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Abstract
Classic diffusion processes fail to explain asset return volatility. Many empirical find-
ings on asset return time series, such as heavy tails, skewness and volatility clustering,
suggest decomposing the volatility of an asset’s return into two components, one
caused by aBrownianmotion and another by a jumpprocess.We analyze the sensitivity
of European call options to memory and self-excitation parameters, underlying price,
volatility and jump risks. We expand Heston’s stochastic volatility model by adding to
the instantaneous asset prices, a jump component driven by a Hawkes process with a
kernel function or memory kernel that is a Fourier transform of a probability measure.
This kernel function defines the memory of the asset price process. For instance, if it
is fast decreasing, the contagion effect between asset price jumps is limited in time.
Otherwise, the processes remember the history of asset price jumps for a long period.
To investigate the impact of different rates of decay or types of memory, we consider
four probability measures: Laplace, Gaussian, Logistic and Cauchy. Unlike Hawkes
processes with exponential kernels, the Markov property is lost but stationarity is pre-
served; this ensures that the unconditional expected arrival rate of the jump does not
explode. In the absence of the Markov property, we use the Fourier transform rep-
resentation to derive a closed form expression of a European call option price based
on characteristic functions. A numerical illustration shows that our extension of the
Heston model achieves a better fit of the Euro Stoxx 50 option data than the standard
version.
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2 C. G. Njike Leunga, D. Hainaut

1 Introduction

Over the past decade, a number of stochastic processes designed for option pricing
have been introduced in the financial literature since the seminal work of Black and
Scholes (1973). A common way to communicate option prices consists in computing
the implied volatility (IV) resulting from the inversion of the Black and Scholes option
price formula. IVs measure the uncertainty about how low or high an underlying asset
might fall or rise over a given period. Unlike the historical asset’s volatility, IVs are
somehow expectations for future volatility. As a result, IVs play an important role in
financial markets and option pricingmodels aim to replicate at least themain empirical
features of asset time series. For a wide set of financial assets, Cont (2001) stated five
stylized statistical facts about the asset’s volatility. First, high volatility events tend to
cluster in time. Second, there is a long memory effect in volatility which occurs when
the effects of volatility shocks decay slowly. Third, the asset’s volatility is negatively
correlated with the asset’s return. Fourth, trading volume is correlated with the asset’s
volatility. Fifth, there is an asymmetry in time scales of the volatility which is also
known as the time reversal asymmetry of financial time series data. This has been
emphasized by Zumbach and Lynch (2001) and called the “Zumbach effect” by Blanc
et al. (2016). Beside these empirical findings in asset’s volatility, common features of
the IV surfaces are the volatility term structure effects, the at-the-money skew and the
smile (see e.g. Aït-Sahalia and Lo 1998; Aït-Sahalia et al. 2021). Designing an option
pricing model that includes most of these characteristics is a challenging task.

In quest of the suitable option pricing model, this article extends previous works
on affine stochastic volatility (SV) models stemming from the Black and Scholes
framework. While simple and easy to use, the Black and Scholes model relies on
strong assumptions regarding the financial behavior observed throughout market data.
Merton (1976) and Bates (1991) relax the assumption of the Black and Scholes (1973)
that the asset’s return is normally distributed by inserting a jump component driven by a
Poisson process. Later, Heston (1993) proposes a closed form solution for an option on
an asset with a SVmodel, which allows relaxing the assumption of constant variance of
theBlack andScholesmodel.He also introduces a correlation between the variance and
the asset price in order to replicate the volatility smile and to explain the skewness of the
asset’s return. TheHeston’s framework is extended in several directions. Among them,
we can cite stochastic volatility jump (SVJ)models, introduced byBakshi et al. (1997),
Duffie et al. (2000), Bates (2000) andEraker (2004) tomention a fewpioneeringworks.
The common point of these models, known as affine stochastic volatility models is the
heteroskedastic property of the instantaneous change in variance through the square
root term of the variance in the diffusion volatility. However, in the literature, other
authors like Christoffersen et al. (2006) and Ignatieva et al. (2009) have studied non
affine stochastic volatility models in which the instantaneous change in variance is
proportional to any power of the variance in the diffusion volatility. They conclude
that the choice between affine and non affine stochastic volatility models corresponds
to find the right balance between fit flexibility and estimation properties. This motivate
us to employ an affine SV model style for its tractability and economic interpretation
documented in the literature (see e.g. Heston 1993; Bakshi et al. 1997; Duffie et al.
2000).
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Affine Heston model style with self-exciting jumps and… 3

Notice that in view of expanding affine SVJ models, some authors like Gatheral
(2012) investigated stochastic volatility models with jumps in asset prices and in
the variance, denoted by SVJJ model. Although, this setting enables to maintain the
clusteringproperty ofSVmodels, SVJJmodels are less parsimonious thanSVJmodels,
and are harder to fit to observed option prices. Another popular family of SV models
considers that the log volatility behaves as a fractional Brownian motion with a small
Hurst exponent. Among seminal contributions about this family of SV models we list
the fractional SV model of Comte et al. (2010), and the rough volatility model of
Gatheral et al. (2014) that in contrast to fractional SV, has a Hurst exponent of order
less than 0.5. Even if these models are remarkably consistent with major features of
financial time series, as stated by Blanc et al. (2016), they fail to induce a tail of
distribution in the return fat enough even with fluctuating volatility since the asset’s
return in these models is conditionally Gaussian distributed. Moreover, these models
are unable to explain in a realistic way how they generate fat tails, long memory in
volatility and volatility clustering.

Nevertheless, most of affine SV models do not allow for the Zumbach effect. This
motivates, authors like Zumbach et al. (2013), Jaisson and Rosenbaum (2015) and
Blanc et al. (2016) to modify SV models in order to integrate this Zumbach effect.
The two last works are based on quadratic Hawkes processes (HPs) which extend the
self-exciting mechanism of HPs introduced by Hawkes (1971a). In particular, Blanc
et al. (2016) reformulate the general HP in a way that intra-day price changes, have an
intensity proportional to powers of past price variations. Motivated by the empirical
results, authors truncate this intensity to the second exponent and ignore the first
exponent term. However, recent work of Hainaut and Moraux (2018a), Hainaut and
Moraux (2018b) and Njike and Hainaut (2022) have shown the role of linear HP when
it comes to replicate features of asset’s return time series. In combination with the self-
excitation property of the linear HP, Hainaut (2021) has designed a non-markov linear
HP for claims process that has memory. The author has generated this memory effect
by considering a linear HP with a kernel function that admits a Fourier’s transform
representation. For this work, it was of interest to explore the benefit of such a setup
in an option pricing model. In doing so, the linear HP will increase the probability
to observe a jump of the asset price and therefore the future volatility after a jump
occurrence, whilst the memory kernel of the linear HPwill enable us to obtain a longer
effect of past prices into future prices.

This works contributes to the financial literature in three ways. First, we introduce
an option pricing model where the underlying asset price dynamics is self-excited and
allows for a longer effect of past prices through a linearHP. Second, although ourmodel
is non Markov, we derive a closed-form expression for European call option prices.
For hedging applications, Greeks of the three sources of risk: price risk, volatility risk
and jump risk are obtained straightforwardly by taking derivatives of our formula with
respect to the asset price, the variance or the arrival rate of jump. Third, we provide a
calibration procedure of our model to real market option data.

The rest of the article proceeds as follows. Section2presents the affineHestonmodel
style with self-exciting jumps and long memory. This section focuses on distributional
properties of the arrival rate of jumps and the log-return through an infinite dimensional
Markov representation of our asset price model and a discretisation scheme. Section3
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4 C. G. Njike Leunga, D. Hainaut

develops the option pricing model under our setting. Section4 provides a descriptions
of the Euro Stoxx 50 option data. Therein, we present our estimation procedure,
discuss the estimated parameter and assess the sensitivity of option prices to memory
and self-excitation parameters, underlying price, volatility and jump risks. Concluding
comments are developped in Sect. 5.

2 Model specification

We define all the processes on a probability space � endowed with a risk neutral
measure Q and a filtration (Ft )t≥0. We exclusively focus in the option pricing, and
assumes that the pricing measure can be retrieve from European option prices. For
sake of simplicity we assume a constant interest rate r .

Hereafter we consider a SVJ model with self-excited jump in return driven by a
Hawkes process with memory kernel:

dSt
St

= rdt + √
Vt

(
ρdW 1

t +
√
1 − ρ2dW 2

t

)
(1)

+d

( Nt∑

l=1

(
eJl − 1

))

− λtE
(
eJ − 1

)
dt

dVt = (θV − kV Vt ) dt + σV
√
VtdW

1
t

where kV ,
θV
kV

and σV are respectively the speed of adjustment, long-run and variation

coefficients of the diffusion volatility of Vt .W 1
t andW 2

t are two independent standard
Brownian motions. ρ is the correlation between diffusion volatility of stock prices and
variances. The variance process is the square root process introduced by Cox et al.
(1985) and referred to as CIR. To ensure that zero is an unattainable for the diffusion
volatility Vt , we assume the Feller condition 2θV > σ 2

V holds. Let recall that affine
stochastic model implies that the instantaneous change in variance is heteroskedastic
via the

√
Vt term in the diffusion volatility.We introduce memory and contagion in the

dynamic of stock prices by considering an arrival intensity λt driven by the following
equation:

λt |Ft = lim
h→0

E (Nt+h |Ft ) − Nt

h
= α + (λ0 − α) g (t) + η

∫ t

0
g (t − u) dLu,

(2)

withα the constant reversion level,λ0 the initial intensity at time t = 0, Lt = ∑Nt
l=1 |Jl |

the sum of the absolute values of the jump sizes up to time t . The intensity jumps
by η |Jl | when the lth shock in the asset’s returns dynamics occurs. Therefore, the
occurrence of an event increases the probability of a further shock. The jump sizes J
are double exponentially identically and independently distributed with density v (z)
on R:
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Affine Heston model style with self-exciting jumps and… 5

v (z) = pρ+ exp
(−ρ+z

)
1{z≥0} − (1 − p) ρ− exp

(−ρ−z
)
1{z<0},

with ρ+ > 1, ρ− < 0 and p ∈ ]0, 1[. The condition ρ+ > 1 ensures that the jump
size of the asset price has a finite expectation. Using the previous equation, it follows
that the moment generating function (mgf) ψ (., .) of the pair (J , |J |) is given by:

ψ (z1, z2) := E

(
ez1 J+z2|J |) = pρ+

ρ+ − (z1 + z2)
+ (1 − p) ρ−

ρ− − (z1 − z2)
.

