is convex. The identity P(0) = 0 follows immediately
by the definition of P , as does the estimate P(k) ≤ k F(k), where F(k) ≤ F(∞).
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Finally,

P(k)

k
= 1

k

∫
[0,k]

(k − x) d F(x) =
∫
R+

(
1 − x

k

)
1[0,k] d F(x),

where (1 − x/k)1[0,k] → 1 for all x ≥ 0 as k → ∞ and (1 − x/k)1[0,k] ∈ [0, 1] for
all x, k ≥ 0, hence the dominated convergence theorem implies

lim
k→∞

P(k)

k
=

∫
R+

d F = F(∞). ��

Proposition 4.2 Assume that d F < ∞. The function C is decreasing, Lipschitz con-
tinuous, and convex. Moreover, C(0) = d F and limk→∞ C(k) = 0.

Proof The proof of monotonicity, Lipschitz continuity, and convexity are entirely
similar to the corresponding proof for put options, noting that k �→ (x − k)+ is
decreasing. The definition of C immediately implies that C(0) = ∫

R+ x d F(x), and
also that

C(k) =
∫ ∞

k
(x − k) d F(x) ≤

∫
[k,∞[

x d F(x),

where the right-hand side converges to zero as k → ∞ because
∫
R+ x d F(x) is finite

by assumption. ��
By a direct computation one can obtain estimates for local and global Lipschitz

constants. In fact, the 1-Lipschitz continuity of x �→ x+, hence also of k �→ (k − x)+,
yields, for any k1, k2 ≥ 0,

|P(k2) − P(k1)| ≤
∫

[0,k1∨k2]
∣∣(k2 − x)+ − (k1 − x)+

∣∣ d F(x)

=
∫

[0,k1∨k2[
∣∣(k2 − x)+ − (k1 − x)+

∣∣ d F(x)

≤
∫

[0,k1∨k2[
|k2 − k1| d F(x) = |k2 − k1| F−(k1 ∨ k2),

where F− stands for the left-continuous version of F , defined by F−(x) := F(x−) :=
limh→0+ F(x − h). The same estimate holds for P replaced by C . One can actually
show, using subdifferentials, that the Lipschitz continuity estimates thus obtained are
sharp. In fact, for any k1, k2 ≥ 0, convexity implies

P(k2) ≥ P(k1) + ∂ P(k1)(k2 − k1)

where1 ∂ stands for the subdifferential in the sense of convex analysis. Hence, if
k1 ≥ k2, P(k1) ≥ P(k2) because P is increasing,which also implies that ∂ P(x) ⊂ R+
1 Since ∂ P(k1) is in general a set, one should write P(k2) ≥ P(k1) + y(k2 − k1) for every y ∈ ∂ P(k1).
This slight abuse of notation shall not create any harm though.

123



On certain representations of… 105

for every x > 0, hence

∣∣P(k1) − P(k2)
∣∣ = P(k1) − P(k2) ≤ ∂ P(k1)(k1 − k2) = ∂ P(k1) |k1 − k2| .

Similarly, if k1 ≤ k2,

∣∣P(k1) − P(k2)
∣∣ = P(k2) − P(k1) ≤ ∂ P(k2)(k2 − k1) = ∂ P(k2) |k1 − k2| .

Recalling that ∂ P(k) = [D− P(k), D+ P(k)] for every k > 0, it easily follows that

∣∣P(k1) − P(k2)
∣∣ ≤ D− P(k1 ∨ k2) |k1 − k2| .

As D+ P = F and the left-continuous version of D+ P is D− P , it follows that
D− P = F−.

We are going to show that F is the right derivative of P , and that a similar relation
holds betweenC and F . We give two proofs, one that relies on the integration-by-parts
formula for càdlàg functions, and a slightly more indirect one based on a denseness
result. Namely, we show that the set of put payoffs are total in L1(d F), i.e. that for
any g ∈ L1(d F) there exist a sequence of finite linear combinations of put payoffs
that converges to g in L1(d F). Then we show that the two approaches are in fact
equivalent. A third approach, using distributions, will be given in Sect. 6 below.

4.1 Reconstruction of F via integration by parts

Weshall apply the integration-by-parts formula (2.2) to establish a connection between
the distribution function F and the price functions for put and call options P and C .

Theorem 4.3 One has P ′ = F a.e. in R+ and D+ P(x) = F(x) for every x ∈ R+.
Moreover, if the measure d F has finite mean, then C ′ = F − F(∞) a.e. in R+ and
D+C(x) = F(x) − F(∞) for every x ∈ R+.

Proof Let k ≥ 0 and G : x �→ k − x . The integration-by-parts formula

G(k)F(k) − G(0)F(0) =
∫

]0,k]
G(x) d F(x) +

∫
]0,k]

F(x) dG(x)

yields

∫ k

0
F(x) dx = k F(0) +

∫
]0,k]

(k − x) d F(x)

=
∫

[0,k]
(k − x) d F(x)

=
∫
R+

(k − x)+ d F(x) = P(k).
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The Lebesgue differentiation theorem then implies that P ′ = F a.e. inR+. Moreover,
since F is right-continuous by definition, and P is convex, hence right-differentiable,
we also have D+ P(x) = F(x) for every x ∈ R+.

Obtaining a relation between C and F along the same lines is a bit more involved:
if k > 0 and G : x �→ x − k, one has, for any a > k,

G(a)F(a) − G(k)F(k) =
∫

]k,a]
G(x) d F(x) +

∫
]k,a]

F(x) dG(x),

i.e.

(a − k)F(a) =
∫

]k,a]
(x − k) d F(x) +

∫ a

k
F(x) dx,

which is equivalent to

∫
[k,a]

(x − k) d F(x) =
∫ a

k
(F(a) − F(x)) dx .

