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Abstract
This work utilizes the fractional Black–Scholes model to estimate the option-implied
Hurst exponents, interpreted as forward-looking expectations of return persistence.
The focus of the paper is on how corresponding believes enter into factor based asset
pricing models. Empirical analyses are carried out for the cross-section of S&P 500
stocks. We make the important observations that (i) stock returns show significant
patterns of time-varyingpersistence and (ii) correspondingbelieves are reflectedwithin
option prices. Incorporating the Hurst exponents allows us to split up CAPM betas
into puremarket correlation risk (around 70–80%) and into excess persistence believes
(about 20–30%of the risk loading). A direct comparison to standard CAPMshows that
incorporating persistence believes significantly improves the predictability of future
realized returns, and partially releases the beta anomaly. The effects become even
stronger the greater the prediction horizon. Hence, the concept of fractal motions
enables a deeper understanding of risk structures without the need of additional risk
factors.
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1 Introduction

It is intuitive to speak of financial markets in terms of ’wild’ and ’mild’ randomness.
There are smooth times of recovery and harsh movements of crashes. The fractal
approach allows to quantify this behavior via long-range memory (Hurst exponent),
recognized as auto-correlation in returns. In this sense, trending price-movements are
understood as mild randomness, and highly overreacting ones as wild—a distinction
already made by Mandelbrot (1997). Empirical evidence for persistence patterns in
returns is broad [e.g., Peters (1989), Kristoufek and Vosvrda (2013)]. This fact rises
the important question whether expected—as opposed to historical—persistence has
an economic value or not.

Within this work we address this question from a factor-pricing perspective for the
cross-section of U.S. stocks. The analytical procedure is to start with the traditional
Capital Asset Pricing Model [CAPM; Sharpe (1964), Lintner (1965), Mossin (1966)]
and formulate its stochastic equivalent under classic Brownian motion (cBM). In the
next step, cBM is generalized to the more flexible fractal Brownian motion (fBM) to
allowstock returns to beoccasionally auto-correlated. It is thenpossible to reducedown
to a discrete version again, deriving the fractal CAPM. This routine demonstrates the
economic value attributed to expected return persistence without the need of inflating
the factor zoo. The fractal generalization can be easily extended tomulti-factormodels.
To the best of our knowledge, this work is first to discuss the value of expected long-
range memory for the cross-section of returns.

The empirical analysis using S&P 500 data confirms our theoretical presumptions,
concluding that persistence in stock returns is economically significant. Stock prices
do not only reject cBM at realized returns, but also at investor expectations, which are
measured from forward-looking data of option implied volatilities. In realized returns
wefind the interesting pattern that return persistencewas less before the financial crises
of 2007/2008, significantly increased during it and then decreased again afterwards.
Furthermore, we find that expected return persistence as well as the economic value
attributed to it varies largely among stocks. Generally, we can assert that the larger
the prediction horizon, the greater the economic value of return persistence. While
accounting for return persistence makes sense already for short investment horizons,
it is even more beneficial for long-term investments. Comparing prediction quality
of expected returns, the fractal CAPM clearly outperforms its cBM based rival. We
provide robustness tests for our empirical results by predicting individual stock returns
and risks, sorted portfolio analyses and statistical bootstrapping.

Our study extends the existing literature in three ways. First, our main contribution
is to demonstrate how fractal Brownian Motion can be introduced into an existing
factor-based asset pricing model. Second, we contribute by arguing that persistence
believes have an economic value in excess of the market risk premium. And third, our
results show that such an economic value empirically exists. Single stocks as well as
portfolios with superior ex-ante persistence are found to generate higher absolute and
risk-adjusted returns.

The reading is set up as follows. Section2 discusses the implementation of fractal
motions into factor-based models. Section3 explains the forward-looking measure-
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The value of expected return persistence 451

ment of expected return persistence. The empirical analysis is carried out at Sect. 4.
Section5 concludes.

2 Factor pricing under long-rangememory

The Capital Asset Pricing Model is one of the most prominent models in finance. It is
a discrete time model assuming that equity returns are drawn from a random normal
distribution with independent increments,1 thus implicitly builds on classic Brownian
motion. Basically, it states that every stock i’s expected return 〈ri 〉 is priced relative
to the market portfolio m,

〈ri 〉 = βi (〈rm〉 − r f ) + r f (2.1)

with r f as the risk-free rate of return and βi as the stock’s risk exposure determined
by the covariance to the market,

βi = cov(ri , rm)

Var(rm)
≡ cov(Ri , Rm)

Var(Rm)
. (2.2)

