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Abstract
This paper shows how to uniquely price non-traded assets using no-arbitrage in an
otherwise frictionless market setting. The approach requires the assumption that the
hedging error, properly defined, is non-priced or idiosyncratic risk. This methodology
can be applied to private loans, illiquid publicly traded debt, insurance contacts, private
equity, real estate, and real options.
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1 Introduction

The pricing of non-traded assets is an important area within finance. By non-traded
wemean an asset whose payoffs cannot be synthetically constructed via an admissible
and dynamic trading strategy using the traded assets in a standard continuous time,
continuous trading, frictionless, and competitive market model.1 Non-traded assets
include private loans, illiquid publicly traded debt, insurance contacts, private equity,
real estate, and real options. The purpose of the paper is to provide a no-arbitrage
methodology for pricing these non-traded assets in an otherwise frictionless and com-
petive market setting. This approach uses the notion of non-priced hedging risk in
conjunction with a complete market for a collection of related traded assets.

Non-traded assets are a special case of pricing derivatives in an incomplete market.
See (Bingham andKiesel 2000), Chapter 7, for an excellent summary of this literature.
As is well-known in this literature, in an incompletemarket, there is no unique price for
a derivative whose payoff is non-linear in the traded assets. This is because the set of

B Robert A. Jarrow
raj15@cornell.edu

1 Samuel Curtis Johnson Graduate School of Management, Cornell University, Ithaca, NY 14853, USA
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equivalent martingale measures contains a continuum of elements. Various methods
have been employed to select a unique element from this set. One approach is to
choose a price implied by a given objective function; this includes variance and risk
minimizing hedging and indifference pricing. A second approach is to choose a unique
martingale measure assuming certain risks are non-priced, which uniquely determines
the martingale measure. For example (Merton 1976) assumes jump risk is non-priced,
Hull and White (1987) assume volatility risk is non-priced, and Jarrow et al. (2005)
assume the same for default risk. This paper revisits, formalizes, and generalizes this
later approach to general semimartingale price processes.

Thismethod for pricing non-traded assets can be used to value private loans, illiquid
publicly traded debt, insurance contacts, private equity, real estate, and real options.
It is an important approach in practice because:

(i) it avoids the necessity of assuming a particular preference or objective function
to determine a unique price, and

(ii) it can be argued that with the abundance of assets traded in current markets,
sufficient securities have already been issued to hedge most systematic risks. This
implies that the only remaining non-traded risks are non-priced or idiosyncratic, hence,
the above methodology applies.

An outline of this paper is as follows. Section2 sets up themodel structure. Section3
provides the key result under the non-priced hedging error assumption, and Sect. 4
illustrates the approach with various examples including private debt, private equity,
and real options. Section5 concludes.

2 The set-up

Weconsider a continuous time, continuous tradingmodel on afinite horizon [0, T ]. The
randomness is represented by (�,F ,F,P), which is a filtered complete probability
space where the filtration F = (Ft )0≤t≤T satisfies the usual hypothesis with F0 the
trivial σ algebra, FT = F , and where P is the statistical probability measure.

2.1 The original market

The market is assumed to be competitive and frictionless. Competitive means that
traders act as price takers, believing their trades have no quantity impact on the market
price. Frictionless means that there are no transaction costs and no trading constraints.

Traded in the economy are n risky assets and a money market account (mma) that
is locally riskless. Without loss of generality, we assume the mma’s value is unity
for all times. The (normalized) market prices of the risky assets are given by a non-
negative semimartingale St := (S1(t), . . . , Sn(t)) for 0 ≤ t ≤ T that is adapted to F.
Without loss of generality, we assume that no cash flows are paid to the risky assets.
Let Fs = (F s

t )0≤t≤T be the filtration generated by S. We assume that Fs ⊂ F and
F
s �= F. The economic interpretation is that F reflects additional randomness present

in the market and not reflected in the stock price processes.
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The no-arbitrage pricing of non-traded assets 403

In the subsequent analysis, the different filtrations will be important. Consequently,
when defining the various concepts, we will make the underlying filtration explicit.
Trading strategies are defined to be holdings in the risky assets that are F - predictable
(i.e. depending on only current and past information) and holdings in the mma that are
F - optional. To exclude doubling strategies from discussion, we only consider trading
strategies that are admissible (the value of the trading strategy is bounded below).
A trading strategy is self-financing if it requires no cash inflows or outflows except
at times 0 and T . Specifically, denote by O the F - optional σ -algebra and L (S,F)

the set of F- predictable processes for which the stochastic integral with respect to S
exists.

An admissible self financing trading strategy (s.f.t.s) with initial wealth x and
wealth process X is the n+1 - tuple of stochastic processes (α0, α := (α1, . . . , αn)) ∈
(O,L (S,F)) such that there exists some constant c where

Xt = α0(t) + αt · St = x +
∫ t

0
αu · dSu ≥ c,∀t ∈ [0, T ].