Therefore, by the monotone convergence theorem,

lim
a→∞

∫
[k,a]

(x − k) d F(x) = lim
a→∞

∫
R+

1[k,a](x − k) d F(x)

=
∫

[k,∞[
(x − k) d F(x)

=
∫
R+

(x − k)+ d F(x) = C(k),

as well as

lim
a→∞

∫ a

k
(F(a) − F(x)) dx = lim

a→∞

∫
R+

1[k,a](F(a) − F(x)) dx

=
∫ ∞

k
(F(∞) − F(x)) dx,

hence

C(k) =
∫ ∞

k
(F(∞) − F(x)) dx . (4.1)

This implies C ′ = F − F(∞) a.e. as well as, by right continuity of F and convexity
of C , D+C(x) = F(x) − F(∞) for every x ∈ R+. ��

The finiteness of the integral on the right-hand side of (4.1) is implied by the
finiteness of C(k), which in turn follows by the assumption that d F has finite mean.
One may also easily see directly that the last assumption implies that the integral is
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finite. In fact, this produces another proof of the identity (4.1): by Tonelli’s theorem,

∫ ∞

k
(F(∞) − F(x)) dx =

∫ ∞

k

∫
]x,∞[

d F(y) dx =
∫

[k,∞[

∫ y

k
dx d F(y)

=
∫

[k,∞[
(k − y) d F(y) =

∫
R+

(k − y)+ d F(y)

= C(k).

The relation between C and F can of course be obtained also from put-call parity,
once the relation between P and F has been obtained: if follows from the identity
x − k = (x − k)+ − (k − x)+, upon integrating with respect to d F , that

∫
R+

x d F(x) − k
∫
R+

d F = C(k) − P(k),

hence, by Lebesgue’s differentiation theorem, −F(∞) = C ′(k) − P ′(k) = C ′(k) −
F(k) for a.a. k ∈ R+, as well as D+C(k) = F(k) − F(∞) for every k ∈ R+ by the
same argument used above.

4.2 Reconstruction of F by approximation in L1(dF)

LetV be the vector spacegeneratedbyput payoff profiles, i.e. by the family of functions
R+ � x �→ (k−x)+, k ≥ 0.We are going to show the following approximation result.

Lemma 4.4 Let a > 0. For any ε > 0 there exists φ ∈ V such that

∥∥φ − 1[0,a]
∥∥

L1(d F)
< ε.

Proof Since F is right-continuous, there exists b > a such that F(b)− F(a) < ε. Set
φa(x) := (a − x)+, φb(x) := (b − x)+, α = 1/(b − a), and φ := αφb − αφa . Then
easy computations show that φ : R+ → [0, 1] is a continuous function with support
[0, b], equal to one on [0, a]. More precisely,

φ(x) =

⎧⎪⎨
⎪⎩

α(b − a) = 1, 0 ≤ x ≤ a,

αb − αx, a ≤ x ≤ b,

0, x ≥ b.

Since φ = 1[0,a] + φ1]a,b], we have
∣∣φ − 1[0,a]

∣∣ = φ1]a,b] ≤ 1]a,b],

hence

∥∥φ − 1[0,a]
∥∥

L1(d F)
≤

∫
[0,b]

1]a,b] d F = F(b) − F(a) < ε. ��
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This shows that we can explicitly approximate F by P . The proof of the lemma
also shows that D+ P = F : for any a > 0, take a sequence (bn) converging to a from
the right, and call φn the corresponding approximating sequence converging to 1[0,a]
in L1(d F), for which

∫
φn d F =

∫
1

bn − a

(
(bn − x)+ − (a − x)+

)
d F(x) = P(bn) − P(a)

bn − a
,

hence

F(a) = lim
n→∞

∫
φn d F = lim

n→∞
P(bn) − P(a)

bn − a
= D+ P(a).

This approach to proving that D+ P = F (that, by the way, does not require any
further condition on F) is probably the most elementary. Note that the approach via
integration by parts of Sect. 4.1 also implies

F(a) = D+ P(a) = lim
n→∞

P(bn) − P(a)

bn − a
= lim

n→∞

∫
φn d F,

while here we prove the seemingly more precise limiting relation φn → 1[0,a] in
L1(d F). This, however, can be deduced from F. Riesz’s lemma2 since both 1[0,a]
and φn are positive, φn → 1[0,a] a.e. and

∫
φn d F → ∫

1[0,a] d F , it follows that
φn → 1[0,a] in L1(d F). Therefore also the integration-by-parts proof of D+ P = F ,
together with F. Riesz’s lemma, implies that indicator functions of intervals can be
obtained as limits in L1(d F) of linear combinations of put payoff profiles, that are
explicitly determined.

Even though the previous lemma is enough to obtain F from P , a more general
denseness result holds.

Proposition 4.5 The vector space V generated by put payoff profiles is dense in
L1(d F).

Proof Let g ∈ L1(d F) and ε > 0. Since simple functions are dense in L1(d F), there
exists n ∈ N and Ai :=]ai , bi ], 0 ≤ ai ≤ bi , and ci ∈ R, i = 1, . . . , n, such that

∥∥∥g −
n∑

i=1

ci1Ai

∥∥∥
L1(d F)

≤ ε/2.

By Lemma 4.4, the indicator function of any interval ofR+ open to the left and closed
to the right can be approximated by an element of V . Therefore, for every i = 1, . . . , n
there exists φi ∈ V such that (all norms until the end of the proof are meant to be in
L1(d F))

∥∥φi − 1Ai

∥∥ ≤ 1

n |ci |
ε

2
,

2 This result is often called Scheffé’s lemma: in a general measure space with measureμ, if fn → f μ-a.e.
and

∫ | fn | dμ → ∫ | f | dμ, then fn → f in L1(μ).
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hence, setting φ := ∑
ciφi ,

‖g − φ‖ ≤
∥∥∥g −

n∑
i=1

ci1Ai

∥∥∥ +
n∑

i=1

|ci |
∥∥1Ai − φi

∥∥

≤ ε/2 +
n∑

i=1

|ci | 1

n |ci |
ε

2
= ε.

Since φ clearly belongs to V , the proof is completed. ��

5 Convex payoffs

We are going to show that prices of call options for all strikes determine the price
of any option with arbitrary convex payoff function (the result is not new—see, e.g.,
Karatzas and Shreve 1998, pp. 51–52, with a different proof), thus also for options
with payoff function that can be written as the difference of two convex functions.