In particular, the expectation of J and |J | are weighted sum of the average sizes of
positive and negative shocks:

E (J ) = p
1

ρ+ + (1 − p)
1

ρ− , (3)

E (|J |) = p
1

ρ+ − (1 − p)
1

ρ− . (4)

We consider double exponential jumps as in Kou (2002) in order to replicate the
asymmetry of the log-return distribution. Note that our SVJ model turns back to the
Heston model if the jump size is null.

In Eq. (2), the memory kernel function g, is a positive definite function such that
g (0) = 1 and limt→∞ g (t) = 0. In this setting, the speed of reversion depends upon
the decay rate of g (.). The function g (.) is the kernel function defining the memory
of the stock prices process. If it is fast decreasing, the contagion effect between stock
price jumps is limited in time. Otherwise, the processes remember the history of stock
price jumps for a long period. In the present work, we consider four functions g (.)

that are Fourier transform of positives measures on R:

• The first function gL (.) is the Fourier transform of the Laplace or double exponen-
tialmeasure denoted byvL (.). Letβ ∈ R+ be constant. The symmetric exponential
measure vL (.) defined by the following relation:

vL (du) = 1

2

(
β exp (−βu) 1{u≥0} + β exp (βu) 1{u<0}

)
du, (5)

generates the following memory kernel:

gL (h) =
∫

R

vL (u) eihudu = β2

β2 + h2
. (6)

The mean of vL (.) is μL = 0 and its variance is σ 2
L = 2

β2 . gL (.) is a power

decreasing function. Since
∫ ∞
0 gL (u) du = πβ

2 , in this case the pair (N , λ) is a
stationary HP if β < 2

πηE(|J |) .

123



6 C. G. Njike Leunga, D. Hainaut

• The second function gG (.) is the Fourier transform of a Gaussian spectral measure
vG (.)

vG (du) =
√

β

π
e−βu2du. (7)

The mean of vG (.) is μG = 0 and its variance is σ 2
G = 1

2β . Given that vG (.) is

symmetric and
∫
R+ e−βu2 cos (hu) du = 1

2

√
π
β
e− h2

4β , the memory kernel is equal

to

gG (h) = e− h2
4β , (8)

where β ∈ R+. Since
∫ ∞
0 gG (u) du = √

πβ, in this case the pair (N , λ) is a
stationary HP if

√
β < 1√

πηE(|J |) .
• The third function gLog (.) is the Fourier transform of the logistic distribution
defined as follows:

vLog (du) = e− u
β

β
(
1 + e− u

β

)2 du, (9)

where β ∈ R+. The mean of vLog (.) isμLog = 0 and its variance is σ 2
Log = β2π2

3 .
The memory kernel is equal to

gG (h) =
{

πβh
sinh(πβh)

if h > 0

1 if h = 0
. (10)

Since
∫ ∞
0 gLog (u) du = π

4β , in this case the pair (N , λ) is a stationary HP if

β >
πηE(|J |)

4 .
• The last memory kernel gC (.) is the Fourier transform of a Cauchy spectral mea-
sure vC (.)

vC (du) = 1

π

β

β2 + u2
du, (11)

where β ∈ R+and the moments of vC (.) are undefined. Given that this measure
is symmetric, the memory kernel gC (.) is an exponentially decreasing function

gC (h) = e−β|h|, (12)

considered in the following as the exponential kernel because the delays after the
arrival of jumps are non-negative. Since

∫ ∞
0 gC (u) du = 1

β
, in this case the pair

(N , λ) is a stationary HP if β > ηE (|J |).

123



Affine Heston model style with self-exciting jumps and… 7

Within the literature, the Hawkes process with exponential kernel has an intensity λt
usually defined as:

λt |Ft = lim
h→0

E (Nt+h |Ft ) − Nt

h
= α + (λ0 − α) e−βt + η

∫ t

0
e−β(t−u)dLu,

(13)

whereβ is the constant rate ofmean reversion. FromHawkes (1971b), the pair (N , λ) is
a stationary Hawkes process if the following inequality holds ηE (|J |) ∫ ∞

0 e−βudu <

1. This latter condition is then met by choosing the intensity parameters η and β

such as ηE (|J |) < β. This stationarity property of the Hawkes process is required to
ensure that the long-term expectation, noted λ∞ = limt→∞ E (λt ) is finite and equal
to λ∞ = βα

β−ηE(|J |) .
The first order moment of the HP intensity for the kernel functions in Eqs. (6), (8)

and (10) can be obtained by inverse Fourier transform. In fact, from Eq. (2), we use
the properties of the expectation and apply the Fourier transform to obtain:

F (E (λt | F0)) (ω) = αF (1) (ω) + (λ0 − α)F (g (t)) (ω) (14)

+ηE (|J |)F
(∫ t

0
g (t − u)E (λu | F0) du

)
(ω)

= 2απδ (ω) + (λ0 − α) vk (ω) + ηE (|J |) vk (ω)F (E (λt | F0) du) (ω)

where δ (.) is the Dirac Delta function. Then, given that

F (E (λt | F0)) (ω) = 2απδ (ω) + (λ0 − α) vk (ω)

1 − ηE (|J |) vk (ω)
(15)

= 2απδ (ω)

1 − ηE (|J |) vk (ω)
+ (λ0 − α) vk (ω)

1 − ηE (|J |) vk (ω)

it follows that

E (λt | F0) = αF−1
(

2πδ (ω)

1 − ηE (|J |) vk (ω)

)
(t) (16)

+ (λ0 − α)F−1
(

vk (ω)

1 − ηE (|J |) vk (ω)

)
(t)

= α
1

2π

∫

R

e−iωt 2πδ (ω)

1 − ηE (|J |) vk (ω)
dω

+ (λ0 − α)
1

2π

∫

R

e−iωt vk (ω)

1 − ηE (|J |) vk (ω)
dω

= α

1 − ηE (|J |) vk (0)
+ (λ0 − α)

1

2π

∫

R

e−iωt vk (ω)

1 − ηE (|J |) vk (ω)
dω.

The previous stability conditions ensure that this latter integral exists. Notice that there
is no closed form expression of this expected value of the HP intensity, except for the
HP intensity with exponential kernel. Through either the Laplace transform technique

123



8 C. G. Njike Leunga, D. Hainaut

Fig. 1 Comparison of Laplace, Gaussian and Logistic kernels for σ 2
L = σ 2

G = σ 2
Log = 16. The Cauchy

kernel is computed with βC = 2.71

or ODE technique of Fonseca and Zaatour (2013), the first order moment of the HP
intensity with exponential kernel is given by,

E (λt | F0) = λ0e
(ηE(|J |)−β)t − βα

ηE (|J |) − β

(
1 − e(ηE(|J |)−β)t

)
. (17)

To the best of our knowledge, it is not possible to derive analytically moments of
HP with non-exponential kernel listed above using the ordinary differential equation
(ODE) technique of Fonseca and Zaatour (2013). As an alternative, we will derive
a quasi-analytic formula of the conditional moment generating function of these HP
intensities with non-exponential kernel.

To compare shapes of memory kernel we range above memory kernels by degree
of decay and consider that their spectral density have the same variance σ 2. It follows
that the parameter β of memory kernels (gk)k∈{L,G,Log} is a function of σ 2. As the
variance of the Cauchy spectral measure is not defined, we find an β byminimizing the
sum of least square between the Log and Cauchy memory kernels. Figure1 compares
these four memory kernels when the variance σ 2 = 16. The left plot reveals that the
Laplace kernel has a slower decay than Gaussian and logistic kernels. Further, in long
run the exponential kernel seems to decay more slowly than the Gaussian and logistic
kernels, while the opposite situation occurs in the short run. The right graph shows
that the decay rate of the kernel increases with the thickness of the distribution tails.

The common point of these four memory kernels is the stability of the Hawkes
intensity λt under a certain condition. Unlike the exponential kernel, the other kernels
can enable the Hawkes intensity λt to remember past events for a long time according
to their speed of decay. Considering the exponential kernel (12), the pair (Nt , λt )t≥0 is
aMarkov process and the intensityλt is solution of the following stochastic differential
equation (SDE):
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Affine Heston model style with self-exciting jumps and… 9

dλt = β (α − λt ) dt + ηdLt . (18)

Taking into account kernel functions in Eqs. (6), (8) and (10), the pair (Ns, λs)s≥0 is
not a Markov process and we have very little information on its behavior condition-
ally to the filtration Ft for t ≤ s. For non-Markov processes we cannot rely on Itô
calculus to determine quantity like the mgf of the arrival rate of shocks in the asset’s
returns dynamics. However, by using the spectral representation of kernel gk (.) for
k ∈ {L,G, Log,C}, we reformulate (Ns, λs)s≥0 as an infinite dimensional Markov
process in the complex plane. To do so, we rewrite gk (.) in Eq. (2) as a Fourier trans-
form of the measure vk (.) and change the order of integration:

λt = α + (λ0 − α) gk (t) + η

∫ t

0

∫

R

ei(t−u)ξ vk (dξ) dLu (19)

= α + (λ0 − α) gk (t) + η

∫

R

(∫ t

0
ei(t−u)ξdLu

)
vk (dξ) .

It follows that the process Y ξ
t = ∫ t

0 e
i(t−u)ξdLu , defined on the complex plane C is

solution of the following SDE:

dY ξ
t = iξY ξ

t dt + dLt , (20)

and the SDE of the Hawkes intensity is given by

dλt = (λ0 − α)
dgk (t)

dt
dt + η

∫

R

dY ξ
t vk (dξ) . (21)

Remark that
∫
R
dY ξ

t vk (dξ) is real since the measure vk (.) is symmetric and by

rewriting Y ξ
t as

∑Nl
t

l=1 e
i(t−ul ) |Jl | with ul the time of the lth shock in the asset’s

returns dynamics.
To benefit from the reformulation of the process (Nt , λt )t≥0 like an infinite dimen-

sional Markov process

(
Nt , λt ,

(
Y ξ
t

)

ξ∈R

)

t≥0
, we use the discretisation scheme

described below, and passing to the limit we infer the mgf of the arrival rate of
shocks in the asset’s returns dynamics. The key point of this discretisation scheme
consists of an approximation of the measure vk (.) as a discrete measures with
a finite numbers of atoms. For this purpose, we consider a symmetric partition
E (n) := {−∞ < ξ

(n)
−n < ... < ξ

(n)
0 = 0 < ξ

(n)
1 < ... < ξ

(n)
n < ∞}, with ξ

(n)
−n = −ξ

(n)
n .