Here, x · y with x, y ∈ R
n denotes the inner product.

The first equality represents the trading strategy’s wealth at time t , which equals the
number of units of the mma plus the number of shares of the risky assets times their
market prices. The second equality is the self-financing condition, which states that the
trading strategy’s time t wealth equals the initial wealth plus the accumulated capital
gains from the trading strategy over [0, T ]. The third inequality is the admissibility
condition, which represents a uniform lower bound on the wealth process. This lower
bound represents a borrowing constraint. We denote by A(x,F) the set of admissible
s.f.t.s. (α0, α) ∈ (O,L (S,F)) given an initial wealth x .

A simple arbitrage opportunity is an admissible s.f.t.s. (α0, α) ∈ A(x,F) with
initial wealth x = 0 and wealth process X such that

P(XT ≥ 0) = 1, and P(XT > 0) > 0.

A Free Lunch with Vanishing Risk (FLVR) is an admissible s.f.t.s. that is an extension
of a simple arbitrage opportunity that includes (the limits of) approximate simple
arbitrage opportunities. We say the market satisfies No Free Lunch with Vanishing
Risk (NFLVR) if there exists no FLVR.

An equivalent local martingale measure Q is any probability measure on (�,F)

such that for A ∈ F , Q(A) = 0 iff P(A) = 0 (in symbols Q ∼ P) and S is a Q local
martingale with respect to F.

DefineMl(F) to be the set of equivalent local martingale measures (ELMM) with
respect to F. The first fundamental theorem of asset pricing states that Ml(F) �= ∅ if
and only if the market satisfies NFLVR.

An admissible s.f.t.s. with wealth process X is said to be a dominating for asset i
if there exists an admissible s.f.t.s (α0, α) ∈ A (x,F) such that x < Si (0) and

x +
∫ T

0
αu · dSu = Si (T ) a.s.
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404 R. A. Jarrow

The market is said to satisfy No Dominance (ND) if for all assets i = 0, 1, ..., n there
exist no such dominating s.f.t.s.

DefineM(F) to be the set of equivalent martingale measures (EMM) under which
S is a Q martingale.

The third fundamental theorem states that M(F) �= ∅ if and only if the market
satisfies NFLVR and ND.

A market is defined to be complete with respect to some Q ∈ Ml(F) if for any
non-negative payoffCT ∈ L1+(�,FT ,Q) at time T , there exists a x ≥ 0 and (α0, α) ∈
A (x,F) such that

x +
∫ T

0
αu · dSu = CT ,

and the wealth process

Ct = α0(t) + αt · St = x +
∫ t

0
αu · dSu

is a Q martingale with respect to F and L1+(�,FT ,Q) is the set of FT measurable,
non-negative, real-valued random variables CT (ω) with E

Q[CT ] < ∞. The payoff
CT ∈ L1+(�,FT ,Q) can be interpreted as the cash flow to a traded or a non-traded
asset.

By the second fundamental theoremof asset pricing, given there exists aQ ∈ M(F),
the market is complete with respect to Q ∈ M(F) if and only if the EMM is unique.
In a complete market, EQ[·] gives the unique present value operator to determine the
arbitrage-free price of any CT ∈ L1+(�,FT ,Q) at time t , which is EQ[CT |Ft ]. For
more discussion on all of these topics, see (Jarrow 2021b), Chapter 2.

For the following analysis, we invoke the following assumption for the original
market.

Assumption 1 (NFLVR, ND, and Incomplete Original Market)
(i)M(F) �= ∅.
(ii) Fix a Q ∈ M(F),2 the original market is incomplete with respect to Q.

In an incomplete market satisfying NFLVR and ND, there exists payoffs C ∈
L1+(�,FT ,Q) that cannot be replicated using the mma and the n risky assets. And,
there are an infinite number of martingale measures Q ∈ M(F). Hence, there is no
unique arbitrage-free price for any such payoff. For subsequent use, we define the
original market as the collection

(
S,F, L1+(�,FT ,Q)

)

for a given Q ∈ M(F).

2 This determines the set of integrable random variables at time T .
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The no-arbitrage pricing of non-traded assets 405

2.2 The restrictedmarket

This section introduces the restricted market consisting of just the traded assets and
its derivatives. Given the original market satisfies NFLVR and ND,M(F) �= ∅. Fix a
Q ∈ M(F) and define Qs := Q |F s

T
on (�,F s

T ).
For the given Q ∈ M(F), the restricted market is defined as the collection

(
S,Fs, L1+(�,F s

T ,Qs)
)

.