Using the language of Sect. 3, let M1 = (g, d F(g))g∈G be the measurement set
with G the set of convex functions on R+ (satisfying the assumption below), and
M2 = (gk, d F(gk))k∈R+ , gk : x �→ (x − k)+, the measurement set of call options (for
all strikes). It is evident that M1 is finer than M2. We shall show that Mm

2 is finer than
M1, hence that M1 and Mm

2 are equivalent (in particular, M1 is a representation). The
proof will actually establish that, for any g ∈ G, π(g) can be written in terms of an
integral of the function C : k �→ π(gk). This will then be shown to belong to Mm

2 .
Throughout this section we assume that g : R+ → R is the restriction to R+

of a convex function h on an open set I ⊃ R+. In particular, D+g(0) > −∞.
In order to avoid trivialities, we also assume that g ∈ L1(d F). We recall that g is
continuous, differentiable almost everywhere, right-differentiable on [0,∞[, and that
D+g is increasing and càdlàg. In particular, D+g has finite variation, thus generates
a Lebesgue–Stieltjes measure that we shall denote by m, or also by dg′. The positive
measure m can also be identified with the second derivative of g in the sense of
distributions.

Proposition 5.1 Assume that d F < ∞ and let C : R+ → R+ be the call option price
function. Then

∫
R+

g d F = g(0)F(∞) + D+g(0)d F +
∫

]0,∞[
C dm. (5.1)

Proof One has

g(x) = g(0) +
∫ x

0
D+g(y) dy,
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where D+g(y) − D+g(0) = m(]0, y]) for every y > 0, hence, by Tonelli’s theorem,

g(x) = g(0) + D+g(0)x +
∫ x

0

∫
]0,y]

dm(k) dy

= g(0) + D+g(0)x +
∫

]0,∞[

∫
[k,x]

dy dm(k)

= g(0) + D+g(0)x +
∫

]0,∞[
(x − k)+ dm(k).

Integrating both sides with respect to d F and appealing again to Tonelli’s theorem
completes the proof. ��

Note that

∫
[0,∞[

C dm = C(0)m({0}) +
∫

]0,∞[
C dm = D+g(0)d F +

∫
]0,∞[

C dm,

i.e. (5.1) could be written in the more symmetric form

∫
R+

g d F = g(0)F(∞) +
∫
R+

C dm.

Analogously, since

∫
[0,∞[

g d F = g(0)F(0) +
∫

]0,∞[
g d F,

(5.1) could also be written as

∫
]0,∞[

g d F = g(0)(F(∞) − F(0)) + D+g(0)d F +
∫

]0,∞[
C dm.

Corollary 5.2 Let I ⊆ R be an open set containing R+ and h1, h2 : I → R+ convex
functions belonging to L1(d F). If g = h1−h2 and ν is the Lebesgue–Stieltjes (signed)
measure induced by D+h1 − D+h2, i.e. ν([0, x]) := D+h1(x) − D+h2(x), then

∫
R+

g d F = g(0)F(∞) + D+g(0)d F +
∫

]0,∞[
C dν.

Slightly more generally, one can also write

β−1
T g(ST ) = g(0)β−1

T + D+g(0)β−1
T ST +

∫
]0,∞[

β−1
T (ST − k)+ dν(k),
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hence, taking conditional expectation with respect to Ft , for any t ∈ [0, T ], and
multiplying by βt ,

βtEQ

[
β−1

T g(ST )
∣∣Ft

] = g(0)βtEQ

[
β−1

T

∣∣Ft
]

+ D+g(0)βtEQ

[
β−1

T ST
∣∣Ft

]

+
∫

]0,∞[
βtEQ

[
β−1

T (ST − k)+
∣∣Ft

]
dν(k)

= g(0)B(t, T ) + D+g(0)St +
∫

]0,∞[
Ct (k) dν(k),

where Ct (k) := βtEQ

[
β−1

T (ST − k)+
∣∣Ft

]
is the price at time t of the call option with

strike k.
It is actually possible to prove Proposition 5.1 using only the integration-by-parts

formula (2.2). Even though the proof is longer than the previous one, some of its
ingredients may be interesting in their own right. We begin with a useful reduction
step.

Lemma 5.3 Assume that d F < ∞. The claim of Proposition 5.1 holds if and only if it
does under the additional assumptions that g(0) = D+g(0) = 0 and m has compact
support.

Proof Clearly only sufficiency needs a proof. The extra assumption g(0) = D+g(0) =
0 comes at no loss of generality as one can reduce to this situation simply replacing the
function g by the function x �→ g(x) − g(0) − D+g(0)x , which is still convex, being
the sum of a convex function and an affine function, as well as in L1(d F), because
d F is finite by assumption. Let us then assume that g(0) = D+g(0) = 0. Let (χn) be
a sequence of smooth cutoff functions such that χn : R+ → [0, 1] has support equal
to [0, n + 1] and is equal to one on [0, n]. Setting, for every n ∈ N, mn := χn · m and

g(1)
n (x) := mn([0, x]) =

∫
[0,x]

χn dm, gn(x) :=
∫ x

0
g(1)

n (y) dy,

it is immediately seen that g(1)
n is positive, g′

n = g(1)
n a.e., D+gn = g(1)

n , and gn is
convex. Therefore, by hypothesis,

∫
R+

gn d F =
∫

]0,∞[
C dmn =

∫
]0,∞[

Cχn dm.

Several applications of the monotone convergence theorem imply that (gn) converges
pointwise from below to g, hence, finally, that

∫
R+

g d F =
∫

]0,∞[
C dm. ��

Note that the “normalizing” assumptions g(0) = 0 and D+g(0) = 0 imply that
∫
R+

g d F =
∫

]0,∞[
g d F
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and that
∫

]0,∞[
C dm =

∫
R+

C dm,

respectively. The former is evident, and the latter follows fromm({0}) = D+g(0) = 0.
Therefore

∫ ∞

0
g d F =

∫
]0,∞[

g d F =
∫

]0,∞[
C dm =

∫
R+

C dm.

An alternative proof of Proposition 5.1 We shall assume, as allowed by Lemma 5.3,
that g(0) = D+g(0) = 0 and that m has compact support, which implies that, for all
x sufficiently large, g is differentiable at x and g′(x) is constant. For the rest of the
proof, we shall write, with a harmless abuse of notation, g′ to denote D+g. Since g
is continuous and F is càdlàg, the integration-by-parts formula (2.2) yields, for any
a ∈ R+,

g(a)F(a) − g(0)F(0) =
∫

]0,a]
g(x) d F(x) +

∫
]0,a]

F(x) dg(x).