For each interval (ξ (n)
l , ξ

(n)
l+1), the barycenter is defined as

b(n)
l+1 = ξ

(n)
l + ξ

(n)
l+1

2
, for l ∈ {0, . . . , n − 1} , (22)

b(n)
l = ξ

(n)
l + ξ

(n)
l+1

2
, for l ∈ {−n, . . . ,−1} ,
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10 C. G. Njike Leunga, D. Hainaut

while the mass of any atom with respect of the measure vk (.) is

m(k,n)
l+1 =

∫ ξ
(n)
l+1

ξ
(n)
l

vk (du) , for l ∈ {0, . . . , n − 1} , (23)

m(k,n)
l =

∫ ξ
(n)
l+1

ξ
(n)
l

vk (du) , for l ∈ {−n, . . . ,−1} .

By construction limn→∞
∑n

l=−n m
(k,n)
l = 1 and the discrete approximation of the

measure vk (.) given a partition of size n, denoted by ṽ
(n)
k (.) is defined as follows

ṽ
(n)
k (u) =

n∑

l=−n

m(k,n)
l δ

b(n)
l

(u) , (24)

where δ
b(n)
l

(u) is the Dirac measure located at the barycenter b(n)
l . According

to Eqs. (22) and (23), and given that the measure vk (.) is symmetric, for l ∈
{−n, . . . ,−n} \ {0}, m(k,n)

−l = m(k,n)
l and b(n)

−l = −b(n)
l . It follows that the discrete

measure ṽ
(n)
k (.) is also symmetric. We consider that the following assumptions holds

for the partition E (n):

(i) ξ
(n)
−n → −∞ and ξ

(n)
n → ∞ when n → ∞.

(ii) max |ξ (n)
l+1 − ξ

(n)
l | → 0 when n → ∞.

(iii) E (n) ⊂ E (n+1).

In this setting, for any integrable function, f (.) with respect to the measure vk (.), we
have that

lim
n→∞

∫ ∞

−∞
f (u) ṽ

(n)
k (du) =

∫ ∞

−∞
f (u) vk (du) . (25)

To lighten further developments, we choose n and adopt the following notations:

• Y (l)
t := Y

(b(n)
l )

t for l ∈ {−n, . . . , n} and Y (l)
t is solution of the following SDE

dY (l)
t = ib(n)

l Y (l)
t dt + dL(n)

t , (26)

with L(n)
t = ∑N (n)

t
l=1 |Jl |;

• the approximated intensity in the discrete framework is

λ
(n)
t = α + (λ0 − α) gk (t) + η

n∑

l=−n

m(k,n)
l Y (l)

t (27)
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Affine Heston model style with self-exciting jumps and… 11

and has the following SDE

dλ(n)
t = (λ0 − α)

dgk (t)

dt
dt + η

n∑

l=−n

m(k,n)
l ib(n)

l Y (l)
t dt + η

n∑

l=−n

m(k,n)
l dL(n)

t .

(28)

Proposition 1 Themoment generating function of λ
(n)

s conditionally to the information
at time t ≤ s is given by

E

(
eωλ

(n)
s |Ft

)
= exp

(

F (t, s, ω) + G (t, s, ω) λ
(n)
t +

n∑

l=−n

Hl

(
t, s, b(n)

l , ω
)
m(k,n)

l Y (l)
t

)

for all ω ∈ C− that satisfies the regularity condition ψ
(
0, ηω

∑n
l=−n m

(k,n)
l

)
<

∞. The functions Hl are defined as follows

Hl

(
t, s, b(n)

l , ω
)

= b(n)
l ηi

∫ s

t
eib

(n)
l (u−t)G (u, s, ω) du, ∀l ∈ {−n, . . . , n} ,

F and G are time dependent functions that solve the following ODEs system

∂F

∂t
(t, s, ω) = − (λ0 − α)

dgk (t)

dt
G (t, s, ω) (29)

∂G

∂t
(t, s, ω) = 1 − ψ

(

0, ηG (t, s, ω)

n∑

l=−n

m(k,n)
l +

n∑

l=−n

Hl

(
t, s, b(n)

l , ω
)
m(k,n)

l

)

(30)

with final conditions F (s, s, ω) = 0, G (s, s, ω) = ω. ψ is the moment generating
function of the pair of the random jump sizes J and its absolute value: ψ (z1, z2) :=
E

(
ez1 J+z2|J |). k ∈ {L,G, Log,C} indicates the type of HP memory kernel

Proof In Appendix A. 
�
Passing to the limit with respect of n and using the frequency derivative property

of Fourier transform, we have the following proposition on the conditional mgf of the
HP intensity.

Proposition 2 The moment generating function of λs conditionally to the information
at time t ≤ s is given by

E
(
eωλs |Ft

) = exp (F (t, s, ω) + G (t, s, ω) λt )

× exp

(
iη

∫ s

t
G (u, s, ω)

∫

R

leil(u−t)Y l
t vk (l) dl du

)

(31)
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12 C. G. Njike Leunga, D. Hainaut

for all ω ∈ C− that satisfies the regularity condition ψ (0, ηω) < ∞. The functions
F and G solve the following ODE and partial integro-differential equation (PIDE):

∂F

∂t
(t, s, ω) = − (λ0 − α)

dgk (t)

dt
G (t, s, ω) (32)

∂G

∂t
(t, s, ω) = 1 − ψ

(
0, ηG (t, s, ω) + η

∫ s

t
G (u, s, ω)

dgk (u − t)

dt
du

)

(33)

with final conditions F (s, s, ω) = 0, G (s, s, ω) = ω. k ∈ {L,G, Log,C} indicates
the type of HP memory kernel.

Proof The approximated intensity λ
(n)
t defined in Eq. (27), converges almost surely to

λt since for fixed w ∈ �, the function z �→ Y (z)
t (w) is integrable with respect to the

measure vk and for any integrable function, f (.) with respect to the measure vk (.),
we have that

lim
n→∞

∫ ∞

−∞
f (u) ṽ

(n)
k (du) =

∫ ∞

−∞
f (u) vk (du) . (34)

It follows that N (n)
t = ∫ t

0 λ
(n)
u du converges almost surely to Nt . For l ∈ {−n, . . . , n},

Y (l)
t = ∫ t

0 e
−b(n)

l (t−u)dL(n)
u . If the partition E (n) satisfies the assumptions (i)-(iii), when

n tends to ∞, a barycenter b(n)
l tends to be an element of R+. Hence the sequence(

Y

(
b(n)
l

)

t

)

l=−n,...,n

tends to
(
Y (l)
t

)

l∈R almost surely. Next, the dominated convergence

provides that

E
(
eωλsu |Ft

) = lim
n→∞E

(
eωλ

(n)
s |Ft

)
,

where from Proposition 1

E

(
eωλ

(n)
s |Ft

)
= exp

(

F (t, s, ω) + G (t, s, ω) λ
(n)
t +

n∑

l=−n

Hl

(
t, s, b(n)

l , ω
)
m(k,n)

l Y (l)
t

)

and

n∑

l=−n

Hl

(
t, s, b(n)

l , ω
)
m(k,n)

l =
n∑

l=−n

b(n)
l ηi

∫ s

t
eib

(n)
l (u−t)G (u, s, ω) du m(k,n)

l .

Taking into account the definition of the discretised measure ṽ
(n)
k (24) we obtain

∫ ∞

−∞
Hl (t, s, l, ω) ṽ

(n)
k (l) dl = ηi

∫ ∞

−∞

(∫ s

t
le−il(u−t)G (u, s, ω) du

)
ṽ

(n)
k (l) dl.

123



Affine Heston model style with self-exciting jumps and… 13

Passing to the limit we have

∫ ∞

−∞
Hl (t, s, l, ω) vk (l) dl = ηi

∫ ∞

−∞

(∫ s

t
le−il(u−t)G (u, s, ω) du

)
vk (l) dl

= ηi
∫ s

t
G (u, s, ω)

∫ ∞

−∞
le−il(u−t)vk (l) dldu

= η

∫ s

t
G (u, s, ω)

dgk (u − t)

dt
du

The second and last lines of the latter equation stem from the Fubini’s theorem and the
frequency differentiation property of the Fourier transform. Likewise, we show that

the limit of
∑n

l=−n Hl

(
t, s, b(n)

l , ω
)
Y (l)
t m(k,n)

l is

∫ ∞

−∞
Hl (t, s, l, ω) Y l

t vk (l) dl = iη
∫ s

t
G (u, s, ω)

∫

R

leil(u−t)Y l
t vk (l) dl du,

and concludes the proof. 
�
Note that for t = 0, Y l

t = 0 and we evaluate the moment generating func-
tion of λs | Ft in Eq. (31) solely from λ0. But for 0 < t < s, we need to infer(

λ
(n)
t ,

(
Y (n)
t

)

l=−n,··· ,n

)
from option prices observed over the interval [0, t]. This can

be done using the filtering technique as in Hainaut andMoraux (2018b), and Njike and
Hainaut (2022). Applying a finite difference approach to the mgf of the HP intensity
in Proposition 2, we draw the expected value of the HP intensity given the time in
Fig. 2. From this figure, we conclude that the expected HP intensity decreases as time
increases at the same rate of decay as the corresponding kernel function.

Let Xt := log St the log of the asset price at time t . Considering the discretisation
scheme on the partition E (n), the asset price noted S(n)

t is solution of the following
PDE:

dS(n)
t

S(n)
t

= rdt + √
Vt

(
ρdW 1

t +
√
1 − ρ2dW 2

t

)

+d

⎛

⎜
⎝

N (n)
t∑

l=1

(
eJl − 1

)
⎞

⎟
⎠ − λ

(n)
t E

(
eJ − 1

)
dt .