That is, givenQs , the restricted market is the set of traded risky assets S, the filtration
generated by the risky assets Fs , and the set of payoffs C̃ ∈ L1+(�,F s

T ,Qs) that are
F s
T measurable.

Lemma 1 (The Restricted Market satisfies NFLVR and ND) Fix a Q ∈ M(F) and
define Qs := Q |F s

T
. Then,

S is a Qs martingale with respect to F
s , i.e. Qs ∈ M(Fs).

Proof Given a Q ∈ M(F), EQ [ST |Ft ] = St .
Taking conditional expectations with respect to F s

t of both sides yields

E
Q

[
E
Q [ST |Ft ]

∣∣F s
t

]
= E

Q
[
St

∣∣F s
t

]
.

But Fs ⊂ F implies EQ
[
E
Q [ST |Ft ]

∣∣F s
t

] = E
Q

[
ST

∣∣F s
t

]
and E

Q
[
St

∣∣F s
t

] = St .
Substitution gives

E
Q

[
ST

∣∣F s
t

] = St .

Finally, since S is Fs adapted, EQ
[
ST

∣∣F s
t

] = E
Qs [

ST
∣∣F s

t

]
, which completes the

proof. ��
By the first and third fundamental theorems of asset pricing, this lemma implies that
the restricted market satisfies both NFLVR and ND.

In this restrictedmarket, the set of admissible s.f.t.s. only depend on the information
in the filtration Fs , denoted (α0, α) ∈ A (x,Fs). We add the following assumption on
the restricted market.

Assumption 2 (Complete Restricted Market)
Fix a Q ∈ M(F).

The restricted market is complete with respect to Q
s = Q |F s

T
.

This assumption states that for any non-negative F s
T measurable payoff C̃T ∈

L1+(�,F s
T ,Qs) at time T , there exists a x ≥ 0 and (α0, α) ∈ A (x,Fs) such that

x +
∫ T

0
αu · dSu = C̃T ,
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406 R. A. Jarrow

and the wealth process

C̃t = α0(t) + αt · St = x +
∫ t

0
αu · dSu

is a Q
s martingale with respect to F

s . It is also a Q martingale with respect to F
s

because Qs = Q |F s
T
and C̃t is Fs adapted. This implies that

C̃t = E
Qs [C̃T |F s

t ] = E
Q[C̃T |F s

t ],

and the initial investment satisfies

x = E
Qs [C̃T ] = E

Q[C̃T ]. (1)

Last, by the second fundamental theorem of asset pricing, the EMMQ
s on (�,F s

T )

is unique. Hence, all Q ∈ M(F) generate the same the probability measure Qs .

3 The Theorem

This section solves the following problem.

Problem. Given a Q ∈ M(F) and the cash flow from a non-traded asset C ∈
L1+(�,FT ,Q) ∩ L1+(�,FT ,P) that cannot be replicated using the mma and the
n risky assets, what is its unique arbitrage-free price?

Because there are an infinite number of EMM Q ∈ M(F), and any one of them
gives a possible price, we need to introduce an additional assumption to solve the
problem. We will state this assumption later, after motivating it during the derivation
of the problem’s solution.

Choose an arbitrary Q ∈ M(F). We will later show that the price of the non-
traded asset is independent of the EMM selected. Fix a non-traded asset’s payoff
CT ∈ L1+(�,FT ,Q)∩ L1+(�,FT ,P) in the original market that cannot be replicated
using the mma and the n risky assets.

Next, consider the related payoff C̃T := E
P[CT |F s

T ]. This payoff is in the restricted
market

(
S,Fs, L1+(�,F s

T ,Qs)
)
because it is F s

T measurable. Because the restricted
market is complete, there exists a x ≥ 0 and (α0, α) ∈ A (x,Fs) such that

x +
∫ T

0
αu · dSu = C̃T ,

x = E
Qs [C̃T ],

and the wealth process

C̃t = α0(t) + αt · St = E
Qs [C̃T ] +

∫ t

0
αu · dSu
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The no-arbitrage pricing of non-traded assets 407

is a Qs martingale with respect to F
s . That is, the payoff C̃T := E

P[CT |F s
T ] can be

replicated using the mma and traded risky assets, and it’s wealth process is C̃t . And,
E
Qs [C̃T ] is the unique risk neutral value of the cash flow C̃T in the restricted market.
Next, we use this s.f.t.s. (α0, α) ∈ A (x,Fs), but in the original market, to construct

a partial hedge for the non-traded asset’s payoff. The hedging error εT is defined by
the following expression:

εT = CT − C̃T .

Here, the payoff C̃T represents the “traded” part of the payoff CT and εT represents
the “non-traded” part. The following lemma follows easily from the definition.

Lemma 2 (Expected Hedging Error with respect to F
s) EP

(
εT

∣∣F s
t

) = 0 for all t ∈
[0, T ], which implies EP (εT ) = 0.