Therefore, as g(0) = 0 and the Lebesgue–Stieltjes measure dg is absolutely continu-
ous with respect to Lebesgue measure with density g′,

∫
[0,a]

g(x) d F(x) = g(a)F(a) −
∫ a

0
g′(x)F(x) dx,

hence
∫ ∞

0
g(x) d F(x) = lim

a→+∞
(

g(a)F(a) −
∫ a

0
g′(x)F(x) dx

)
.

Since g′ is increasing and càdlàg, and C is continuous, another application of the
integration-by-parts formula (2.2) yields, for any a ∈ R+,

g′(a)C(a) − g′(0)C(0) =
∫ a

0
g′(x) dC(x) +

∫
]0,a]

C(x) dg′(x),

hence, recalling that g′(0) = 0,

∫ a

0
g′(x) dC(x) = g′(a)C(a) −

∫
]0,a]

C dm.

Moreover, the identity C ′ = F − F(∞) a.e. implies

∫ a

0
g′(x) dC(x) = −F(∞)g(a) +

∫ a

0
g′(x)F(x) dx,
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hence

−
∫ a

0
g′(x)F(x) dx = −F(∞)g(a) −

∫ a

0
g′(x) dC(x)

= −F(∞)g(a) − g′(a)C(a) +
∫

]0,a]
C dm,

thus also

∫
R+

g(x) d F(x) = lim
a→+∞

(
g(a)(F(a) − F(∞)) − g′(a)C(a) +

∫
]0,a]

C dm

)
.

Note that g′ is increasing by convexity of g and g′(0) = 0, hence g′ is positive,
therefore g is increasing and positive because g(0) = 0. Therefore

∣∣g(a)(F(a) − F(∞))
∣∣ = g(a)(F(∞) − F(a)) =

∫
]a,+∞[

g(a) d F ≤
∫
]a,+∞[

g(x) d F(x),

where the last termconverges to zero asa → +∞because g ∈ L1(d F)by assumption.
In particular,

lim
a→+∞ g(a)(F(a) − F(∞)) = 0.

Moreover, as g′ is constant at infinity and C tends to zero at infinity, we also have

lim
a→+∞ g′(a)C(a) = 0,

which allows to conclude that

∫
R+

g d F =
∫

]0,∞[
C dm. ��

Let us show that
∫
]0,∞[ C dm ∈ Mm

2 . By Tonelli’s theorem,

∫
]0,∞[

C dm =
∫

]0,∞[

∫
R+

(x − k)+ d F(x) dm(k)

=
∫
R+

∫
]0,∞[

(x − k)+ dm(k) d F(x).

For any n ∈ N, let (ki )i=0,...,2n be a dyadic partition of ]0, n]. Then

2n∑
i=1

(x − ki+1)
+1]ki ,ki+1](k) ↑ (x − k)+ ∀x, k ∈ R+
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as n → ∞, hence, again by Tonelli’s theorem,

∫
]0,∞[

2n∑
i=1

(x − ki+1)
+1]ki ,ki+1](k) dm(k)

=
2n∑

i=1

m
(]ki , ki+1]

)
(x − ki+1)

+ ↑
∫

]0,∞[
(x − k)+ dm(k) ∀x ∈ R+.

Then

gn :=
2n∑

i=1

m
(]ki , ki+1]

)
(x − ki+1)

+

defines a sequence of elements in the vector space generated by M2 that monotonically
converges pointwise to the function x �→ ∫

]0,∞[(x − k)+ dm(k), which belongs to

L1(d F) by assumption, therefore also to Mm
2 .

Remark 5.4 It is more convenient to work with the call price function C , rather than
with the put price function P , because C vanishes at infinity, while P grows linearly
at infinity (see Propositions 4.1 and 4.2). However, the identity

x − k = (x − k)+ − (x − k)− = (x − k)+ − (k − x)+

yields, upon integrating both sides with respect to d F ,

∫
R+

x d F(x) − k
∫
R+

d F(x) = d F − k F(∞) = C(k) − P(k),

i.e.
C(k) = P(k) − k F(∞) + d F, (5.2)

hence k �→ P(k) − k F(∞) + d F ∈ L1(m), even though, in general, P need not
belong to L1(d F). A formula relating the integral of g with respect to d F with the
integral of P with respect to m for a special class of functions g will be discussed in
the next section.

Remark 5.5 A small variation of the argument used in the proof of Lemma 5.3 shows
that every C2 function g is the difference of two convex functions h1 and h2 (taking
the positive and negative part of g′′). A simple sufficient condition ensuring that the
functions h1 and h2 can be chosen in L1(d F) is that there exists a function h ∈ L1(d F)

with h′′ = ∣∣g′′∣∣.

6 A distributional approach

We are going to show that most properties of the functions F , P and C discussed
in the previous sections can also be obtained using Schwartz’s distributions. The

123



On certain representations of… 115

main advantage of this approach is that several results reduce, in their formal aspect,
to simple calculus for distributions. Some work is needed, however, to remove the
regularity assumptions on test functions typical of this approach.

Throughout this section, the functions F , P , and C (the last one if d F is finite)
are assumed to be extended to R setting them equal to zero on ] − ∞, 0[. All of them
obviously belong to L1

loc(R), hence they can be considered as distributions in D ′.
Let us start with a simple but useful observation.

Lemma 6.1 Let F ′ be the distributional derivative of F. Then d F = F ′ in D ′.

Proof In fact, for any φ ∈ D , one has

〈
F ′, φ

〉 = − 〈
F, φ′〉 = −

∫
R

F(x)φ′(x) dx,

where, thanks to the integration-by-parts formula (2.2),

−
∫
R

F(x)φ′(x) dx =
∫

[0,∞[
φ(x) d F(x). ��

In the next subsection we derive the main results of Sect. 4 using distributions.

6.1 On the functions P, C, and F

The price function for put options P can be written in terms of convolutions of dis-
tributions. We shall denote the function x �→ x+ by (·)+ and the right-continuous
Heaviside function 1R+ by H .