(35)

By Itô formula the discretised version of the process Xt , noted X (n)
t := log S(n)

t admits
the next SDE
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14 C. G. Njike Leunga, D. Hainaut

Fig. 2 Expected value of the HP intensity λt | F0. For comparison purpose, the parameter β of the Laplace,
the Gaussian and the Logistic kernels are such that σ 2

L = σ 2
G = σ 2

Log = 16. While the Cauchy kernel is

computed with βC = 2.71. The other parameters are: α = 0.4, η = 0.2, λ0 = 50, p = 0.4, ρ+ = 30 and
ρ− = −37

dX (n)
t =

(
r − 1

2
Vt − λ

(n)
t E

(
eJ − 1

))
dt + √

Vt
(
ρdW 1

t +
√
1 − ρ2dW 2

t

)

+d

⎛

⎜
⎝

N (n)
t∑

l=1

Jl

⎞

⎟
⎠ . (36)

The process X (n)
t is then a Markov process with respect to the intensity λ

(n)
t , the

2n+1 factors
(
Y (l)
t

)

l=−n,...,n
and the counter N (n)

t . We can therefore deal with pricing

and hedging problems using standard methods developed for stochastic models. It is

shown in the proof of Proposition 2 that

(
λ

(n)
t ,

(
Y (l)
t

)

l=−n,...,n
, N (n)

t

)
converges

almost surely to
(
λt ,

(
Y l
t

)
l=−n,...,n , Nt

)
. Consequently, the process X (n)

t converges

almost surely to Xt . The next proposition establishes the characteristic function of
X (n)
s conditionally to the information at time t ≤ s.

Proposition 3 For all ω ∈ R that satisfies the regularity condition ψ
(
iω, η

∑n
l=−n

m(k,n)
l

)
< ∞, the characteristic function of X (n)

s conditionally to the information at

time t ≤ s is given by

Υ
(n)
t,s (ω) := EQ

(
eiωX (n)

s | Ft

)

= exp
(
iω

(
X (n)
t + r (s − t)

))
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Affine Heston model style with self-exciting jumps and… 15

× exp

(

θV σ−2
V

(
kV − iωρσV − d̄

)
(s − t) − 2 log

(
1 − ḡe−d̄(s−t)

1 − ḡ

))

× exp

(

Vtσ
−2
V

(
kV − iωρσV − d̄

) 1 − e−d̄(s−t)

1 − ḡe−d̄(s−t)

)

× exp

(

AJ (t, s, ω) +
n∑

l=−n

Cl

(
t, s, b(n)

l , ω
)
m(k,n)

l Y (l)
t + D (t, s, ω) λ

(n)
t

)

where

d̄ =
√

(iωρσV − kV )2 + σ 2
V

(
iω + ω2

)
,

ḡ = kV − iωρσV − d̄
(
kV − iωρσV + d̄

) ,

k ∈ {L,G, Log,C} indicates the type of HP memory kernel. For all l ∈ {−n, . . . , n},

Cl

(
t, s, b(l)

l , ω
)

= ib(n)
l η

∫ s

t
eib

(n)
l (u−t)D (u, s, ω) du. (37)

AJ and D are functions that solves the following ODEs system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂AJ

∂t
(t, s, ω) = −D (t, s, ω) (λ0 − α)

dgk (t)

dt

∂D

∂t
(t, s, ω) = iω (ψ (1, 0) − 1) −

(
ψ

(
iω,

n∑

l=−n

Cl

(
t, s, b(l)

l , ω
)
m(k,n)

l

+ ηD (t, s, ω)
)

− 1

)

(38)

with the terminal condition AJ (s, s, ω) = 0 and D (s, s, ω) = 0.

Proof In Appendix B. 
�
The previous proposition presents the characteristic function as the product of the

exponent of an affine function related to the jump component and the characteristic
function of the standard Heston model (see Schoutens et al. 2004 and Albrecher et al.
2006 for more details). Passing to the limit with respect of n, we have the following
proposition on the characteristic function of the process Xs under the risk neutral
measure Q.

Proposition 4 For all ω ∈ R that satisfies the regularity condition ψ (iω, η) < ∞,
the characteristic function of Xs conditionally to the information at time t ≤ s is given
by

Υt,s (ω) := EQ
(
eiωXs | Ft

)
(39)
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16 C. G. Njike Leunga, D. Hainaut

= exp
(
iω

(
X (n)
t + r (s − t)

))

× exp

(

θV σ−2
V

(
kV − iωρσV − d̄

)
(s − t) − 2 log

(
1 − ḡe−d̄(s−t)

1 − ḡ

))

× exp

(

Vtσ
−2
V

(
kV − iωρσV − d̄

) 1 − e−d̄(s−t)

1 − ḡe−d̄(s−t)

)

× exp

(
AJ (t, s, ω) + iη

∫ s

t
D (u, s, ω)

∫

R

leil(u−t)Y l
t vk (l) dl du + D (t, s, ω) λt

)

where

d̄ =
√

(iωρσV − kV )2 + σ 2
V

(
iω + ω2

)
,

ḡ = kV − iωρσV − d̄
(
kV − iωρσV + d̄

) .

k ∈ {L,G, Log,C} indicates the type of HP memory kernel. AJ and D satisfy the
next ODE and PIDE

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂AJ

∂t
(t, s, ω) = −D (t, s, ω) (λ0 − α)

dgk (t)

dt
∂D

∂t
(t, s, ω) = iω (ψ (1, 0) − 1)

−
(

ψ

(
iω, η

∫ s

t
f racdgkdh (u − t) D (u, s, ω) du + ηD (t, s, ω)

)
− 1

)
,

(40)

with the terminal condition AJ (s, s, ω) = 0 and D (s, s, ω) = 0

Proof This proof is similar to the one of Proposition 2, as X (n)
s converges to Xs almost

surely and by the dominated convergence the conditional characteristic function of
the log-return process is equal to the limit with respect of n of the conditional char-
acteristic function of the approximated log-return process. By some grouping and
using the frequency derivative property of Fourier transform we retrieve the result of
Proposition 4. 
�

Our setting takes into account several features. It allows for stochastic evolution of
the asset price’s variance, includes a jump risk component into the asset price dynamics
and replicate the jumps clustering.We also generalize some existing valuationmodels.
For instance, we retrieve the Black and Scholes option price formula by setting Jl = 0
and θV = kV = σV = 0, the Heston option price formula by setting Jl = 0 and the
Bates and Merton option price formula by setting α = λ0, η = 0 and the jump size Jl
log-normally distributed.

For comparison purpose, Fig. 3 draws the density of the log-return at 50 days
X50d under the risk neutral measure for our four HP kernels. From these graphs, we
conclude that the log-return density at 50 days with the HP Cauchy kernel has the
thinnest tail. The log-return density at 50 days for ours extension of the Heston model
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Affine Heston model style with self-exciting jumps and… 17

Fig. 3 Distribution of X50d | F0 under the risk neutral measure. For comparison purpose, the parameter
β of the Laplace, the Gaussian and the Logistic kernels are such that σ 2

L = σ 2
G = σ 2

Log = 16. While the
Cauchy kernel is computed with αC = 2.71. The other parameters are: S0 = 1, r = 0.01, θV = 0.4,
kV = 1, ρ = −0.7, σV = 0.01, v0 = 0.01, α = 0.4, η = 0.2, λ0 = 50, p = 0.4, ρ+ = 30 and ρ− = −37

with the Laplace, Gaussian and Logistic kernels look identical but the zoom in reveals
the differences due to the decay rate of these kernel functions. Hence, the log-return
density with the Laplace kernel which has a slower decay than the Gaussian and
logistic ones, has the fattest tail.

3 Option pricingmodels

In this section, we develop the option pricing model under our modeling framework
outlined in the previous section.

As many authors (see e.g. Heston 1993; Bakshi et al. 1997; Gatheral 2012) we
will express the call option price using the following delta probability decomposition
of Black-Sholes formula (1973). For this aim, in the next proposition we introduce a
convenient measure Q�.
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18 C. G. Njike Leunga, D. Hainaut

Proposition 5 LetQ� an equivalent measures toQ on the measure space (�,F), and
define by

dQ�

dQ

∣∣∣∣F0

= exp

(
−1

2

∫ t

0
Vudu +

∫ t

0

√
Vu

(
ρdW 1

u +
√
1 − ρ2dW 2

u

))

× exp

(

− (ψ (1, 0) − 1)
∫ t

0
λudu +

Nu∑

l=1

Jl

)

.

Then, under the measure Q�,

(i) W �1
t and W �2

t are Brownian motions defined as follows:

dW �1
t = dW 1

t − ρ
√
Vtdt,

dW �2
t = dW 2

t −
√
1 − ρ2

√
Vtdt .

(ii) N �
t is a counting process with the following intensity

λ�
t = ψ (1, 0) λt . (41)

Considering the discretisation scheme on the partition E (n), this intensity noted
λ

(n),�
t is solution of next SDE

dλ(n),�
t = (

λ�
0 − α�

) dgk (t)

dt
dt + η�

n∑

l=−n

m(k,n)
l ib(n)

l Y (l),�
t dt + η�dL(n),�

t ,

(42)

where λ�
0 = ψ (1, 0) λ0, η� = ψ (1, 0) η, L(n),�

t = ∑N (n),�
t

l=1

∣∣J �
l

∣∣ and for all l ∈
{−n, . . . , n}

dY (l),�
t = ib(n)

l Y (l),�
t dt + dL(n),�

t . (43)

J � is a double exponential distribution random variables of parameters:

ρ+,� = ρ+ − 1, (44)

ρ−,� = ρ− + 1, (45)

p� = pρ+ρ−,�

pρ+ρ−,� + (1 − p) ρ−ρ+,�
, (46)

with the following joint characteristic function:

ψ� (z1, z2) := E

(
ez1 J

�+z2|J �|) = ψ (z1 + 1, z2)

ψ (1, 0)
. (47)

123



Affine Heston model style with self-exciting jumps and… 19

(iii) the processes Xt and Vt satisfy the following SDEs:

dXt =
(
r + 1

2
Vt − λ�

t

(
ψ� (1, 0) − 1

))
dt (48)

+√
Vt

(
ρdW �1

t +
√
1 − ρ2dW �2

t

)
+ d

⎛

⎝
N �
t∑

l=1

J �
l

⎞

⎠ ,

dVt = (θV − (kV − ρσV ) Vt ) dt + σV
√
VtdW

�1
t . (49)

Proof In Appendix C. 
�
From to this proposition and using the characteristic function of the log-return in

Proposition 3 we value an European call option of maturity T and strike K , written
on the terminal spot price ST of some underlying asset in the next proposition.