Proof Taking expectations

E
P

(
CT

∣∣F s
t

) = E
P

(
C̃T

∣∣F s
t

)
+ E

P
(
εT

∣∣F s
t

)

But, EP
(
C̃T

∣∣F s
t

)
= E

P
(
E
P

(
CT

∣∣F s
T

) ∣∣F s
t

) = E
P

(
CT

∣∣F s
t

)
which implies EP

(
εT

∣∣F s
t

) = 0. And, EP (εT ) = 0. ��
This lemma states that under the statistical probability P, the hedging error has zero
conditional expectation with respect to the filtration F

s generated by the traded risky
assets.

Using the givenQ ∈ M(F), the time 0 arbitrage-free value of the non-traded risky
asset’s payoff is:

E
Q (CT ) = E

Qs
(C̃T ) + E

Q (εT ) (2)

where the equality uses expression (1).
The first term E

Qs
(C̃T ) is the price of the “traded” part of the non-traded asset’s

payoff, determined by replication in the restricted market. The second term, EQ (εT ),
represents the arbitrage-free price of the hedging error. The first term does not depend
on the particular Q ∈ M(F) selected, but the second term does. To remove this
dependence, we add the following assumption.

Assumption 3 (Non-priced Hedging Error Risk)
For all Q ∈ M(F), E

Q (εT ) = E
P (εT ).

The assumption that hedging error risk is non-priced has be used in different con-
texts. In Merton (1976) jump risk is assumed to be non-priced, Hull and White (1987)
volatility risk is assumed to be non-priced, and in Jarrow et al. (2005) default risk is
assumed to be non-priced. This assumption is implied if the hedging error is diversi-
fiable in a large portfolio (see the “Appendix” for a justification of this assumption in
a discrete time model).

Under this assumption, we get the solution to the problem posed at the beginning
of the section.
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408 R. A. Jarrow

Theorem 3 (Arbitrage-Free Price of the Non-traded Asset)

E
Q (CT ) = E

Qs
(EP

(
CT

∣∣F s
T

)
). (3)

Proof By expression (2), EQ (CT ) = E
Qs

(C̃T ) + E
Q (εT ).

Assumption 3 and Lemma 1 give EP (εT ) = 0 = E
Q (εT ). Substitution completes

the proof. ��
This price is uniquely determined by the arbitrage-free traded assets’ prices in the
original market. It is independent of the original EMM Q ∈ M(F) selected because
the hedging error is non-priced andQs is uniquely determined in the restricted market
which is complete.

A special case of this theorem, when the non-traded asset’s cash flows are indepen-
dent of market prices S under P, is worth noting. Formally, the special case is when
CT is independent of Fs under P as given in the following corollary.

Corollary 4 (Market Prices Independent of the Non-traded Asset’s Cash Flows under
P)

If CT is independent of Fs under P, then

E
Q (CT ) = E

P (CT ) . (4)

Proof Under the hypothesis, EP
(
CT

∣∣F s
T

) = E
P (CT ) is a constant. Then, using

Theorem 3, yields the result. ��
As noted in the corollary, when the non-traded asset’s cash flows are independent
of market prices, then the arbitrage-free price of the non-traded asset is equal to the
expected cash flow under the statistical probability P. This special case is useful in the
determination of arbitrage-free insurance premiums (see Sect. 4.2 below).

In summary, we state the solution to the arbitrage-free pricing of a non-traded asset.

Solution. To price the cash flow to a non-traded asset CT ∈ L1+(�,FT ,Q) ∩
L1+(�,FT ,P) that cannot be replicated using the mma and the n risky assets:

(1) first, consider the part of the asset’s payoff C̃T := E
P[CT |F s

T ] that can be
hedged using the traded assets. This component can be uniquely priced by

E
Qs

(C̃T )

where Qs := Q |F s .
(2) Second, consider the remaining hedging error εT = CT − C̃T . Assuming this

hedging error represents non-priced or idiosyncratic risk, then

E
Q(CT ) = E

Qs
(C̃T ) = E

Qs
(
E
P

(
CT

∣∣F s
T

))

is the unique arbitrage-free price in the original market for the non-traded asset’s
payoff CT .

We will illustrate this solution in Sect. 4 below for various non-traded assets.
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The no-arbitrage pricing of non-traded assets 409

4 Examples

This section presents some examples to illustrate the use of this methodology for
pricing various non-traded assets. The simplest examples are selected for clarity, and
it will become clear that the examples are easily generalized to make them more
realistic and suitable for practice.

4.1 Private debt

This first example is to price non-traded private debt. Let a privately owned company
have outstanding debt of various types, one of which is a zero-coupon bond promising
to pay 1 dollar at time T . This debt is private and not traded.