Proposition 6.2 The following identities hold in D ′:

(a) P = (·)+ ∗ F ′;
(b) P = H ∗ F;
(c) P ′ = F.

Proof The function P is the convolution of (·)+ with the measure d F , therefore, since
d F = F ′ inD ′ and both F ′ and (·)+ are distributions supported onR+, the convolution
of (·)+ and F ′ is well-defined in the sense of distributions, and P = (·)+ ∗ F ′ in D ′.
Standard calculus in D ′ then yields

P = (·)+ ∗ F ′ = (
(·)+)′ ∗ F = H ∗ F,

thus also, denoting the Dirac measure at the origin by δ,

P ′ = H ′ ∗ F = δ ∗ F = F . ��
Corollary 6.3 The function P is convex and satisfies the identity D+ P = F.
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Proof It follows by P ′ = F that P ′′ = F ′, both as identities inD ′. Since F ′ coincides
in D ′ with the measure d F , it is a positive distribution. Then P , as a distribution
with positive second derivative, is a convex function. This and the identity P ′ = F
in D ′ imply that P ′ = F holds also in the a.e. sense in R, and that one can choose a
right-continuous version of P ′, so that D+ P = F . ��

Theproperties of P have thus beenobtained starting from theproperties of its second
distributional derivative, that is reversing the path followed in the previous section,
where convexity of P was proved first, which implied first-order differentiability
outside a countable set of points first, hence second-order differentiability in the sense
of measures.

It seems not possible, on the other hand, to treat the call option price function C
by similar arguments, because one would formally have C = (·)− ∗ F ′, where the
convolution is not well-defined in the sense of distributions. In fact, (·)− and F ′ do not
have their support “on the same side” of R, and none of them has compact support.
Nonetheless, properties ofC can be deduced from those of P taking (5.2) into account.

Proposition 6.4 One has, as an identity in D ′,

C = P − F(∞)(·)+ + d F H , (6.1)

and, as identities in D ′(]0,∞[),

C ′ = P ′ − F(∞), C ′′ = P ′′. (6.2)

In particular, C is convex on ]0,∞[. Moreover, D+C(x) = F(x) − F(∞) for every
x ∈ R+.

Proof Identity (6.1) is just a rewriting of (5.2), considering C and P as distributions
on R. Differentiating in D ′ yields

C ′ = P ′ − F(∞)H + d Fδ,

C ′′ = P ′′ − F(∞)δ + d Fδ′, (6.3)

that, by restriction of the support, yield (6.2). In particular, C ∈ D ′(]0,∞[) has a
positive second derivative, hence it is a convex function on ]0,∞[, then also onR+, and
one can choose a right-continuousversionofC ′ onR+ such thatC ′(x) = F(x)−F(∞)

for a.a. x ∈ R+, with D+C(x) = F(x) − F(∞) for every x ∈ R+. ��

Remark 6.5 The identity (6.1) can be interpreted also as an identity of càdlàg functions
onR. Moreover, since δ′ is not a measure, it follows by (6.3) that the function C is not
convex on R (this also clearly follows from C(0) = d F and C(k) = 0 for all k < 0).
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6.2 Convex payoffs

We are going to prove (5.1) using distributions. Note that, assuming that g(0) =
Dg+(0) = 0, (5.1) could heuristically be written as

〈
C ′′, g

〉 = 〈
C, g′′〉, which seems

very natural indeed. It is clear, however, that it makes no immediate sense if g is
just a convex function in L1(d F). However, the identity has a meaning if 〈·, ·〉 is
interpreted as the duality between measures and continuous functions, rather than
between distributions and test functions.

Let us start proving (5.1) under an extra regularity assumption on g.

Lemma 6.6 Assume that g ∈ C2
c (R). Then

∫
R+

g d F = 〈
C ′′, g

〉 + F(∞)g(0) + d Fg′(0).

Proof By Lemma 6.1 and Proposition 6.2, the identity P ′′ = F ′ = d F holds true in
D ′. This immediately implies

〈
P ′′, g

〉 = 〈
P, g′′〉 for every g ∈ D , hence also, since

P ′′ is a distribution of order at most two,

〈
P ′′, g

〉 =
∫
R+

g d F = 〈
P, g′′〉 ∀g ∈ C2

c (R).

Therefore, using identity (6.3),

〈
P ′′, g

〉 =
∫
R+

g d F = 〈
C ′′, g

〉 + F(∞) 〈δ, g〉 − d F
〈
δ′, g

〉

= 〈
C ′′, g

〉 + F(∞)g(0) + d Fg′(0). ��

As a next step, we consider the case where g ∈ C2(R), i.e. we remove the assump-
tion of compactnes of the support. This is the hardest part of the argument in this
subsection.

Lemma 6.7 Assume that g ∈ C2(R). Then, for any a ∈ R+,

∫
[0,a]

g d F =
∫ a

0
Cg′′ − C(a)g′(a) + D+C(a)g(a)

Proof As already seen,we can and shall assume,without loss of generality, that g(0) =
g′(0) = 0. Let a ∈ R+, a �= 0, (χn) be a sequence of smooth cutoff function taking
values in [0, 1], equal to one on [−a, a], and equal to zero on [a + 1/n,∞[. Then
gχn ∈ C2

c (R) and

(gχn)
′′ = g′′χn + 2g′χ ′

n + gχ ′′
n ,
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hence
∫
R+

gχn d F = 〈
C ′′, gχn

〉 = 〈
C, (gχn)′′

〉

= 〈
C, g′′χn

〉 + 2
〈
C, g′χ ′

n

〉 + 〈
C, gχ ′′

n

〉
.

We are going to pass to the limit as n → ∞. One has

∫
R+

gχn d F =
∫

[0,a]
g d F +

∫
gχn1]a,a+1/n[ d F,

where gχn1]a,a+1/n[ → 0 pointwise, hence, by the dominated convergence theorem,

lim
n→∞

∫
R+

gχn d F =
∫

[0,a]
g d F .