Ri , Rm are defined below.
Following (Safdari-Vaighani et al. 2020), the basic continuous-time CAPM is now

derived as follows. Start with the definition of the process for the market portfolio and
the stock,

dSm,t

Sm,t
= μm dt + σ̃m d X̃m,t = Rm and

dSi,t
Si,t

= μi dt + σ̃i d X̃i,t = Ri

(2.3)

which in excess of the risk free rate writes

Rm−r f dt=(μm−r f ) dt+σ̃m d X̃m,t and Ri−r f dt=(μi−r f ) dt+σ̃i d X̃i,t

(2.4)

Now, X̃i,t can be split up into systematic plus unsystematic risk X̃i,u,t . Introducing
orthogonality between X̃m,t and X̃i,u,t , the systematic part can be express relative
to the market through the beta coefficient of Eq. (2.2). Therefore, setting the excess
return of i relative to m, it follows that

Ri − r f dt = βi
(
Rm − r f dt

) + σ̃i d X̃i,u,t (2.5)

= βi (μm − r f ) dt + βi σ̃m d X̃m,t + σ̃i d X̃i,u,t (2.6)

1 Or at least it assumes that investors only care about the first two moments and that higher moments and
auto-correlation are of no economic value.
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452 W. Schadner, S. Lang

This can now be used in a discrete one-period manner. Consider the investor wants
to price i according to Eq. (2.6) for the period τ = dt ahead. Since expectations of a
standard Wiener process are known,

∀t : 〈d X̃m,t 〉 = 〈d X̃i,u,t 〉 = 0 and 〈dt〉 = t (2.7)

hence

〈Rm〉 = μm dt �⇒ 〈rm〉 = μm (2.8)

such that the stock’s expected return evolves as

〈Ri 〉 =
〈
dSi
Si

〉
= βi (μm − r f )τ + r f τ (2.9)

or in terms of return rates,

〈ri 〉 = βi (〈rm〉 − r f ) + r f (2.10)

which is the cBM continuous time equivalent to the original discrete CAPM, meeting
that β ≡ β̃.

We formulate the fractal CAPM as follows. Take Eq. (2.3) and replace d X̃m,t/d X̃i,t

through the fractal processes dXm,t/dXi,t ,

Rm = μm dt + σ̃m dXm,t and Ri = μi dt + σ̃i d Xi,t = Ri (2.11)

following the same procedure as above, one will derive

Ri = βi (μm − r f ) dt + βi σ̃m dXm,t + σ̃i d Xi,u,t (2.12)

By stationarity of fBM, we know that

∀t : 〈dXm,t 〉 = 〈dXi,u,t 〉 = 0 (2.13)

such that again Eq. (2.9) will evolve when taking expectations. The variance scaling
law of a univariat fractal motion was early discussed by Mandelbrot and Van Ness
(1968). As for the multi-variate case, analytical results are presented by Amblard et al.
(2012). Using these insights, the difference between classic and fractal CAPM arises
from the power-law scaling effects,

cov(Ri , Rm) = σ̃i σ̃mρimτ Hi+Hm and Var(Rm) = σ̃ 2
mτ 2Hm (2.14)

in whose context the beta coefficient has now a deeper risk structure,

βi = cov(Ri , Rm)

Var(Rm)2
= ρim

σ̃i

σ̃m
τ Hi−Hm (2.15)
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The value of expected return persistence 453

Fig. 1 Illustration of expected returns 〈μi 〉 under fractal CAPM, using r f = 1%, 〈μm 〉 = 5%, Hm = 0.6
and τ = 30. Different to the classic setting, given fractality there exist two risk sources: correlation risk
β̃ and persistence risk �H . Left plot displays the relation of 〈μi 〉 to β̃ for three levels of �H . Right plot
visualizes the relation of 〈μi 〉 to �H for three levels of β̃. In classic CAPM �H would equal 0, indicated
as the dashed blue lines in both plots (cBM). As can be seen, classic CAPM will underestimate expected
returns if �H > 0 and overestimate them if �H < 0; due to exponential inter-temporal variance scaling,
this effect is not symmetric in �H

hence given fractal markets, β �≡ β̃ rejects classic CAPM to fully describe all risk.
Let �H := Hi − Hm , then it gets obvious that the the stock’s risk exposure composes
of the cBM risk loading β̃ (i.e., correlation risk to the market portfolio) corrected for
persistence expectations in excess of the market,

βi = β̃i︸︷︷︸
corr.
risk

τ�H
︸︷︷︸
pers.
risk

(2.16)

This enables to formulate the expected return within fractal CAPM as follows:

〈ri 〉 = β̃i (〈rm〉 − r f )τ
�H + r f (2.17)

Therefore, given fractal markets, investors do not only require compensation for
correlation, but also for persistence risk. From this follows that a stock’s expected
persistence has an economic value attributed to it (positive or negative) as soon as
�H �= 0. Figure 1 below illustrates fractal CAPM and the value of excess persistence
graphically.