For simplicity, we assume that the spot rate of interest is zero, so the mma’s value
is unity for all times.

Trading is equity for a similar company with price process

St = S0e
μt− 1

2 σ 2t+σWt

where S0, μ, σ are strictly positive constants and Wt is a standard Brownian motion
with W0 = 0 under P.

Let ZT (ω) ∈ {0, 1} be aFT measurable, binomial random variable with probability
λ(ST ) of {ZT = 1} under P where λ(·) : R → [0,∞) is Borel measurable. Here,
λ(ST ) is the probability of the private debt defaulting at time T , which is assumed to
depend on the value of the similar company’s stock price at time T .

F is the filtration generated by Wt for all t ∈ [0, T ) and (WT , ZT ) at time T .
The zero-coupon bond issued by the private company has time T payoff

CT (ω) =
{

δ i f ZT (ω) = 1
1 i f ZT (ω) = 0

(5)

where δ ∈ (0, 1) is the recovery rate.
We assume the original market consisting of the similar company’s stock and the

mma satisfies NFLVR and ND, so that there exists a Q ∈ M(F) under which S is a
Q - martingale with respect to F.3

The restricted market is complete, hence there exists a unique Qs ∈ M(Fs) where
Q

s = Q |F s
T
such that St is a Qs martingale with respect to Fs , and

St = S0e
− 1

2 σ 2t+σ W̃t (6)

where W̃t = (
μ
σ
)t + Wt is a Brownian motion under Qs .

Assumptions 1–2 are satisfied by construction. Assuming assumption 3 holds, i.e.
εT = CT − E

P
(
CT

∣∣F s
T

)
is idiosyncratic risk, we have that the time 0 arbitrage-free

3 This precludes the information in F generating a NFLVR with trading in the stock S and mma.
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410 R. A. Jarrow

price of non-traded private debt is:

E
Q(CT ) = E

Qs
(
E
P

(
CT

∣∣F s
T

))

= E
Qs

(δλ(ST ) + (1 − λ(ST ))) .

The only randomness underlying this expectation is that due to the traded similar
equity’s price, ST . Given a functional form of λ, this is easily computed using a
normal distribution based on expression (6).

This example also applies to publicly traded debt that, although issued, is very
illiquid. As illustrated, it should be noted that this example is a simple case of the
models contained in the credit risk literature for the pricing of credit derivatives. The
only difference is that typically, in this literature (see Jarrow 2009), it is assumed that
the debt is traded and the original market is complete so that the EMM is uniquely
determined. Here, in contrast, we do not assume that the expanded market is complete
and we allow the risky debt and credit derivatives to be non-traded.

4.2 Insurance contracts

This section discusses the valuation of insurance contracts, the purpose of which is to
determine the arbitrage-free insurance premium (see Jarrow 2021a for a related dis-
cussion of arbitrage-free insurance premiums).We consider two cases, each increasing
in complexity. For both cases, for simplicity, we assume that the spot rate of interest
is zero, so the mma’s value is unity for all times.

Consider a term insurance contract on an event over the time period [0, T ], where
for the purposes of discussion, T is a short time horizon, e.g. 1 year. The contract
is repriced and repurchased again by the insured, if desired, at time T . The prime
example is a yearly term life insurance policy.

We assume that the insurance premium of p dollars is paid at time 0 to insure the
event over [0, T ]. If the event occurs over [0, T ], K dollars is paid at time T . The
payoff K could be a random variable.

Assume that it costs the insurance company c dollars to issue the insurance contract,
and that this cost is incurred at time 0 as well.

4.2.1 Independent event risk (life insurance)

We first consider a term life insurance contract. Here, the contract’s payoff K is a
constant, determined at the time the insurance contract is issued.

Let the insured event be denoted by the indicator variable ZT (ω) ∈ {0, 1}, which
is a FT measurable, binomial random variable with probability λ of {ZT = 1} under
P. The probability λ is the actuarial probability that the insured dies over [0, T ].

Let S be the market prices of the traded risky assets, and F the filtration generated
by St for all t ∈ [0, T ) and (ST , ZT ) at time T .

We assume that ZT is independent of market prices S under P. This is a reasonable
assumption for the death of an individual.

123



The no-arbitrage pricing of non-traded assets 411

Then, the cash flow to the insurance company from issuing such a policy at time T
is

CT (ω) =
{
p − c − K i f ZT (ω) = 1

p − c i f ZT (ω) = 0
(7)

This is the insurance premium received less costs incurred (p − c), less the payoff if
the insured dies (K ). Recall that interest rates are assumed to be zero.

We assume the original market consisting of the risky assets and the mma satisfies
NFLVR and ND, so that there exists a Q ∈ M(F) under which S is a Q - martingale
with respect to F.