An entirely similar, slightly simpler reasoning shows that

lim
n→∞

〈
C, g′′χn

〉 = lim
n→∞

∫
R+

Cg′′χn =
∫ a

0
Cg′′.

Moreover,

〈
C, g′χ ′

n

〉 =
∫
R

C(x)g′(x)χ ′
n(x) dx =

∫ a+1/n

a
C(x)g′(x)χ ′

n(x) dx,

where −χ ′
n converges to δa + R in the sense of distributions, with R a distribution

with support contained in ] − ∞,−a], hence
lim

n→∞
〈
C, g′χ ′

n

〉 = −C(a)g′(a).

The term
〈
C, gχ ′′

n

〉
is more difficult to treat because χ ′′

n converges to−δ′
a in the sense of

distributions (modulo termswith support in the strictly negative reals, thatwe are going
to ignore), but C is just right-differentiable, not of class C1. We can nonetheless argue
as follows: let (ρm) be a sequence of mollifiers with support contained in [−1/m, 0]
and set Cm := C ∗ ρm . Then Cm ∈ C∞(R) and

〈
Cm, gχ ′′

n

〉 = 〈
Cm g, χ ′′

n

〉 = − 〈
(Cm g)′, χ ′

n

〉
,

hence

lim
n→∞

〈
Cm, gχ ′′

n

〉 = C ′
m(a)g(a) + Cm(a)g′(a).

Thus one has
∫ a

0
C ′′

m g =
∫ a

0
Cm g′′ + C ′

m(a)g(a) − Cm(a)g′(a).
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Wecan nowpass to the limit asm → ∞: the continuity ofC implies thatCm converges
to C uniformly on [0, a], hence

lim
m→∞

∫ a

0
Cm g′′ =

∫ a

0
Cg′′, lim

m→∞ Cm(a) = C(a).

Setting d Fm := C ′′
m = d F ∗ ρm and ρ̃m : x �→ ρm(−x), so that the support of ρ̃m is

contained in [0, 1/m], one has
∫ a

0
gC ′′

m =
∫

g1[0,a] d Fm =
∫

g1[0,a] ∗ ρ̃m d F,

where

lim
m→∞ g1[0,a] ∗ ρ̃m(x) = g(x) ∀x ∈]0, a[,
lim

m→∞ g1[0,a] ∗ ρ̃m(0) = 0,

lim
m→∞ g1[0,a] ∗ ρ̃m(a) = g(a−) = g(a),

i.e.

lim
m→∞ g1[0,a] ∗ ρ̃m(x) = g1]0,a](x) ∀x ∈ R,

or, in other words, g1[0,a] ∗ ρ̃m converges to the càglàd version of g1[0,a] as m → ∞.
Therefore, by the dominated convergence theorem,

lim
m→∞

∫ a

0
gC ′′

m = lim
m→∞

∫
g1[0,a] ∗ ρ̃m d F =

∫
]0,a]

g d F =
∫

[0,a]
g d F,

where the last equality follows from g(0) = 0.
Since Cm ∈ C∞(R) and C is right-differentiable with increasing incremental quo-

tients on R+ (because of convexity thereon), the dominated convergence theorem
yields

C ′
m(a) = D+Cm(a) = lim

h→0+
Cm(a + h) − Cm(a)

h

= lim
h→0+

∫
R

C(a − y + h) − C(a − y)

h
ρm(y) dy

=
∫
R

D+C(a − y)ρm(y) dy,

hence also, recalling that the support of ρm is contained in R− and that D+C is
right-continuous,

lim
m→∞ C ′

m(a) − D+C(a) = lim
m→∞

∫
R

(
D+C(a − y) − D+C(a)

)
ρm(y) dy = 0.
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We have thus shown that
∫

[0,a]
g d F =

∫ a

0
Cg′′ − C(a)g′(a) + D+C(a)g(a)

for every g ∈ C2(R). ��
To remove the assumption that g ∈ C2, assuming instead that it is convex, we can

apply the same regularization by convolution: let g be convex and set gn := g ∗ ρn ,
with the sequence of mollifiers (ρn) chosen as before. Then gn ∈ C∞ and

∫
[0,a]

gn d F =
∫ a

0
Cg′′

n − C(a)g′
n(a) + D+C(a)gn(a),

where gn → g uniformly on [0, a] and limn→∞ g′
n(a) = D+g(a). Moreover, using

the same argument as before,

lim
n→∞

∫ a

0
Cg′′

n = lim
n→∞

∫
C1[0,a] ∗ ρ̃n dm =

∫
]0,a]

C dm.

We infer that the following claim is true.

Proposition 6.8 Assume that g is convex. Then, for any a ∈ R+, a > 0,

∫
[0,a]

g d F =
∫

]0,a]
g d F =

∫
]0,a]

C dm − C(a)D+g(a) + D+C(a)g(a). (6.4)

Note that until here we have not used the assumption that g ∈ L1(d F). To complete
the proof of (5.1), we let a tend to infinity using two lemmas proved next, according
to which the last two terms on the right-hand side of (6.4) tend to zero. It is precisely
at this point that we use the assumption that g ∈ L1(d F).

Lemma 6.9 Assume that d F is a finite measure and let g ∈ L1(d F) be increasing.
Then

lim
a→∞ g(a)(F(∞) − F(a)) = 0.

In particular, if d F < ∞ then lima→∞ D+C(a)g(a) = 0.

Proof Assume first that g(0) = 0, so that g is positive. Then, as g is increasing,

g(a)(F(∞) − F(a)) =
∫

]a,∞[
g(a)d F(x) ≤

∫
]a,∞[

g(x)d F(x),

and

lim
a→∞

∫
]a,∞[

g(x)d F(x) = 0
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because g ∈ L1(d F). If g(0) < 0, then consider the function g̃ := |g(0)| + g, which
is increasing and belongs to L1(d F). The identity

g(a)(F(∞) − F(a)) = g̃(a)(F(∞) − F(a)) − |g(0)| (F(∞) − F(a)) = 0

immediately implies the claim. ��
Lemma 6.10 Assume that d F < ∞. Let g ∈ L1(d F) be absolutely continuous and
such that g′ is increasing (possibly after a suitable modification on a set of Lebesgue
measure zero). Then

lim
a→∞ g′(a)

∫ ∞

a
(F(∞) − F(y)) dy = 0,

or, equivalently, lima→∞ C(a)g′(a) = 0.

Proof The assumption d F < ∞ guarantees that the function C is well defined and

C(a) =
∫ ∞

a
(F(∞) − F(y)) dy ∀a ∈ R+.