The first derivative of β with respect to τ seems to uncover some economically
interesting relation, that is

∂βi

∂τ
= �H β̃iτ

�H−1 �⇒ ∂〈ri 〉
∂τ

= �H β̃iτ
�H−1(〈rm〉 − r f ) (2.18)

so ceteris paribus, if Hi > Hm , then it is implicitly given that a stock’s expected return
rate is believed to increase over the future. Vice versa, for Hi < Hm , ri is believed
to decline.2 We interpret this phenomenon in the following sense. Consider that H is

2 A graphical illustration of the relation between the expected return and τ can be found in the Appendix.
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a determinant of auto-correlation; if investors expect positive auto-correlation for i ,
then this coerces with a shift in beta which results in an increase in expected return. On
the other hand, empirical finance literature frequently refers auto-correlation within
realized equity returns to stock momentum. Henceforth, we refer expected values of
H to expected momentum:

Hi > Hm : pos. auto-corr. �⇒ pos. beta shift �⇒ pos. momentum believes

Hi < Hm : neg. auto-corr. �⇒ neg. beta shift �⇒ neg. momentum believes

Hi = Hm : no. auto-corr. �⇒ no. beta shift �⇒ no. momentum believes

Respectively, expected stock momentum can be quantified if one is able to evaluate
H on an ex-ante basis. And further, it is shown that classic CAPM delivers biased
estimates as soon as Hi �= Hm , which we find within the empirical analysis. Fractal
CAPM thus allows to correct expected returns for�H . But also for ex-post analyzes, it
delivers deeper insights into risk structures that would remain hidden under cBMbased
models. Also, in a fractal market one observes that the expected rate of return is depen-
dent on the horizon τ ; the larger τ , the greater the effect of persistence. As mentioned
before, in the context of inter-temporal variance scaling effects, Eq. (2.17) now further
highlights how cBM’s over/underestimation of risk results in an over/underestimation
of expected returns, which fosters the importance of fractal CAPM in terms of asset
pricing.

Worth to mention, the one-factor fractal CAPM can be easily extended to include
multiple factors [e.g., Carhart (1997) or Fama and French (2015)]. Equation (2.14)
comes very handy for such a generalization. Consider one extends basic CAPM by k
risk factors, then

〈ri 〉 − r f =
⎛

⎜
⎝

βi,m
...

βi,k

⎞

⎟
⎠

′

·
⎛

⎜
⎝

μm − r f
...

μk − r f

⎞

⎟
⎠ =

⎡

⎢
⎣

⎛

⎜
⎝

β̃i,m
...

β̃i,k

⎞

⎟
⎠ ⊗

⎛

⎜
⎝

τ Hi−Hm

...

τ Hi−Hk

⎞

⎟
⎠

⎤

⎥
⎦

′

·
⎛

⎜
⎝

μm − r f
...

μk − r f

⎞

⎟
⎠

(2.19)

Also, theHurst exponent of a portfolio can be computed as follows. Let p denote the
portfoliowhich’s constituents i areweighted according towp and∀i ∈ p : ∑

wi = 1,
then

Var(Rp) = σ̃ 2
pτ

2Hp = σ 2
pτ (2.20)

Hp = 0.5 + ln(σp) − ln(σ̃p)

ln(τ )
(2.21)

where

σ̃ 2
p = w′

p�̃wp and σ 2
p = w′

pT �̃T wp, �̃ = D̃	 D̃ (2.22)
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with T capturing individual H ’s as a diagonal matrix that takes the form

diag(T ) = (
τ H1−0.5 · · · τ Hn−0.5

)
(2.23)

and D̃ as a diagonal matrix of stock volatilities (∀i : D̃ii = σ̃i ) and 	 as the cross-
sectional correlation matrix.

3 Measuring expected persistence

Black and Scholes (1973) were pioneers to develop the first continuous time arbitrage
free market model. Consider a financial market of a risk-free asset A and some risky
asset S, d At = r f At dt and dSt = μSt dt + σ̂ Std X̃ . Under the assumption that the
risky asset S will follow a classic BM (i.e., assuming that σ̂ = σ̃ ), they derived the
closed form solution for a Call option’s price:

C(St , K , τ, r f , σ̂ ) = Stφ(d̂1) − K−r f τ φ(d̂2) (3.1)

with

d̂1 =
ln

(
St
K

)
+ r f τ + 1

2 σ̂
2τ

σ̂
√

τ
and d̂2 = d̂1 − σ̂

√
τ (3.2)

where φ denotes the standard normal pdf, C the Call price and K the strike price.
Since all parameters except σ̂ within this equation can be observed from market data,
it can be iteratively solved for it, which is commonly known as implied (Black–
Scholes) volatility. For some given t , σ̂ can thus be computed for different strikes and
maturities, which spans the three dimensional implied volatility surface. This implied
volatility surface would be theoretically flat if all assumptions made in the (Black and
Scholes 1973) model would be fulfilled. Empirically, however, this is hardly the case.
For the fractal generalization the term-structure of implied volatilities (σ̂ vs. τ ) is of
special interest, Fig. 2 visualizes a corresponding example.