Finally, we also assume that the restricted market is complete, hence there exists a
unique Qs ∈ M(Fs) where Qs = Q |F s

T
such that St is a Qs martingale with respect

to Fs .
Assumptions 1–2 are satisfied by construction. Assuming assumption 3 holds, i.e.

εT = CT −E
P

(
CT

∣∣F s
T

)
is idiosyncratic risk, then the arbitrage-free value of the life

insurance contract, using Corollary 4, is

E
Q(CT ) = E

P (CT ) = p − c − λK . (8)

Hence, the arbitrage-free insurance premium is that p such that EQ(CT ) = 0, i.e.

p = λK + c.

This is the actuarial value of the insurance contract’s payoff (λK ) plus costs (c).

4.2.2 Dependent event risk (car insurance)

Next, we consider a term car insurance contract. Here, the car insurance contract’s
payoff is the random variable K (ω) having a uniform distribution over [0, k] with
mean k

2 under P, where k corresponds to the value of the car at time 0 (another
non-traded asset). K represents the damage to the car in the event of an auto accident.

Trading is oil with a price process

St = S0e
μt− 1

2 σ 2t+σWt

where S0, μ, σ are strictly positive constants and Wt is a standard Brownian motion
with W0 = 0 under P.

Let the insured event be denoted by the indicator variable ZT (ω) ∈ {0, 1}, which is
aFT measurable, binomial random variable with probability λ(ST ) of {ZT = 1} under
P where λ(·) : R → [0,∞) is Borel measurable. Here, λ(ST ) is the probability of an
car accident, which is assumed to be a decreasing function of oil prices. The reason is
that as oil prices decrease, cars are driven more frequently, and the probability of an
accident increases.

We assume that ZT , K (the loss to the car in the event of an accident), and market
prices S are independent under P. This is a reasonable assumption because the car
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412 R. A. Jarrow

accident event itself and the damages resulting are independent of the price of oil,
due to random events surrounding the accident while driving of a car. Note that the
probability of the event, however, depends on the price of oil.

Then, the cash flow to the insurance company from issuing such a policy at time T
is

CT (ω) =
{
p − c − K (ω) i f ZT (ω) = 1

p − c i f ZT (ω) = 0
(9)

This is the insurance premium received less costs incurred (p − c), less the losses if
the accident occurs (K (ω)). Recall that interest rates are assumed to be zero.

F is the filtration generated by Wt for all t ∈ [0, T ) and (WT , K , ZT ) at time T .
We assume the original market satisfies NFLVR and ND, so that there exists a

Q ∈ M(F) under which S is a Q - martingale with respect to F.
The restricted market is complete, hence there exists a unique Qs ∈ M(Fs) where

Q
s = Q |F s

T
such that St is a Qs martingale with respect to Fs , and

St = S0e
− 1

2 σ 2t+σ W̃t (10)

where W̃t = (
μ
σ
)t + Wt is a Brownian motion under Qs .

Assumptions 1 - 2 are satisfied by construction. Assuming assumption 3 holds, i.e.
εT = CT −E

P
(
CT

∣∣F s
T

)
is idiosyncratic risk, then the arbitrage-free value of the car

insurance contract is

E
Q(CT ) = E

Qs
(
E
P

(
CT

∣∣F s
T

))

= p − c − k

2
E
P (λ(ST ))

where by the independence assumption E
P

(
CT

∣∣F s
T

) = E
P(K )λ(ST ) and by the

uniform distribution assumption E
P(K ) = k

2 . Hence, the arbitrage-free insurance
premium is that p such that EQ(CT ) = 0, i.e.

p = k

2
E
Qs

(λ(ST )) + c.

This is not the actuarial value of the insurance contract’s payoff ( k2λ) plus costs (c).
The reason is that the probability of a car accident has a systematic risk associated
with it. This is easily computed given the oil price process (10).

4.3 Private equity

The next example is to price non-traded private equity. Let a privately owned company
have outstanding equity. For simplicity, we assume that the spot rate of interest is zero,
so the mma’s value is unity for all times.
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Trading is equity for a similar company with price process

St = S0e
μt− 1

2 σ 2t+σWt

where S0, μ, σ are strictly positive constants and Wt is a standard Brownian motion
with W0 = 0 under P.

Let ZT (ω) be a FT measurable, normally distributed (0, 1) random variable under
P.