Then we can write

g′(a)C(a) =
∫ ∞

a
g′(a)(F(∞) − F(y)) dy

≤
∫ ∞

a
g′(y)(F(∞) − F(y)) dy

=
∫ ∞

a
g′(y)

∫
]y,∞[

d F(x) dy

=
∫

]a,∞[

∫ x

a
g′(y) dy d F(x) =

∫
]a,∞[

g(x) d F(x) −
∫

]a,∞[
g(a) d F(x),

where

lim
a→∞

∫
]a,∞[

g(x) d F(x) = 0

because g ∈ L1(d F). Moreover,

∣∣∣∣
∫

]a,∞[
g(a) d F(x)

∣∣∣∣ ≤
∫

]a,∞[
|g(a)| d F(x).

Let us first consider the case that g′(0) ≥ 0, so that g′ is positive and g is increasing.
If there exists a0 ∈ R+ such that g(a0) ≥ 0, then

lim
a→∞

∫
]a,∞[

g(a) d F(x) ≤ lim
a→∞

∫
]a,∞[

g(x) d F(x) = 0.
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Otherwise, if g(x) ≤ 0 for all x ∈ R+, then |g| = −g is decreasing, therefore

lim
a→∞

∫
]a,∞[

|g(a)| d F(x) ≤ lim
a→∞ |g(1)| (F(∞) − F(a)) = 0.

Let us now consider the case that g′(0) < 0: introduce the function g̃(x) := g(x) +∣∣g′(0)
∣∣ x , for which g̃′(0) = g′(0) + ∣∣g′(0)

∣∣ ≥ 0, and note that g̃′ is increasing. The
assumption d F < ∞ implies that g̃ ∈ L1(d F), hence the previous part of the proof
shows that lima→∞ C(a)g̃′(a) = 0. Writing C(a)g′(a) = C(a)g̃′(a) − C(a)

∣∣g′(0)
∣∣

and recalling that lima→∞ C(a) = 0, the proof is completed. ��

6.3 Payoffs as piecewise difference of convex functions

Even though the set of functions that can be written as the difference of two convex
functions is quite rich (see, e.g., Bačák and Borwein 2011), it does not contain any
discontinuous function. So, for instance, for digital optionswe cannot produce a pricing
formula such as (5.1). However, the distributional approach allows to obtain in a quite
efficient way pricing formulas for options the payoff of which can bewritten piecewise
as the difference of convex functions. The formulas involve, apart from integrals of C ,
also pointwise evaluations of C and F . We shall consider an option with payoff equal
to the càdlàg restriction of a convex function to a compact interval.

Proposition 6.11 Let g0 : R → R be a convex function, [a, b] ⊂ R+ a compact
interval, and g := g01[a,b[. Then

∫
]a,b[

g d F =
∫

]a,b[
C dm + C(a)D+g(a) − D+C(a)g(a)

− C(b)D+g(b−) + D+C(b−)g(b−).

Proof One has

∫
R+

g d F =
∫

[a,b[
g d F =

∫
]a,b[

g d F + g(a)	F(a),

where 	F(a) = D+C(a)− D+C(a−) and, by the dominated convergence theorem,

∫
]a,b[

g d F = lim
x→b−

∫
]a,x]

g d F .

Since

∫
]a,x]

g d F =
∫

[0,x]
g d F −

∫
[0,a]

g d F,
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it follows by (6.4) that

∫
]a,x]

g d F =
∫

]a,x]
C dm + C(a)D+g(a) − D+C(a)g(a)

− C(x)D+g(x) + D+C(x)g(x).

Taking the limit for x going tob from the left, one obtains, recalling thatC is continuous
and both g and D+C are càdlàg,

∫
]a,b[

g d F =
∫

]a,b[
C dm + C(a)D+g(a) − D+C(a)g(a)

− C(b)D+g(b−) + D+C(b−)g(b−). ��

We are going to present an alternative way to obtain the same formula, using
Proposition 2.2, that is slightly longer but that starts from very basic principles and
shows how the distributional approach allows to quickly compute the price of an option
under the mild assumption that F admits a continuous density.

Alternative proof of Proposition 6.11 Let us consider g := g01[a,b[ as a distribution,
and assume first that F is of class C1, which implies that C is of class C2. Then

∫
R+

g d F =
∫ b

a
g d F = 〈

g, C ′′〉 = 〈
g′′, C

〉
,

where, thanks to Proposition 2.2,

〈
g′′, C

〉 =
∫

]a,b[
C dm + C(a)D+g(a) − C ′(a)g(a)

− C(b)D+g(b−) + C ′(b)g(b−).

IfC is not twice continuously differentiable, settingCn := C∗ρn , with (ρn) a sequence
of mollifiers chosen as before, then Cn and d Fn := d F ∗ ρn are both in C∞ and

∫ b

a
g d Fn = 〈

g′′, Cn
〉 =

∫
]a,b[

Cn dm + Cn(a)D+g(a) − C ′
n(a)g(a)

− Cn(b)D+g(b−) + C ′
n(b)g(b−).

We are now going to pass to the limit as n → ∞: Cn converges to C uniformly on
compact sets, hence Cn(a) and Cn(b) converge to C(a) and C(b), respectively, and

lim
n→∞

∫
]a,b[

Cn dm =
∫

]a,b[
C dm.
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As before, the choice of (ρn) and the right continuity of D+C imply that C ′
n(a) and

C ′
n(b) converge to D+C(a) and D+C(b), respectively, hence

lim
n→∞

∫ b

a
g d Fn =

∫
]a,b[

C dm + C(a)D+g(a) − D+C(a)g(a)

− C(b)D+g(b−) + D+C(b)g(b−).

Writing

∫ b

a
g d Fn =

∫
g01[a,b[ ∗ ρ̃n d F

we can use again an argument already met before, which shows that

lim
n→∞ g01]a,b[ ∗ ρ̃n(x) = g−(x) ∀x ∈ R,

where g− denotes the càglàd version of g. Therefore, by the dominated convergence
theorem,

lim
n→∞

∫ b

a
g d Fn =

∫
]a,b]

g− d F =
∫

]a,b[
g− d F + g(b−)	F(b)

=
∫

]a,b[
g d F + g(b−)(D+C(b) − D+C(b−)).