Note that the ATM implied volatility curve reflects (risk-neutral) expected risk of
the underlying, as by this 100% moneyness level Put and Call prices are (almost)
symmetric. Key within the Black–Scholes market model is that the underlying series
is a stationary process with deterministic volatility, hence every price process (taken
under the physical Pmeasure) can be transformed into a risk-neutral valuation process
(Q-measured) via the Girsanov theorem in order to incorporate investor preferences (=
risk premium).3 Nevertheless, as several assumptions are notmet empirically, different
approaches exist to release them in order to estimate more realistic option prices.
Among other, one of such approaches is to generalize cBM to fBM.

3 i.e., a cBM taken under P can be transformed into any other measure changing the drift term only
and keeping the diffusion term unaffected. A probability measure is understood as the set of probability
distributions of all time increments.
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Fig. 2 Annualized empirical Black–Scholes implied volatility surface of ATM options of the S&P500
observed on two different dates (30/09/2008 and 29/09/2017). In the standard Black–Scholes model this
would be flat, which empirically hardly holds. The problem arises that there is no unique value for the
expected volatility such that the true expected risk σ̃ of a classic BM will be unknown. From that follows,
that certain assumptions made within the model. This motivates to generalize to the more flexible fractal
BM

Elliott and Van Der Hoek (2003) and Hu and Øksendal (2003) are first to extend
the Black and Scholes (1973) market model in order to allow the risky asset to be
driven by a fBM. The setting is similar, except that the risky asset is now driven by a
fBM: dSt = μSt dt + σ̃ St dXt . The arbitrage-free proof of Hu and Øksendal (2003)
also builds on the Girsanov theorem, which comes handy since fBM is also stationary.
Hence, the P to Q transformation is also done via the drift term (i.e., changing μ to
r f for valuation purposes) such that the price of a fractal Black–Scholes option looks
familiar:

C(St , K , τ, r f , σ, H) = Stφ(d1) − K−r f τ φ(d2) (3.3)

with

d1 =
ln

(
St
K

)
+ r f τ + 1

2 σ̃
2τ 2H

σ̃ τ H
and d2 = d1 − σ̃ τ H . (3.4)

Different to standard Black–Scholes, in the fractal version one faces two unknown
parameters, that is σ̃ and H . Since for one underlying there are typically substan-
tially more than one options available, they can be easily estimated by either fitting
Eq. (3.3) to Call prices, or in a two-step procedure. The latter is implemented as
follows. Consider we are only interested into ATM options that replicate the underly-
ing and let σ̂ (τ ) be the Black–Scholes point estimate of implied volatility (Eq. 3.1),
which, when interpreted as cBM volatility, will be biased with respect to return
persistence (see e.g., Eq. 2.20). Note that Var(dS/S) ≡ σ̂ 2(τ )τ either way but
Var(dS/S) �= σ̃ 2(τ )τ |H �= 0.5 contradicts σ̂ representing cBM volatility. Thus,
with respect to the variance scaling effect from before, Black–Scholes implied volatil-
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Fig. 3 Logarithmic representation of Fig. 2. Applying OLS regression (Eq. 3.6) delivers a good fit of the
actual ATM implied volatility surface, which allows to decompose believes into the base level of cBM
volatility (σ̃ ) and the correction for expected persistence (H ). A high fit is verified by R2 of 0.987 (2008-
10-01) and 0.997 (2018-10-01). H > 0.5 indicates ∂σ̂ (τ )/∂τ > 0 and thus increasing risk expectations
over τ (2018-10-01). Vice versa, risk expected to decline in the long run comes with H < 0.5 (2008-10-01)

ities actually consist of true cBM volatility and persistence believes,

σ̂ (τ ) = σ̃ τ
H− 1

2 (3.5)

When taking logarithms and computing σ̂ (τ ) for at least two levels of τ , implied H
and σ̃ can be estimated by OLS regression:

ŷ = α̂ + β̂x + ε : ln(σ̂ (τ ))︸ ︷︷ ︸
ŷ

= ln(σ̃ )︸ ︷︷ ︸
α̂

+ (H − 1
2 )︸ ︷︷ ︸

β̂

ln(τ )︸ ︷︷ ︸
x

,
σ̃ = exp(α̂)

H = β̂ + 0.5
(3.6)

Back to the example of the S&P500, Fig. 3 displays the log σ̂ curve with fitted lines
according to Eq. (3.6). There we observe that the two-step procedure indeed delivers
a proper fit, which supports the fractal decomposition.