Proposition 6 The price C (t, T , S, V , λ, N ,Y , K ) of an European call option of
maturity T , written on St is given by

C (t, T , S, V , λ, N ,Y , K ) = St P0 (t, T , S, V , λ, N ,Y , K ) (50)

−Ke−r(T−t)P1 (t, T , S, V , λ, N ,Y , K ) ,

where K is the strike price, Pj ≡ Pj (t, T , S, V , λ, N ,Y , K ) are the probability of
the call expiring in-the-money under the forward measure Q� and the risk neutral
measure Q respectively. For j ∈ {0, 1}, these probabilities are of the form

P0 = 1

2
+ 1

π

∫

R+
Re

(
exp (−iω log K )

Υt,s (ω − i)

iωer(T−t)St

)
dω, (51)

P1 = 1

2
+ 1

π

∫

R+
Re

(
exp (−iω log K )

Υt,s (ω)

iω

)
dω (52)

whereΥt,s is the characteristic function of the process Xtunder the measureQ defined
in the Proposition 4.

Proof Considering the discretisation scheme on the partition E (n), the European call
option price is obtained as

C
(
t, T , S(n), V , λ(n), N (n),Y , K

)
= C

(
t, T , X (n), V , λ(n), N (n),Y , K

)

= e−r(T−t)E

(
max

(
eXT − K , 0

)
|Ft

)

= eXtE

(
e−rT eXT

e−r t eXt
I
X (n)
T >log K

|Ft

)

−Ke−r(T−t)E

(
I
X (n)
T >log K

|Ft

)

= eXtE�
(
I
X (n)
T >log K

|Ft

)
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20 C. G. Njike Leunga, D. Hainaut

−Ke−r(T−t)E

(
I
X (n)
T >log K

|Ft

)

= StQ
�
(
X (n)
T > log K

)

−Ke−r(T−t)Q

(
X (n)
T > log K

)

= St P0 − Ke−r(T−t)P1 (53)

where as in theBlack-Sholes formula (1973) P(n)
0 ≡ P0

(
t, T , X (n), V , λ(n), N (n),Y , K

)

and P(n)
1 ≡ P1

(
t, T , X (n), V , λ(n), N (n),Y , K

)
are the probability of the call expir-

ing in-the-money under the measure Q� and the risk neutral measure Q respectively.
Since C

(
T , T , X (n), V , λ(n), N (n),Y , K

) = max
(
eXT − K , 0

)
, with the terminal

condition

Pj

(
T , T , X (n), V , λ(n), N (n),Y , K

)
=

{
1 if XT > 0

0 otherwise
, ∀ j ∈ {0, 1} .

(54)

Given that the Pj are survival probabilities with respect of XT | Ft under the
measure Q� and the risk neutral measure Q respectively. We apply the inversion
theorem of Gil-Pelaez (1951) to get:

P(n)
0 = 1

2
+ 1

π

∫

R+
Re

(
e−iω log KΥ

(n),�
t,T (ω)

iω

)

dω (55)

P(n)
1 = 1

2
+ 1

π

∫

R+
Re

(
e−iω log KΥ

(n)
t,T (ω)

iω

)

dω, (56)

where Υ
(n),�
t,T (.) and Υ

(n)
t,T (.) are the characteristic functions of XT | Ft under the

measure Q� and the risk neutral measure Q respectively. From the definition of the
measure Q� we have

Υ
(n),�
t,T (ω) = E�

(
eiωX (n)

T | Ft

)

= E

(
e−rT eX

(n)
T

e−r t eX
(n)
t

eiωX (n)
T | Ft

)

= 1

er(T−t)St
E

(
ei(ω−i)X (n)

T | Ft

)

= ϒ
(n)
t,T (ω − i)

er(T−t)St
.

Replacing this into Eq. (55), passing to the limit with respect of n and using the
frequency derivative property of Fourier transform, allows us to complete this proof.


�
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The main problem for implementing this latter call option formula is the numerical
approximation of integrals in Eqs. (51) and (52). It worth noting that a wrong imple-
mentation involves a weak quality of fitness on real market option data. One may
think about Fourier transform, but the characteristic function Υt,s is only evaluated
numerically with possible discontinuities and the integrands have a point of singular-
ity at ω = 0. However, these integrals can be evaluate efficiently via a trapezoidal
quadrature approximation. Note that the Lemma 1 in Witkovský (2001) enables one
to compute the limits of integrands in Eqs. (51) and (52) when ω vanish:

Re

(
e−iω log K

iω

Υt,T (ω − i)

er(T−t)St

)
→ E� (XT | Ft ) − log K (57)

Re

(
e−iω log K

iω
Υt,T (ω)

)
→ E (XT | Ft ) − log K (58)

where

E� (XT | Ft ) = r (T − t) + 1

2

θV

kV − ρσV
(T − t) (59)

+
(
Vt − θV

kV − ρσV

)
1

2 (kV − ρσV )

(
1 − e−(kV −ρσV )(T−t)

)
,

E (XT | Ft ) = r (T − t) − 1

2

θV

kV
(T − t) − 1

2

(
Vt − θV

kV

)
1

kV

(
1 − e−kV (T−t)

)
.

(60)

are results proven in Appendix D.
The trapezoidal quadrature approximation of the probabilities of the call expiring

in-the-money for M discrete log-strikes log Ku := ku = −kmax + (u − 1) �k , u =
1, . . . , M , equally spaced �k = 2kmax

M are given by:

P0 ≈ 1

2
+ 1

π

M∑

l=1

γlRe

(
e−iωl ku

iωl

Υt,T (ωl − i)

er(T−t)St

)
�ω

P1 ≈ 1

2
+ 1

π

M∑

l=1

γlRe

(
e−iωl ku

iωl
Υt,T (ωl)

)
�ω

where γl = 1
21{l=1}+1{l �=1} is the trapezoidal quadratureweights,�ω = 2π

M�K
ensures

that the absolute value of the integrand function is sufficiently small for all ω > ωM

with ωl = (l − 1) �ω for l = 1, . . . , M .
From our call option price formula (50) we can derive Greeks for hedging purpose

given the three sources of risk: the price risk St the volatility risk Vt and the jump risk
λt . The analytical expressions of the three deltas are given by

�S = ∂C

∂S
= P0 + St

∂P0
∂S

− Ke−r(T−t) ∂P1
∂S

, (61)
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�V = ∂C

∂V
= St

∂P0
∂V

− Ke−r(T−t) ∂P1
∂V

,

�λ = ∂C

∂λ
= St

∂P0
∂λ

− Ke−r(T−t) ∂P1
∂λ

,

where for j ∈ {0, 1}

∂P0
∂S

= 1

π

∫

R+
Re

(
e−iω log KΥt,T (ω − i)

er(T−t)S2t

)
dω,

∂P1
∂S

= 1

π

∫

R+
Re

(
e−iω log KΥt,T (ω)

St

)
dω,

∂P0
∂V

= 1

π

∫

R+
Re

(
B (t, T , ω − i)

e−iω log KΥt,T (ω − i)

iωer(T−t)St

)
dω,

∂P1
∂V

= 1

π

∫

R+
Re

(
B (t, T , ω)

e−iω log KΥt,T (ω)

iω

)
dω,

∂P0
∂λ

= 1

π

∫

R+
Re

(
D (t, T , ω − i)

e−iω log KΥt,T (ω − i)

iωer(T−t)St

)
dω,

∂P1
∂λ

= 1

π

∫

R+
Re

(
D (t, T , ω)

e−iω log KΥt,T (ω)

iω

)
dω,

with

B (t, T , ω) = σ−2
V

(
kV − iωρσV − d̄

) 1 − e−d̄(s−t)

1 − ḡe−d̄(s−t)
,

and Dwhich satisfies theODE inEq. (40). Similarlywe can obtain the second and third
order Greeks letter, gamma and vega which are respectively the second and third order
partial derivatives of the call option price with respect of the asset price, the variance
and the arrival rate of jumps. Thus, the sensitivity of our call option price with respect
of these three state variables has an analytic form that relies on the computation of
integrals.

4 Illustration

This section enables us to achieve three goals. Firstly, we present the method for
calibrating our Heston model extension to an implied volatility surface. Secondly,
we show that our model achieves a better fit of implied volatilities than the standard
Heston. Finally, we study the sensitivity of European call option price to the memory
parameter β (Eqs. 6, 8, 10 and 12).
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Fig. 4 Implied volatility surface of the Euro Stoxx 50 as of the 26th of september 2019, with the spot price
S0 = 3541 and the dividend rate q = 0.00225

4.1 Data description

The data used in this section is a result of a filtering process applied to the implied
volatility surface of the Euro Stoxx 50 as of the 26th of September 2019 in Fig. 4,
with the spot price S0 = 3541 and the dividend rate q = 0.00225. To our raw
data obtain from the Bloomberg’s Option Monitor we exclude options with maturity
greater than one as there are less sensitive to volatility. The constant risk free rate
r is approximated by the three-month instantaneous forward rate on the 26th of the
September 2019 implied in the yield curve for the euro area and taking into account
issuers whose rating is triple A.