The cash flow to the private equity at time T is

CT = ST e
α(ST )− 1

2β(ST )2+β(ST )ZT

where α(·) : R → [0,∞) and β(·) : R → [0,∞) are Borel measurable. As stated,
the time T cash flow to the private equity is the cash flow to the similar company’s

equity ST modified by the random variable eα(ST )− 1
2β(ST )2+β(ST )ZT that depends on

ST .
F is the filtration generated by Wt for all t ∈ [0, T ) and (WT , ZT ) at time T .
We assume the original market satisfies NFLVR and ND, so that there exists a

Q ∈ M(F) under which S is a Q - martingale with respect to F.
The restricted market is complete, hence there exists a unique Qs ∈ M(Fs) where

Q
s = Q |F s

T
such that St is a Qs martingale with respect to Fs , and

St = S0e
− 1

2 σ 2t+σ W̃t (11)

where W̃t = (
μ
σ
)t + Wt is a Brownian motion under Qs .

Assumptions 1–2 are satisfied by construction. Assuming assumption 3 holds, i.e.
εT = CT − E

P
(
CT

∣∣F s
T

)
is idiosyncratic risk, we have that the time 0 arbitrage-free

price of non-traded private equity is:

E
Q(CT ) = E

Qs
(
E
P

(
CT

∣∣F s
T

))

= E
Qs

(
ST e

α(ST )
)

.

The only randomness underlying this expectation is that due to the traded similar
equity’s price, ST . Given functional form for (α), this is easily computed using a
normal distribution function based on expression (11).

4.4 Real estate

This section values a privately owned home, which trades in a very illiquid market.
Again, for simplicity, we assume that the spot rate of interest is zero, so the mma’s
value is unity for all times.
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Trading is a REIT (real estate investment trust) or a real estate based ETF (electronic
traded fund), a traded house index, with price process

St = S0e
μt− 1

2 σ 2t+σWt (12)

where S0, μ, σ are strictly positive constants and Wt is a standard Brownian motion
with W0 = 0 under P.

Let ZT (ω) be a FT measurable, normally distributed (0, 1) random variable under
P.

The cash flow to selling the house at time T is

CT = ST e
α(ST )− 1

2 η2+ηZT

where η is a strictly positive constant and α(·) : R → [0,∞) is Borel measurable.
F is the filtration generated by Wt for all t ∈ [0, T ) and (WT , ZT ) at time T .
We assume the original market satisfies NFLVR and ND, so that there exists a

Q ∈ M(F) under which S is a Q - martingale with respect to F.
The restricted market is complete, hence there exists a unique Qs ∈ M(Fs) where

Q
s = Q |F s

T
such that St is a Qs martingale with respect to Fs , and

St = S0e
− 1

2 σ 2t+σ W̃t (13)

where W̃t = (
μ
σ
)t + Wt is a Brownian motion under Qs .

Assumptions 1 - 2 are satisfied by construction. Assuming assumption 3 holds, i.e.
εT = CT − E

P
(
CT

∣∣F s
T

)
is idiosyncratic risk, we have that the time 0 arbitrage-free

price of the house is:

E
Q(CT ) = E

Qs
(
E
P

(
CT

∣∣F s
T

))

= E
Qs

(
ST e

α(ST )
)

.

Given expression (13), this expectation is easily computed.

4.5 Real options

The last example illustrates how to price non-traded real options. For a review of
the real option’s literature, see (Lambrecht 2017). For simplicity, we assume that the
spot rate of interest is zero, so the mma’s value is unity for all times. Consider an
oil company that is deciding whether or not to extract oil from a well at time T . The
market price of oil, a traded commodity, is given by

St = S0e
μt− 1

2 σ 2t+σWt

where S0, μ, σ are strictly positive constants and Wt is a standard Brownian motion
with W0 = 0 under P.
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Due to the oil extraction methods, after the taking into account impurities which
affect the price of oil received before refinement, the cash flow received from the
extracted oil at time T is

S∗
T = ST e

− 1
2 η2+ηZT

where ZT (ω) is a FT measurable, normally distributed (0, 1) random variable under
P and η > 0 is a constant.

F is the filtration generated by Wt for all t ∈ [0, T ) and (WT , ZT ) at time T .
The (real) option to extract oil at time T has payoff

CT = max
[
S∗
T − K , 0

] = max
[
ST e

− 1
2 η2+ηZT − K , 0

]

where K > 0 is the cost of the extraction.
We assume the original market satisfies NFLVR and ND, so that there exists a

Q ∈ M(F) under which S is a Q - martingale with respect to F.
The restricted market is complete, hence there exists a unique Qs ∈ M(Fs) where

Q
s = Q |F s

T
such that St is a Qs martingale with respect to Fs , and

St = S0e
− 1

2 σ 2t+σ W̃t (14)

where W̃t = (
μ
σ
)t+Wt is a Brownianmotion underQs . Assumptions 1 – 2 are satisfied

by construction.
Assuming assumption 3 holds, i.e. εT = CT − E

P
(
CT

∣∣F s
T

)
is idiosyncratic risk,

we have that the time 0 arbitrage-free price of option to extract is:

E
Q(CT ) = E

Qs
(
E
P

(
CT

∣∣F s
T

))

= E
Qs

(ST N (d1) − K N (d2))

where N (·) is the standard (0, 1) normal distribution function,

d1 := log(ST /K ) + 1
2η

2

η
, and d2 := d1 − η.