Applying the decomposition upon option data henceforth allows to quantify ex-ante
investor expectations of the two risk sources in fractal CAPM.

4 Empirical analysis

The empirical part focuses on three questions, (i) do financial markets show patterns of
(anti-)persistent returns, (ii) are persistence expectations observable and (iii) how do
such believes relate to future realized return/risk? All three questions together should
answer whether expected return persistence has an economic value empirically. The
study presented here focuses on the cross-section of the S&P500. All data is derived
from Bloomberg L.P. and Thomson Reuters Datastream. Daily return (12/2004 to
09/2018) and monthly option data (12/2007 to 09/2018) is used. For options we have
less data available, which is why this data set is smaller. All options used are at-the-
money to best replicate the underlying. Analyzes are run for three different target
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Table 1 Summary statistics of
cross-sectional realized R/S
Hurst exponents for three
sub-samples and the entire
samples: (a) 12/2004 to 06/2007,
(b) 07/2007-07/2009, (c)
08/2009-09/2018

Financial crises Overall

Before During After

Estimates of realized H

Min 0.248 0.397 0.408 0.408

Mean 0.540 0.562 0.530 0.541

Max 0.926 0.904 0.743 0.743

SD 0.049 0.058 0.038 0.038

H estimates seem to be higher during crises then outside

maturities, that is 30, 90 and 180 days ahead. The cross-section is extended such that
the analysis corrects for stocks which left or joined the S&P500 during the observation
period.

4.1 Persistence patterns of empirically realized returns

Persistence analyzes of realized returns have been already carried out in various other
studies [e.g., Peters (1989, 1991, 1994) or Granger and Ding (1995)]. In terms of
completeness, however, this topic is also briefly addressed within this work. Since the
data set covers a major economic event—the financial crisis of 2008—we believe it is
interesting to also analyze time split sub-samples of the original data set. Henceforth,
the sub-samples are separated into (a) a pre-crisis set (12/2004 to 06/2007), (b) a crisis
set (07/2007 to 07/2009) and (c) a post-crisis set (08/2009 to 09/2018). Due to data
availabilitywe are able to start the analysis conducted here earlier than the option based
analysis below. To grasp an idea about long-term memory within realized returns, we
set up a rescaled range analysis (R/S analysis; Hurst (1956)) to compute empirical
Hurst exponents. Details about the method can be found at the appendix.

The realized return persistence is now estimated for every stock and (sub-)sample.
For the S&P500 index itself, the realized Hurst exponents for the three samples are
found to be highly significant with values of 0.507 (a), 0.570 (b), 0.501 (c) and t-
statistics of 4.38, 2.29, 2.02. The summarized picture of the cross-section looks similar,
Table 1 displays the corresponding estimates which are visualized in Fig. 4.

If, and only if, all H ’s are 0.5, then the financial market is perfectly described
by cBM (in terms of fractals). Hence, in case average H ’s are different from 0.5, or
standard deviation in H distinguishes from 0, then fBMmay be more appropriate than
cBM. Therefore, to examine whether the equity market is better described by a cBM
or by a fBM, we test whether H ’s are significantly different from 0.5. Respectively,
a one-sample t-tests for all three (sub-)samples is conducted with the null hypothesis
H0: H = 0.5 and the alternative hypothesis H1: H �= 0.5. Further, from Fig. 4 and
Table 1 it seems that persistence during (b) is greater than in (a) or (c), which could
be interpreted as return persistence increases during crisis times (“if we fall, we will
fall together”) and is less during normal times. This hypothesis is tested by two two-
sample t-test. The first one is “The Hurst measure is smaller during the financial crisis
than before the financial crisis (H0: H(b) ≤ H(a), H1: H(b) > H(a))” and analogously
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Fig. 4 Distribution of cross-section’s realized H for three samples: a before, b during and c after the
financial crisis of 2008. This picture shows that persistence in returns seems to inflate during crises times.
In terms of risk management, this would mean that long-only investors suffer more as the market down turn
is characterized by positively auto-correlated stock returns

Table 2 Summary of t-tests to evaluate whether the equity market is driven by cBM or fBM

Hypothesis Different from cBM Crises vs. normal

H(a) �= 0.5 H(b) �= 0.5 H(c) �= 0.5 H �= 0.5 H(a) < H(b) H(c) < H(b)

Excess mean 0.040 0.062 0.030 0.041 0.022 0.035

SD 0.049 0.058 0.038 0.038 0.077 0.061

t-val 22.80 29.78 23.93 32.59 8.34 13.00

The subscripts (a), (b), (c) indicate the sub-samples pre-, during- and post-crisis of 2008. In the entire as
well as every sub-sample the cross-section’s H parameters are significantly different from 0.5 with large
t-statistics. Therefore, we are able to reject the cBM assumption and can switch to the more general fBM
one. Also, standard deviations indicate that H ’s distribute over the interval and do not stick to the 0.5 level,
as would be required by cBM. When comparing the crises to the two normal-times samples, the crises
sample seems to be significantly larger. This is interpreted as persistence in equity returns increases during
such adverse events

the second one is “The Hurst measure is smaller during the financial crisis than after
the financial crisis (H0: H(b) ≤ H(c), H1: H(b) > H(c))”. Hence, in sum six t-tests
were conducted, which are summarized in Table 2.