4.2 Calibration and sensitivity analysis

To calibrate our SVJ models and the Heston model under the risk neutral measure,
we use the standard approach that consists in minimizing the sum of relative squares
errors (SRSE) between IVs derived from ourmodel andmarket IVs.More specifically,
If we denote by � the parameters set of our SVJ model, one evaluate the vector of
parameters �̂ for which our model gives the closest prices to those observed in the
market as follows:

�̂ = argmin
�

(
SRSE (�) + γ max

(
σ 2
V − 2θV , 0

))
, (62)
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Table 1 Estimated parameters with kmax = 1, M = 28 and γ = 10000 used for the trapezoidal quadrature
approximation of the probabilities of the call expiring in-the-money (Eqs. 51 and 52)

Heston HHPL HHPG HHPLog HHPC

θV 0.2183 0.2475 0.2223 0.2744 0.2320

kV 7.3697 8.0511 6.7373 9.7406 7.8421

σV 0.6575 0.70201 0.6632 0.7406 0.6808

ρ −0.8136 −0.9983 −0.9969 −0.9989 −0.9913

V0 0.0217 0.0208 0.0201 0.0218 0.0202

λ0 1.5484 1.1158 1.3813 1.3013

α 2.48734 8.2820 2.7708 4.5728

η 3.1635 0.2860 9.4444 4.3008

β 0.1362 0.3683 7.9078 4.9346

p 0.5106 0.5452 0.7765 0.4081

ρ+ 53.5226 46.6534 64.0890 55.3728

ρ− −144.0291 −137.6665 −97.4525 −149.4079

SRSE 0.5256 0.2595 0.2647 0.2786 0.3005

SRSE (�) =
#C∑

s

(
σ Market
I V (t, Ts , S, V , λ, N , Y , Ks) − σI V (t, Ts , S, V , λ, N , Y , Ks ,�)

σ Market
I V (t, Ts , S, V , λ, N , Y , Ks)

)2

,

(63)

where Ks is the strike price of the s-th call option, Ts is the maturity of the call option,
σ Market
I V is the market implied volatility of the observed call option and #C is the

number of call options used. Note that the objective function is not convex and is not
of any particular structure. Thus, by using a gradient based optimizing procedure we
are not sure to obtain a global minimum. As proposed by Hamida and Cont (2005), we
add a convex penalization term γ max

(
σ 2
V − 2θV , 0

)
to the objective function (63) in

order to ensure that a gradient based algorithm can be used.
Based on the filtered IV surface of the Euro Stoxx 50 as of the 26th September 2019,

we find the set of model parameters minimizing the objective function (63). Table 1
presents the result of our calibration procedure applied to the Heston model, and to
its extensions with a self-exciting jumps induce by a Laplace (6) (HHPL), Gaussian
(8) (HHPG), Logistic (10) (HHPLog) or Cauchy (12) (HHPC) kernels. In Table 1 the
SRSE measures the quality of fit of theses models. We find that our Heston models
with jumps in the asset price dynamics are better, with SRSEs lower than the SRSE
of the Heston model. In Fig. 5, we plot the market implied volatility and the volatility
replicated through the Heston, the HHPL, HHPG, HHPLog and HHPC models at
maturities T equal to 22, 50, 85 and 113 days. We see that the implied volatilities
derived from the HHPL, HHPG, HHPLog and HHPCmodels are the closest to market
one and they outperform the Heston model, particularly for small maturities. From
the Heston model to its extensions we observe that the correlation ρ becomes close to
−1. This results from the contribution of the jump component to the explanation the
log-return volatility.
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Fig. 5 Market implied Volatilities versus replicated implied volatilities from the Heston, the HHPL, HHPG,
HHPLog and HHPC models at maturities T equal to 22, 50, 85 and 113 days

Another important quality check, when it comes to calibrate an implied volatility
surface, is the replication of the term structure of at-the-money (ATM) volatility skews.
Denoted by Ψ (T ), the ATM volatility skew at expiry time T ≥ t is the derivative of
implied volatility with respect to the money strike:

Ψ (T ) :=
∣∣∣∣
∂σI V (t, T , S, V , λ, N ,Y , K ,�)

∂K

∣∣∣∣
K=St

For each model and for ε small enough, we approximate Ψ (T ) by

Ψ̂ (T ) =
∣∣∣∣∣∣

σI V

(
t, T , S, V , λ, N , Y , K + ε, �̂

)
− σI V

(
t, T , S, V , λ, N , Y , K − ε, �̂

)

2ε

∣∣∣∣∣∣
K=St

,

where the approximation holds for small enough ε. Empirical studies (see e.g. Gatheral
et al. 2014) show that the observed term structure of ATM volatility skew is well

approximated by power-law functions of the form T H− 1
2 with H ∈ (

0, 1
2

)
the Hurst

exponent. Gatheral et al. (2014) shows that a value of H close to zero generates a
volatility surface with a reasonable shape. From the Table 2, we deduce that all models
considered have an estimated Hurst exponent Ĥ between 0.09 and 0.14. The HHPLog
model exhibits the smallest estimated Hurst exponent with an R-squared of the linear
regression model that explains log Ψ̂ (T ) given log T equal to 0.88. From Fig. 6, we
conclude that compared to the Heston model, the other models better replicate the
empirical short term explosion of the ATM volatility skew.

We now focus on the differences between our extensions of the Heston model. To
distinguish them in term of memory length, we draw in Fig. 7 their corresponding
kernel functions given the fitted parameters in Table 1. We observe that the Gaussian
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Table 2 Estimated Hurst
exponent Ĥ of the ATM
volatility skew and the
R-squared of the linear
regression model that explains
the log-ATM volatility skew
log Ψ̂ (T ) given log T

Heston HHPL HHPG HHPLog HHPC

Ĥ 0.13 0.12 0.14 0.09 0.12

R2 0.87 .87 0.85 0.88 0.87

Fig. 6 The slope of implied volatility skew as function of the maturity over a range from one day to 2.5
years. Model Parameters used are from Table 1

kernel has the slowest decay, while the Logistic kernel has the fastest decay. Thus,
the HHPG and HHPLog are respectively the models with the longest and shortest
memory among our extensions of the Heston model. From the Fig. 7 also, we find
that the memory of the HHPL and HHPG models increases with the parameter β.
Whereas, the one of HHPLog and HHPC models increases when the parameter β

decreases. The Fig. 8 plot the probability density function of the log-return at 113
days. This figure allows us to make link between the memory length of models and
the thickness of the tail of the log-return distribution. In agreement of the result of the
Sect. 2, the thickness of the tail of the log-return distribution for our extension of the
Heston model are ordered by their memory lengths.

The impact of the memory parameter β of our affine Heston style models on option
pricing is studied through the implied volatilities and the price risk�S (61). To inspect
how recalling past price changes for a long period influences option prices, we vary
the memory parameter β of our extensions of the Heston model. Figure9 reveals that
an increase in memory indicated by a slower decaying kernel function g. (.), induces
an increase in implied volatilities of out-of-the-money (OTM) call options (S < K ).
This increase in implied volatilities becomes more pronounced as the expiry rises.
Figure 10 confirms this findings and brings out two points. Firstly, the impact of the
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Fig. 7 Sensitivity of kernel functions to the memory parameter β. The initial value of β for each model is
in Table 1

memory parameter β is negligible in the short term, but increases with the expiry time
T . Secondly, for the HHPLog model with the shortest memory, the impact of a small
increase or decrease in memory remains negligible in the long term.

The price risk �S measures the sensitivity of the option to the stock price. Let
us recall that for options it should be interpreted as the amount of stocks to hold
(�S > 0) or to short sale (�S < 0) for hedging an option. Called the “delta hedging”,
this is a very common strategy to do the arbitrage and minimize risk of portfolio in
the option market. From the Fig. 11, the price risk �S calculated from the Heston
model is slightly higher than the one given by the other models for OTM call options,
while, for in-the-money (ITM) call options, the price risk �S in the Heston model is
almost the same. The Fig. 12 highlights the sensitivity of the price risk �S to the self-
excitation parameter λ0. We find that the increase in self-excitation caused by a rising
λ0, implies a higher price risk �S for OTM call options and a lower one for ITM call
options. Unlike the price risk �S, from Fig. 13, the implied volatilities derived from
our extensions of the Heston model are more sensitive to the self-excitation parameter
λ0 for OTM call options.

Although call option prices from the Heston model and its extensions have roughly
the same sensitivity to changes in underlying price, we find that these models induce
different shapes of sensitivity to volatility and jump risks in the option price. The upper
graphs in Fig. 14 draw the sensitivity of call option prices expiring at 50 and 113 days
to the volatility V . Known as the greek “vega”, for all models considered, it takes
its greatest value around the ATM. Except for the Heston model, the vega remains
positive and decreases exponentially to zero as the strike moves away from the spot
price. In the lower graphs, we observe a similar shape of the call option price change
in case of a jump. Denoted by �λ, it takes its greatest value at the OTM region and
its curve widens when the expiry increases. It is worth noting that a higher memory
length does not necessary results in a wider �λ curve.
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Fig. 8 Probability density function of the log-return fX0,113 days

Fig. 9 Sensitivity to the memory parameter β of the HHPL model. Model parameters used are in Table 1
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Fig. 10 Sensitivity of the implied volatility to the memory parameter β regarding the expiry time T in
month. Model parameters used are in Table 1

Fig. 11 The price risk �S for the Heston, HHPL, HHPG, HHPLog and HHPC models. Model parameters
used are in Table 1

5 Conclusions

In this article, we propose an extension of the Heston model that allows for self-
excited jumps in asset price and long memory of past price changes. This expansion
corresponds to an asset price process with a stochastic volatility and a jump component
driven by a linear Hawkes process (HP). The memory feature of our model stems
from the decay rate of the HP kernel function. Considering HP kernel function that
are Fourier transform of the Laplace, Gaussian, Logistic, and Cauchy measures, we
generate different memory ranges, from the longest to the shortest. The self-excitation
and memory properties of our framework enables us to have a realistic option pricing
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Fig. 12 Sensitivity of the price risk �S to the initial intensity λ0 of Hawkes processes. Model parameters
used are in Table 1

Fig. 13 Sensitivity to the memory parameter λ0 of the HHPL model. Model parameters used are in Table 1

model that encompass major characteristic of asset’s return times series such as the
volatility clustering and the long memory in volatility. However, the memory effect
leads to a dependence on the past that makes our asset price process non Markov.

The HP with kernel function which is a Fourier transform of the Cauchy mea-
sure corresponds to the tractable exponential kernel. Except the stochastic volatility
model with jumps self-excited by this exponential kernel, our Heston extensions are
non Markov processes. We use the Fourier transform representation of their kernel
functions to establish a closed form expression of the conditional moment generating
functions of the HP’s intensity and the log-returns. Based on these results, we write the
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Fig. 14 Vega and jump risk sensitivity of call prices expiring at 50 and 113 days. Model parameters used
are in Table 1

call option price according to the delta probability decomposition and derive Greeks
for hedging purpose given the three sources of risk: the change in underlying price,
volatility and the occurrence of a jump. By inverse Fourier transform of the conditional
moment generating function of the log-returns, we find that with equal parameters,
the thickness of the tails of its probability density function is fatter if the length of the
memory of the HP kernel function is greater.

An estimation of our models to implied volatilities of the Euro Stoxx 50 as of the
26th of September 2019 achieves better calibration performance than the one with
the standard Heston model, particularly in the short term. They also provide a good
fit of the term structure of at-the-money volatility skew, approximted by power-law

functions of the form T Ĥ− 1
2 with an estimated Hurst exponent Ĥ between 0.09 and

0.14. Considering the estimated parameters found and varying the memory parameter,
we see that implied volatilities derived from our extensions of the Heston model,
increase as the memory length expands. This sensitivity to the memory length appears
more pronounced for out-of-the money call option prices. A similar conclusion is
drawn, with respect to the sensitivity of the implies volatilities to other self-excitation
parameters. The analysis of the Greeks delta, vega and the jump risk reveals that our
extensions of the Heston model have roughly the same delta curve than the standard
Heston. But these models induce different shapes of sensitivity to volatility and jump
risks in the option price, which does not seem to be related only to their memory
lengths.