The only randomness remaining underlying this expectation is that due to the traded
oil price, ST . Given the functional form of N (·), this is easily computed using a normal
distribution function based on expression (14).

5 Conclusion

Using the arbitrage-free pricing methodology in a related complete market, this paper
shows how to price non-traded assets in an otherwise frictionless market. This is an
important application of the arbitrage-free pricing methodology because it applies to
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a wide range of assets in the economy, including private debt, illiquid publicly traded
debt, insurance contracts, private equity, real estate, and real options. Themethodology
can be applied without assuming a particular preference or objective function. Its
application only requires that the hedging error, properly defined, is non-priced. This
non-priced hedging error condition is a very reasonable approximation in current
markets given the plethora of traded securities.

Appendix: Diversifiable risk

The idea of diversifiable risk being non-priced is due toMerton (1976) andRoss (1976).
This section provides a set of sufficient conditions for the satisfaction of assumption
3 in a discrete time model.

First, partition the time interval [0, T ] into discrete time intervals of unit length
t = 0, 1, ..., T . All of the notation in the previous section applies. Consider the
admissible s.f.t.s. (α0, α) ∈ A (x,Fs) that generates C̃T with initial investment C̃0.
We assume that this trading strategy (α0, α) is constant over the subintervals. Then,
the value process can be written as

C̃0 = E
Q(C̃T ) = α0(0) + α0 · S0

with

C̃t+1 − C̃t = αt · (St+1 − St )

so that

C̃T = C̃i
0 +

T∑
t=0

αt · (St+1 − St ) .

Define Ct = C̃t + εt . Then,

Ct+1 − Ct = αt · (St+1 − St ) + (εt+1 − εt )

So, that

CT = C0 +
T∑
t=0

αt · (St+1 − St ) + (εT − ε0)

or,

CT = C̃0 +
T∑
t=0

αt · (St+1 − St ) + εT = C̃T + εT .
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To introduce the notion of diversifiable risk, we suppose that there exists an infinite
collection of such hedging errors (εit )i=1,...,∞ associated with the payoff C̃T for i =
1, ...,∞. These could be due to unique frictions faced by individuals or trading venues
or assets (e.g. different houses). We add the following assumption.

Assumption 4 (Diversifiable Risk)
(i) For every t = 0, 1, ..., T , εit+1 − εit given Ft are uniformly bounded and (cross

sectionally) independent and identically distributed under P for i = 1, ...,∞.
(ii) EP(εiT ) = 0.

Condition (i) of assumption 4 captures the cross sectional independence of the
hedging errors at any intermediate time t . Condition (ii) states that the unconditional
expected hedging error is zero, under the statistical probability P.

Define the conditional expected hedging error εit := E
P

(
εiT |Ft

)
with respect to

F. To prove the required result we consider the hedging error’s return over the time
interval [t, t + 1] for t ≥ 1, i.e.

εit+1 − εit

εit
.

Note that
EP

(
εit+1|Ft

)−εit

εit
:= μP

t because εit are identically distributed, and μP
t = 0

because εit is a P martingale with respect to F.
At t = 0, consider the return on the portfolio consisting of the hedging error plus

a dollar in the mma, i.e.

εi1 − εi0

εi0 + 1
.

To apply an existing theorem in the literature, first a collection of assets representing
the hedging errors needs to be constructed. For each i , this can be obtained by holding
the cash flows Ci

t and shorting C̃t for t ≥ 1. For t = 0 add a unit investment to this
trading strategy in the mma. Shorting C̃t is feasible because this wealth process can
be obtained using just the traded assets.

Then, applying (Jarrow 2021a), Theorem 5, the hedging error’s return under the
martingale measure Q is the same as that under the statistical probability P, i.e.

E
Q

(
εit+1 |Ft

) − εit

εit
= μP

t

for t ≥ 1 and
E
Q

(
εi1

) − εi0

εi0 + 1
= μP

0 .

The idea underlying the theorem’s proof is that the return to an equally weighted
portfolio of the payoffs εit+1 converges to the constantμ

P
t by the law of large numbers,
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which in the limit has no risk. Hence, the risk-adjustment for the individual hedging
error returns under Q is the same as that under P.

To complete the proof, note that because μP
t = 0 for all t , this implies

E
Q

(
εit+1 |Ft

)
− εit = 0

for all t . Therefore, EQ(εiT ) = εi0. But, εi0 = E
P(εiT ) = 0, by assumption 4 (ii).

Hence,

E
Q

(
Ci
T

)
= C̃0 = E

Qs
(C̃T ),

which completes the argument.
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