All three sub- and the entire sample indicate that empirical H ’s are significantly
different from 0.5 with very high t-statistics. Hence, we are able to reject the cBM
assumption for S&P500 stocks and generalize to fBM. One also recognizes that the
mean H in excess of 0.5 is larger (and of higher standard deviation) for the crises
sample. The corresponding two-sample t-tests indicate that persistence is indeed sig-
nificantly greater during the crises time than before or afterwards, from which follows
that long-only investors faced additional risk.4 Further, also the standard deviation of
empirical H ’s increased during the crises. So it seems that normal times are a bit closer
to follow strict cBM while fractality is stronger pronounced during adverse times.

4 By Eq. (2.17), if μm − r f < 0 and �H > 0 then stock returns trend at negativity, which is an adverse
scenario for long-only investors.
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Fig. 5 Expected persistence: summary of cross-sectional implied Hurst exponents from option data. Left
plot shows the histogram of monthly and cross-sectional H ’s, right plot the summary of cross-sectional
time series. Under the assumption of classic Brownian motion, all values should equal 0.5 and standard
deviation in H should be 0. However, we find that H distributes widely. Hence, the cBM assumption is
rejected for investor expectations. The mean ex-ante H is 0.52

4.2 Expected persistence

This work emphasizes the forward-looking measurement of investor expectations.
A consistent comparison between realized returns and expect risk requires the latter
to be evaluated under the physical P probability measure. Option-implied volatilities,
however, are bydefinition risk-neutral (Q-measured). For this purposewe incorporate a
time-varying variance risk premium to transformour input data fromQ- toP-measured
expectations. The detailed procedure is described in the appendix.

According to Eq. (3.6) the impliedHurst exponent is computed fromP-expectations
for every stock and month of the cross-sectional data set as well as for the S&P500
index per se. Note that before H ’s were computed ex-post from realized data; the
focus turns now towards the ex-ante setting. The estimated cross-sectional implied
H ’s range from 0.013 to 0.987 with a mean of 0.520 and a median of 0.523. Given
median and mean do not deviate strongly, the distribution of H is approximately
symmetric. Therefore, we apply an one-sample t-test to investigate whether H is sig-
nificantly different from 0.5 also within the forward looking data. The corresponding
t-test delivered a very narrow 95% confidence interval of [0.520, 0.521] at a t-statistic
equal to 80.5. Hence, we interpret that investor expectations for return persistence are
significantly different from random walk, such that there are indeed believes for long-
term memory. From this follows that expectations on the equity market rather fulfill
fBM than cBM characteristics. Figure 5 visualizes summaries of the cross-sectional
implied H estimates. The graphical interpretation further fosters the presumption of
fractals in investor believes, since H ’s are broadly scattered over the allowed interval
and do not strictly stick to the precise 0.5 level.

Since empirically not only realized returns, but also investor expectations reflect
patterns of persistence and anti-persistence, this clearly motivates to investigate the
economic value of such. Therefore, the promoted CAPM is used as reference model:
Expected stock returns are once evaluated under cBM risk exposures and once under
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fBM ones. The difference in expected returns between the two predictions then indi-
cates the ex-ante value attributed to expected return persistence. If at the same time
prediction quality increases, then expected persistence has an empirical economic
value.

4.3 Expected betas, prediction quality, and the value of impliedH

While previously it is theoretically argued that expected return persistence should have
an economic value, themain purpose of the empirical analysis is to investigate whether
it can be verified upon real world data. Therefore, we analyze how cBM and fBM
betas differ, decompose risk loadings into correlation and persistence contributions,
and investigate which are better in predicting future realized returns.