A next step to this work will be to explore hedging strategies in our setting, to
manage options whose underlying asset may experience some clustering of jumps.
From a broader perspective, it would be interesting to extend this work to the pricing
of bond, currency, exotic options or exotic derivatives which are path dependent. From
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an empirical point of view, it would be worthy to study the empirical relevance of such
Hawkesmemory kernels and develop accurated calibration procedure to financial time
series.

Appendix A

Proof of proposition 1 For fixed time s and ω ∈ C− with C− the set of complex
numbers with non-positive real part, we define the conditional moment generating
function by

f

(
t, s, λ(n)

t ,
(
Y (l)
t

)

l=−n,...,n
, N (n)

t

)
:= E

(
eωλ

(n)
s |Ft

)
,

where f is a complex-valued function on [0, s]×G with G = R+ ×Rn+ ×N the state

space of theMarkov process

(
λ

(n)
t ,

(
Y (l)
t
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l=−n,...,n
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t
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t≥0
. By the tower property,

for any τ ≥ t ,
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It follows that

A f

(
t, s, λ(n)

t ,
(
Y (l)
t

)

l=−n,...,n
, N (n)

t

)
= 0. (A1)

Since A f

(
t, s, λ(n)

t ,
(
Y (l)
t

)

l=−n,...,n
, N (n)

t

)
exists the function f is in the domain

of A which contains the set of twice differentiable functions such that all partial
derivatives of up to order two are continuous function (see e.g. Duffie et al. (2003)).
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On the other hand, the Itô’s lemma for the semi-martingales allows us to infer that f
satisfies the following differential equation:

0 = ∂ f

∂t
+ i

n∑

l=−n

∂ f

∂Y (l)
b(n)
l Y (l)

t +
(

(λ0 − α)
dgk (t)

dt
+ η

n∑

l=−n

m(k,n)
l ib(n)

l Y (l)
t

)
∂ f

∂λ(n)

+λ
(n)
t

∫

R

(

f

(

t, s, λ(n)
t + η |z|

n∑

l=−n

m(k,n)
l ,

(
Y (l)
t + |z|

)
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, N (n)

t + 1

)

− f (.)

)

ν (dz) .

(A2)

Given that

(
λ

(n)
t ,

(
Y (l)
t

)

l=−n,...,n
, N (n)

t

)
is an affine jump process, from Duffie et al.

(2000) and Errais et al. (2010), under technical regularity condition, we conjecture

that f is an exponential affine function of λ
(n)
t and

(
Y (l)
t

)

l=−n,...,n
:
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)

where F and G are time dependent functions such that F (s, s, ω) = 0 and
G (s, s, ω) = ω. While Hl is a function that depends on the time and the position

l ∈ {−n, . . . , n} within the partition E (n). Its final value Hl

(
s, s, b(n)

l , ω
)
is equal to

zero. From (Hubalek et al. 2016), the technical regularity condition needed is equiva-
lent to the integrability of the jumps, that is
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where the random jump size J has density ν (z) on R. The partial derivatives of f are
then given by:
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Injecting all these expressions into Eq. (A2) lead to:

0 = ∂F

∂t
(t, s, ω) + ∂G
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where ψ (z1, z2) := E
(
ez1 J+z2|J |). From which we find the following ODE system:
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For all l ∈ {−n, . . . , n}, the last ODE admits the following solution:

Hl

(
t, s, b(n)

l , ω
)

= b(n)
l ηi

∫ s

t
eib

(n)
l (u−t)G (u, s, ω) du,

and the proof is complete. 
�

Appendix B

Proof of Theorem 3 Let ω ∈ R. As in Proposition 1, if we note

f

(
t, s, X (n)

t , λ
(n)
t ,

(
Y (l)
t

)

l=−n,...,n
, N (n)

t

)
:= E

(
eiωX (n)

s | Ft

)

and under the regularity condition ψ
(
iω, η

∑n
l=−n m

(k,n)
l

)
< ∞, we conjecture that

f is an exponential affine function of X (n)
t , λ(n)

t and
(
Y (l)
t

)

l=−n,...,n
,
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f

(
t, s, X (n)

t , λ
(n)
t ,

(
Y (l)
t

)

l=−n,...,n
, N (n)

t

)
:= exp

(
iωX (n)

t + A (t, s, ω) + B (t, s, ω) Vt
)

× exp

(
n∑

l=−n

Cl

(
t, s, b(n)

l , ω
)
m(k,n)

l Y (l)
t

)

× exp
(
D (t, s, ω) λ

(n)
t

)
(B1)

where A (s, s, ω) = 0, B (s, s, ω) = 0, D (s, s, ω) = 0 andCl

(
s, s, b(n)

l , ω
)

= 0,for

all l ∈ {−n, · · · , n}. Then, by the Itô’s lemma for the semi-martingales, f solves the
following differential equation:

0 = ∂ f

∂t
+

(
r − 1

2
Vt − λ

(n)
t (ψ (1, 0) − 1)

)
∂ f

∂X (n)
+ 1

2
Vt

∂2 f

∂
(
X (n)

)2 + ρσV Vt
∂2 f

∂X (n)∂V

+ (θV − kV Vt )
∂ f

∂V
+ 1

2
σ 2
V Vt

∂2 f

∂V 2 +
n∑

l=−n

∂ f

∂Y (l)
ib(n)

l Y (l)
t (B2)

+ ∂ f

∂λ(n)

(

(λ0 − α)
dgk (t)

dt
+ η

n∑

l=−n

m(k,n)
l ib(n)

l Y (l)
t

)

+ λ
(n)
t

∫

R

� f (z) ν (dz) ,

where

∂ f
∂t =

(
∂A
∂t + ∂B

∂t Vt + ∑n
l=−n

∂Cl
∂t m

(k,n)
l Y (l)

t + ∂D
∂t λ

(n)
t

)
f , ∂ f

∂X (n) = iω f ,
∂2 f

∂(X (n))
2 = −ω2 f , ∂2 f

∂X (n)∂V
= iωB f ,

∂ f
∂V = B f , ∂2 f

∂V 2 = B2 f ,
∂ f

∂Y (l) = Clm
(k,n)
l f , ∂ f

∂λ(n) = Df ,

and � f (z) is the variation of the function f when a jump of size z occurs

� f (z) = f

(

t, s, X (n)
t + z, Vt , λ

(n) + η |z|
n∑

l=−n

m(k,n)
l ,

(
Y (l)
t

)

l=−n,...,n
+ |z| , N (n)

t + 1

)

− f

(
t−, s, X (n)

t− , Vt− , λ
(n)

t− ,
(
Y (l)
t−

)

l=−n,...,n
, N (n)

t−

)
(B3)

=
(

exp

(

iωz +
(

n∑

l=−n

Cl

(
t, s, b(n)

l , ω
)
m(k,n)

l + ηD (t, s, ω)

)

|z|
)

− 1

)

f .

(B4)
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Injecting all these expressions into Eq. (B2) lead to:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂A

∂t
= −iωr − θV B − D (λ0 − α)

dgk (t)

dt

∂D

∂t
= iω (ψ (1, 0) − 1) −

∫

R

(

exp

(

iωz +
(

n∑

l=−n

Clm
(k,n)
l + ηD

)

|z|
)

− 1

)

ν (dz)

∂B

∂t
= ā − b̄B + c̄B2

∂Cl

∂t
= − (Cl + ηD) ib(n)

l , ∀l ∈ {−n, ...n}

(B5)

where ā = ω
2 (ω + i), b̄ = −kV + iωρσV , c̄ = − 1

2σ
2
V . In order to separate the part of

the characteristic function linked to the jump component we assume that A (t, s, ω) =
AD (t, s, ω) + AJ (t, s, ω), with terminal condition AD (s, s, ω) = 0 = AJ (s, s, ω).
It follows that the ODEs system (B5) can be subdivided into two ODEs systems:

⎧
⎪⎨

⎪⎩

∂AD

∂t
= −iωr − θV B

∂B

∂t
= ā − b̄B + c̄B2

(B6)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂AJ

∂t
= −D (λ0 − α)

dgk (t)

dt
∂Cl

∂t
= − (Cl + ηD) ib(n)

l ,∀l ∈ {−n, ...n}
∂D

∂t
= iω (ψ (1, 0) − 1) −

∫

R

(

exp

(

iωz +
(

n∑

l=−n

Clm
(k,n)
l + ηD

)

|z|
)

− 1

)

ν (dz)

(B7)

The ODEs system (B6) corresponds at the one of the standard Heston model. From
Schoutens et al. (2004)), we have:

exp
(
iωX (n)

t + AD (t, s, ω) + B (t, s, ω) Vt
)

= exp
(
iωX (n)

t + r (s − t)
)

× exp

(
θV σ−2

V

(
kV − iωρσV − d̄

)
(s − t)

−2 log

(
1 − ḡe−d̄(s−t)

1 − ḡ

) )

× exp

(
Vtσ

−2
V

(
kV − iωρσV − d̄

)

× 1 − e−d̄(s−t)

1 − ḡe−d̄(s−t)

)
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where

d̄ =
√

(iωρσV − kV )2 + σ 2
V

(
iω + ω2

)
,

ḡ = kV − iωρσV − d̄
(
kV − iωρσV + d̄

) .