Rearranging terms we are left with

∫
]a,b[

g d F =
∫

]a,b[
C dm + C(a)D+g(a)

−D+C(a)g(a) − C(b)D+g(b−) + D+C(b−)g(b−),

as claimed. ��

7 Pricing via approximated laws of logarithmic returns

In the standard Black-Scholes (BS) model one assumes that ST = exp(ς
√

T Z −
ς2T /2) in law, where the volatility ς is constant and Z is a standard Gaussian random
variable. This family of random variables (indexed by ς , with time to maturity T fixed
as before) can be embedded in the larger class defined by ST = exp(σ X +m), where σ

and m are constants, and X is a random variable with density f ∈ L2 := L2(R). This
rather general family of laws can be used as setup for empirical nonparametric option
pricing, essentially by projecting the density f on radial basis functions (seeMarinelli
and d’Addona 2023). More precisely, one considers expansions of f in terms of
Hermite functions, so that the lognormal distribution of returns corresponds exactly to
the zeroth-order expansion of f . The approach can thus be thought of as a perturbation
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of the BS model at fixed time to maturity. The following problem then arises: let
( fn) ⊂ L1∩ L2 be a sequence of functions converging to f in L2, and let Pn(k) be the
“fictitious” price of a put option with strike k, obtained replacing the density f with
its approximation fn . Suppose that the Pn(k) are known for all k ∈ R+ and n ∈ N.
Is this information enough to determine the function P , i.e. to obtain the put option
prices in the “true” model?

Assuming, for simplicity, that S0 = 1, σ = 1 and m = 0, and denoting the
distribution function of X = log ST with respect to the measure μ (see (3.1)) by FX ,
it is immediately seen that FX (x) = F(ex ) for every x ∈ R and that

P(k) =
∫
R

(k − ex )
+ d FX (x) =

∫
R

(k − ex )
+ f (x) dx,

hence

Pn(k) =
∫
R

(k − ex )
+ fn(x) dx .

Note that FX and f are supported on the whole real line and that F and FX are in
bijective correspondence, hence FX is in bijective correspondence also with P .

The sequence Pn(k) does not necessarily converge to P(k) as n → ∞, because the
function x �→ (k − ex )+ belongs to L∞ but not to L2, hence it induces a continuous
linear form on L1, but not on L2. Moreover, convergence in L2(R) does not imply
convergence in L1(R).

We are going to show that the function P can be reconstructed from approximation
to option prices with payoff of the type

θk1,k2(x) := (k2 − ex )+ − k2
k1

(k1 − ex )+, k1, k2 > 0.

More precisely, to identify the pricing functional P , it suffices to know, for any
sequence ( fn) converging to f in L2, the values

〈
θk1,k2 , fn

〉
for all k1, k2 > 0 and

all n ≥ 0, where 〈·, ·〉 stands for the scalar product of L2. In fact, for any k1, k2 > 0,
the function θk1,k2 is in L2, hence, for any sequence ( fn) ⊂ L1 ∩ L2 converging to f
in L2 (weak convergence in L2 would also suffice), one has

Pn(k2) − k2
k1

Pn(k1) = 〈
θk1,k2 , fn

〉 −→ 〈
θk1,k2 , f

〉 = P(k2) − k2
k1

P(k1).

Moreover,

k2
k1

P(k1) =
∫
R

k2
k1

(k1 − ex )+ f (x) dx,

where (k1 − ex )+ ∈]0, k1] for all x ∈ R, hence k2
k1

(k1 − ex )+ ∈]0, k2] for all x ∈ R,
and

k2
k1

(k1 − ex )+ =
⎧⎨
⎩

k2 − k2
k1

ex , if x ≤ log k1,

0, if x ≥ log k1,
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so that

lim
k1→0

k2
k1

(k1 − ex )+ = 0 ∀x ∈ R.

Therefore the function x �→ k2
k1

(k1 − ex )+ converges to zero as k1 → 0 in L p for

every p ∈ [1,∞[ by the dominated convergence theorem. In particular, since f ∈ L2,

lim
k1→0

k2
k1

P(k1) = lim
k1→0

∫
R

k2
k1

(k1 − ex )+ f (x) dx = 0. (7.1)

We have thus shown that

lim
k1→0

lim
n→∞

〈
θk1,k2 , fn

〉 = P(k2) ∀k2 > 0,

thus also the following statement.

Proposition 7.1 Let ( fn) ⊂ L1 ∩ L2 be a sequence converging to f in L2. There is a
bijection between

(〈
θk1,k2 , fn

〉)
k1, k2 > 0
n ≥ 0

and P.

Completely analogously, if P(k1) is known, then

P(k2) = k2
k1

P(k1) + lim
n→∞

〈
θk1,k2 , fn

〉 = k2
k1

P(k1) + lim
n→∞

(
Pn(k2) − k2

k1
Pn(k1)

)
.

Remark 7.2 The function x �→ k2
k1

(k1 − ex )+ does not converge to zero in L∞ as
k1 → 0, as

sup
x∈R

k2
k1

(k1 − ex )+ = k2.

However, the convergence in (7.1) also holds with f ∈ L1, i.e. without any extra
integrability assumption on f , because k2

k1
(k1 − ex )+ f (x) ≤ k2 f (x) for every x ∈ R,

hence the result follows by the dominated convergence theorem.

Note that Proposition 7.1 can be interpreted as providing a sort of generalized
representation of d F , but, as discussed at the end of Sect. 3, it cannot be formu-
lated in the language introduced there. Even the extended measurements of the type
(g j , π j , d Fj ), with d Fj a family ofmeasures weakly converging to d F , is not enough.
In fact, it is not difficult to check that the pushforward of fn dx through x �→ ex ,
denoted by d Fn , does not converge weakly to d F , in general. However, setting
M1 = (gk, d Fn(gk), d Fn)k>0, n∈N, where gk : x �→ (k − x)+, we have shown that
M1 “implies” M2 = (θk1,k2 , πk1,k2)k1,k2>0, where implication is meant as in the last
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paragraph of Sect. 3, and that Mm
2 is finer than M , the measurement set composed of

put prices, which is a representation.
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