Computation of market betas requires knowledge about the expected correlation
matrix, which is computed following the approach of Skintzi and Refenes (2005).
The advantage of this method is that it is purely ex-ante; it finds its application by the
ChicagoBoardOf Exchange (CBOE impliedCorrelation Index) and can be interpreted
as the current view of future stock market diversification [cp. Skintzi and Refenes
(2005)]. Driessen et al. (2013) empirically proof that the implied equi-correlation
model has significant predictive power. Asmentioned in Schadner (2021), for amarket
of n stocks that are weighted according to w to form the market portfolio m, D the
n × n diagonal matrix of cross-sectional implied volatilities, 	 the correlation matrix,
E the identity matrix and 1 the n × n matrix of ones, computation of the implied
equi-correlation matrix can be conducted by

σ 2
m = w′D	Dw ≡ w′D	̄Dw where 	̄ = ρ̄(1 − E) + E (4.1)

�⇒ ρ̄ = σ 2
m − w′D2w

w′D(1 − E)Dw
(4.2)

Dependent on which volatilities to use within D, one has to make sure that corre-
lations/volatilities are correctly scaled with respect to Sect. 2. Consistent with the
proposed framework, we use Dii = σ̃iτ

Hi−0.5, ∀i ∈ {1, ..., n}. The n × 1 correlation
vector ¯̄ρm between single stocks and the market portfolio can now be computed by

¯̄ρm = 1

σm
	̄Dw (4.3)

and recap Eq. (2.15), the cross-sectional risk exposure in vector notation is written as

β = 1

σ̃m
¯̄ρm D̃T (4.4)

Summary statistics of expected beta estimates are discussed below.
With point estimates of expected CAPM betas one may be interested into pre-

dictability. The prediction quality is evaluated upon three approaches: first, on an
individual stock basis. Second, upon sorted portfolios and third, through statistical
bootstrapping. In the context of CAPM we believe return predictability is of main
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interest rather than risk exposure solely. In the subsequent, residuals εi,t are defined
as expected values minus realized ones,

ε(r)i,t = 〈ri,t 〉 − �ri,t and ε(β)i,t = 〈βi,t 〉 − �βi,t (4.5)

Prediction quality is now evaluated whether ε’s are centered around zero and by the
goodness of fit R2. Following, if it evolves that fractal CAPM efficiently improves
prediction quality of future realized returns, then expected return persistence is of
considerable value.

Technically, estimates for the expected market risk premium 〈μm〉 are required,
which is an own field of research.5 Given the aim of the paper is to analyze the
value of risk structures with respect to fractality, predicting the market return may be
misleading as it blurs the picture, which we want to analyze in isolation. Hence, to not
further inflate model uncertainty, we simplify by setting 〈μm〉 = �μm .
Individual Stocks Following the described procedure, for every month and every stock
within the S&P500 we compute the fractal 〈βi,t 〉, the classic BM 〈β̃i,t 〉 as well as the
future realized �βi,t . Given around 500 stocks for each of the 130 months, this makes
about 65,000 beta estimates for each of the three measures, times the three different
horizons (1, 3 and 6 months) we derive at around 585,000 beta estimates in total.
Table 3 delivers insights into those ex-ante risk estimates and their prediction residu-
als (Eq. 4.5). Comparing the expected risk estimates, 〈β〉’s seem to be more similar
distributed to �β’s than 〈β̃〉’s are since arithmetic averages and standard deviations are
more identical. We find that cBM betas are thoroughly higher than the persistence
adjusted ones, and that the difference in mean expected betas is less for the short hori-
zon but increases the greater the time-to-maturity (i.e., from 0.41 to 0.70). Also, 〈β̃〉’s
vary over a way larger interval than 〈β〉’s do. The average error between 〈β〉 and �β
seems to be constant over τ at 0.05, hence there is a slight overestimation. However,
cBM beta’s residuals overshoot future realizations by large, on average between 0.47
and 0.74. Hence interpreting the beta residuals it gets visible that the use of cBM
betas seems to cause a considerable overestimation of future risk. Especially the very
high maxima of 〈β̃〉 seem to be very misleading for practical usage. Notably, by con-
struction all ex-ante betas are positive, while realized ones also allow for negative
values.

The minor disparity in fBM and cBM betas for the short horizon yields into similar
return predictions for τ = 30, as both average return residuals are close to zero
(0.00/0.01), have almost equal standard deviations (0.07/0.08) and appear at similar
intervals. Nevertheless, already at the short return prediction horizon R2’s distinguish
remarkably at values of 0.27 in fBM versus 0.17 in cBM. At cBM beta residuals
we observe that predictions become more biased the greater τ , which causes mean
return residuals to overestimate more the larger the horizon (0.01 at τ = 30 vs. 0.05
at τ = 180) while the goodness of fit simultaneously declines from 0.17 to 0.14.
Following, it seems natural that standard deviations in return residuals grows larger at
cBM predictions than under fBM. Hence, with respect to an increasing horizon, cBM
loses prediction precision faster than fBM does.