Albrecher et al. (2006) prove that this formof the characteristic function of the standard
Heston model is stable for Fourier inversion or numerical integration.
Let us focus on the ODEs system (B7). Its last ODE admits the following solution:

Cl

(
t, s, b(n)

l , ω
)

= iηb(n)
l

∫ s

t
eib

(n)
l (u−t)D (u, s, ω) du. (B8)

This last formula allows us to conclude the proof. 
�

Appendix C

Proof of Theorem 5 The derivative

dQ�

dQ

∣∣∣∣F0

= exp

(
− 1

2

∫ t

0
Vudu +

∫ t

0

√
Vu

(
ρdW 1

u +
√
1 − ρ2dW 2

u

)

− (ψ (1, 0) − 1)
∫ t

0
λudu +

Nu∑

l=1

Jl

)

is an exponential martingale as a solution of a driftless SDE and given that
E

(∫ τ

0 λsds
)

< ∞ and E
(∫ τ

0 V 2
s ds

)
< ∞ for all τ ≥ 0.

i) is straightforward. Hence, we start by the proof of ii). The moment generating
function of λ

(n),�
s conditionally to the information at time t ≤ s is given by

E�
(
eωλ

(n),�
s |Ft

)
= eU

(n)
t E

(
eU

(n)
s +ωψ(1,0)λ(n)

s |Ft

)
,

exp

(

F (t, s) + G (t, s) λ
(n)
t +

n∑

l=−n

Hl

(
t, s, b(n)

l

)
m(k,n)

l Y (l)
t

)

where

U (n)
t = −1

2

∫ t

0
Vudu +

∫ t

0

√
Vu

(
ρdW 1

u +
√
1 − ρ2dW 2

u

)

−E

(
eJ − 1

) ∫ t

0
λ(n)
u du +

N (n)
u∑

l=1

J (n)
l
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is the approximated exponent of the exponential martingale dQ�

dQ

∣∣∣F0
.

If we note

f

(
t, s,U (n)

t , λ
(n)
t ,

(
Y (l)
t

)

l=−n,...,n
, N (n)

t

)
:= E

(
eU

(n)
s +ωψ(1,0)λ(n)

s |Ft

)

and we conjecture that f is an exponential affine function of U (n)
t λ

(n)
t and(

Y (v)
t

)

v=1,...,n
,

f

(
t, s,U (n)

t , λ
(n)
t ,

(
Y (l)
t

)

l=−n,...,n
, N (n)

t

)
:= exp

(
A (t, s, ω) + ψ (1, 0) B (t, s, ω) λ

(n)
t

)

× exp

( n∑

l=−n

Cl

(
t, s, b(n)

l , ω
)
m(k,n)

l Y (l)
t

+ D (t, s, ω)U (n)
t

)

where A (t, s, ω) = 0, B (s, s, ω) = ω, Cl

(
s, s, b(n)

l , ω
)

= 0 for all l ∈
{−n, . . . , n}and D (s, s, ω) = 1. According to the Itô’s lemma, f solves the following
differential equation:

0 = ∂ f

∂t
+ ∂ f

∂U (n)

(
− (ψ (1, 0) − 1) λ

(n)
t − 1

2
Vt

)
(C1)

+1

2

∂2 f

∂U (n)2
Vt + i

n∑

l=−n

∂ f

∂Y (l)
b(n)
l Y (l)

t

+ ∂ f

∂λ(n)

(

(λ0 − α)
dgk (t)

dt
+ η

n∑

l=−n

m(k,n)
l ib(n)

l Y (l)
t

)

+λ
(n)
t

∫ ∞

−∞

(

f

(

t, s,U (n)
t + z, λ(n)

t + η |z|
n∑

l=−n

m(k,n)
l ,

(
Y (l)
t + |z|

)

l=−n,...,n
, N (n)

t + 1

)

− f (.)

)

ν (dz)

where ∂ f
∂U (n) = D (t, s, ω) f , ∂ f

∂λ(n) = ψ (1, 0) B (t, s, ω) f , ∂ f
∂Y (l) = Cl

(
t, s, b(n)

l , ω
)

m(k,n)
l f , ∂2 f

∂U (n)2
= D (t, s, ω)2 f ,

∂ f

∂t
=

(
∂A

∂t
(t, s, ω) + ψ (1, 0)

∂B

∂t
(t, s, ω) λ

(n)
t +

n∑

l=−n

∂Cl

∂t

(
t, s, b(n)

l , ω
)
m(k,n)

l Y (v)
t

+∂D

∂t
(t, s, ω)U (n)

t

)
f ,
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and the variation of f when a jump of size z occurs is

(
exp

(
D (t, s, ω) z +

(
ηψ (1, 0) B (t, s, ω)

n∑

l=−n

m(k,n)
l

+
n∑

l=−n

Cl

(
t, s, b(n)

l , ω
)
m(k,n)

l

)
|z|

)
− 1

)
f

Injecting all these expressions into Eq. (C1) lead to:

0 = ∂A

∂t
(t, s, ω) + ψ (1, 0)

∂B

∂t
(t, s, ω) λ

(n)
t +

n∑

l=−n

∂Cl

∂t

(
t, s, b(n)

l , ω
)
m(k,n)

l Y (v)
t

+∂D

∂t
(t, s, ω)U (n)

t + D (t, s, ω)

(
− (ψ (1, 0) − 1) λ

(n)
t − 1

2
Vt

)
+ 1

2
D (t, s, ω)2 Vt

+i
n∑

l=−n

Cl

(
t, s, b(n)

l , ω
)
m(k,n)

l b(n)
l Y (l)

t

+ψ (1, 0) B (t, s, ω)

(

(λ0 − α)
dgk (t)

dt
+ η

n∑

l=−n

m(k,n)
l ib(n)

l Y (l)
t

)

+ λ
(n)
t

×
(

ψ

(

D (t, s, ω) , ηψ (1, 0) B (t, s, ω)

n∑

l=−n

m(k,n)
l +

n∑

l=−n

Cl

(
t, s, b(n)

l , ω
)
m(k,n)

l

)

− 1

)

or

0 = ∂A

∂t
(t, s, ω) − 1

2
D (t, s, ω) Vt + 1

2
D (t, s, ω)2 Vt (C2)

+ψ (1, 0) B (t, s, ω) (λ0 − α)
dgk (t)

dt

0 = ψ (1, 0)
∂B

∂t
(t, s, ω) − D (t, s, ω) (ψ (1, 0) − 1) (C3)

+ψ

(

D (t, s, ω) , ηψ (1, 0) B (t, s, ω)

n∑

l=−n

m(k,n)
l +

n∑

l=−n

Cl

(
t, s, b(n)

l , ω
)
m(k,n)

l

)

− 1,

0 = ∂Cl

∂t

(
t, s, b(n)

l , ω
)

+ i
(
Cl

(
t, s, b(n)

l , ω
)

+ ηψ (1, 0) B (t, s, ω)
)
b(n)
l , (C4)

∀l ∈ {−n, . . . , n}
0 = ∂D

∂t
(t, s, ω) . (C5)

D (t, s, ω) = 1 solves the last PDE as D (s, s, ω) = 1. Given D (t, s, ω) = 1, the
functions A and B satisfy the following PDE system:
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂A

∂t
(t, s, ω) = −ψ (1, 0) B (t, s, ω) (λ0 − α)

dgk (t)

dt
,

∂B

∂t
(t, s, ω) = 1 −

ψ
(
1, ηψ (1, 0) B (t, s, ω)

∑n
l=−n m

(k,n)
l + ∑n

l=−n Cl

(
t, s, b(n)

l

)
m(k,n)

l

)

ψ (1, 0)
.

(C6)

Let λ�
0 = ψ (1, 0) λ0, α� = ψ (1, 0) α, η� = ψ (1, 0) η and

ψ� (z1, z2) = ψ (z1 + 1, z2)

ψ (1, 0)
. (C7)

Taking into account these definitions, the latter ODE system is similar to the one
obtained under risk neutral measure Q in Proposition 1. On the other hand, for all
l ∈ {−n, . . . , n},

Cl

(
t, s, b(n)

l , ω
)

= ib(n)
v η�

∫ s

t
eib

(n)
l (u−t)B (u, s, ω) du,

solves Eq. C4. By a suitable rearrangement, we can show that this definition of the joint
moment generating function ψ� corresponds at the one of the pair J �and |J �|where
the jump size J � follows a double exponential with parameters

ρ+,� = ρ+ − 1,

ρ−,� = ρ− − 1,

p� = pρ+ρ−,�

pρ+ρ−,� + ρ+,� (1 − p) ρ− .

All the previous results allows us to complete the proof of ii). The SDE of the variance
Vt under Q� is derived from i). While for the process Xt , similarly to the proof of ii),
the dynamics of X under the measure Q� is obtained by comparison with the results
of Proposition 3. 
�

Appendix D Expected value of XT | Ft

Given the dynamics of XT under the measure Q, we have

E (XT | Ft ) = E

(∫ T

t

(
r − 1

2
Vu

)
| Ft

)
(D1)

= r (T − t) − 1

2
E

(∫ T

t
Vudu | Ft

)
,

where the solution of the SDE of the variance process is given by

VT = θV

kV
+

(
Vt − θV

kV

)
e−kV (T−t) + σV

∫ T

t
e−kV (T−s)

√
VsdW

1
s . (D2)
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Applying the Fubini rule leads to

∫ T

t
Vudu = θV

kV
(T − t) +

(
Vt − θV

kV

)
1

kV

(
1 − e−kV (T−t)

)
(D3)

+σV

kV

∫ u

t

√
Vs

(
e−kV (t−s) − e−kV (T−s)

)
dW 1

s .

Hence

E (XT | Ft ) = r (T − t) − 1

2

θV

kV
(T − t) − 1

2

(
Vt − θV

kV

)
1

kV

(
1 − e−kV (T−t)

)
.

(D4)

Under the measure Q�, the SDE of Xt and Vt are given by:

dXt =
(
r + 1

2
Vt − λ�

t ψ
� (1, 0)

)
dt (D5)

+√
Vt

(
ρdW �1

t +
√
1 − ρ2dW �2

t

)
+ d

⎛

⎝
N �
t∑

l=1

J �
l

⎞

⎠ ,

dVt = (θV − (kV − ρσV ) Vt ) dt + σV
√
VtdW

�1
t . (D6)

It follows that

E� (XT | Ft ) = E�

(∫ T

t

(
r + 1

2
Vu

)
| Ft

)
(D7)

= r (T − t) + 1

2
E�

(∫ T

t
Vudu | Ft

)

= r (T − t) + 1

2

θV

kV − ρσV
(T − t)

+
(
Vt − θV

kV − ρσV

)
1

2 (kV − ρσV )

(
1 − e−(kV −ρσV )(T−t)

)

where as under the measure Q

∫ T

t
Vudu = θV

kV − ρσV
(T − t)

+
(
Vt − θV

kV − ρσV

)
1

kV − ρσV

(
1 − e−(kV −ρσV )(T−t)

)

+ σV

kV − ρσV

∫ u

t

√
Vs

(
e−(kV −ρσV )(t−s) − e−(kV −ρσV )(T−s)

)
dW �1

s .

(D8)
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