5 See e.g., Merton, (1980) or Scott Mayfield (2004).
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From those patterns on a single stock basis we conclude, that incorporating persis-
tence risk to correlation risk effectively lifts prediction quality. Given the support that
fractal CAPM better predicts future realizations than cBM CAPM, the presumption
of expected return persistence having economic value finds support. Quantifying the
value of H within CAPM, we compute the H -contribution as %H = 〈β〉/〈β̃〉 − 1
which is interpreted as by how much excess return predictions are different using
cBM or fBM. A histogram of the corresponding values can be found in the Appendix.
Here we find that %H is not only significantly different from zero (t-val.=−225.8 for
τ = 30), but also that it is mainly negative. This allows to draw four conclusions.
First, expected return persistence does have an economic value. Second, on average,
only 80% of a stock’s market risk exposure is actually attributable to the correlation to
the market portfolio, while another 20% come from the side of fractality (in the case
of τ = 30). Also, this H -contribution can vary largely across stocks. Third, the H -
contribution increases the greater the horizon, thus the economic value of persistence
is even greater for long-run predictions. And fourth, H -contribution is thoroughly
negative, meaning that predictions from cBMCAPMwill overestimate future returns.
From this conclusions it is not surprising that fractal CAPM delivers substantial bet-
ter prediction quality than its classic counterpart, which is reflected at closer to zero
residuals with lower standard deviation and enhanced R2’s.

Given Eq. (2.16) one can take logs to write the linear decomposition of fractal beta,
that is

ln(β) = ln(β̃) + �H ln(τ ) (4.6)

In a market where one could efficiently price assets with CAPM and the cBM assump-
tion, risk exposure and persistence believes should be independent,

iff cBM&CAPM holds : ln(β̃) ⊥ �H (4.7)

Economically, this statement requires the absence of a beta anomaly, that is, a signif-
icant mispricing bias which is proportional to an asset’s beta. The reason why this is
the case evolves from Eq. (2.16): if cBM is unbiased with respect to H , then β̃’s are
identical with true betas and thus, if CAPM fully captures expected risk that will be
compensated, Eq. (2.1) will provide unbiased estimates of expected returns. There-
fore, validity of cBM and CAPM at the same time implies absence of a beta anomaly,
which in turn implies Eq. (4.7) to hold. If Eq. (4.7) is empirically rejected, then either
the assumptions of CAPM are not fulfilled (i.e., further risk sources exist) or cBM is
not met,

iff cBM&CAPM hold �⇒ absence of beta anomaly �⇒ ln(β̃) ⊥ �H

hence both cannot exist next to each other as soon as ln(β̃) �⊥ �H . Note that this
condition also applies for multi-factor models like (Fama and French 2015). Given this
economically interesting question, we analyze the relation between the two parameters
for the τ = 30 ex-ante data. The output is visualized in Fig. 6 below.
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Fig. 6 Decomposing risk: log betas vs. H, both computed ex-ante with τ = 30. Left plot shows cBM
betas, right plot fBM ones and blue dashed lines indicate linear fits. If cBM and CAPM were valid at
the same time, then log cBM betas should be independent of �H . This is not the case within empirical
data, hence we can reject either one of the two assumptions. The two variables evolve to show a strong
negative linear relation, which means that β̃’s will significantly overestimate future realized returns when
used within CAPM—better known as beta anomaly. When generalizing to fBM, one still observes such a
negative relation, however, the link looks way weaker and the slope is essentially flatter. Thus, expected
return persistence explains parts of the beta anomaly in CAPM notations

What we observe is that there is a significant negative linear relation between �H
and ln β̃ with a correlation of −0.761.6 This means that using cBM betas together
with CAPM (Eq. 2.1) will cause substantial overestimations of future returns the
larger a stock’s β̃. Hence, while by %H in Table 3 one did not only observe that β̃

overestimates returns on average, now we also see that there is a systematic behind it.
With cBM betas one would thus interpret existence of a beta anomaly. However, when
generalizing the risk exposure by incorporating persistence believes, large portions of
the correlations are removed down from −0.761 to −0.264 (cp. right panel Fig. 6).
Hence, non-surprisingly, in Table 3 it is observed that 〈β̃〉 ’s overestimate �β notably
more than 〈β〉’s. Therefore, already from this brief analysis we are able to claim
that return persistence can partially resolve the beta anomaly. But, since still some
correlation remains, we also know that the fractal CAPM cannot explain it completely.
The picture of the beta anomaly and how fBM partially resolves it gets more clear
with a look on beta sorted portfolios within the next section. Anyway, from the single
stock analysis we find first support that expected return persistence indeed has notable
economic value.

Sorted Portfolios Similar to before, the analysis conducted here compares time-
conditional predictions with future realizations. Due to the diversification effect it
is obvious that CAPM’s goodness of fit is significantly greater for portfolios than for
single firms. Hence, it is useful to evaluate CAPM prediction quality on portfolios.
For this purpose we form portfolios based on two sorting criteria, which we believe to
be of interest, that is β̃ and H . There exists broad literature that documents significant
mispricing with respect to market beta [e.g., Schneider et al. (2020)] and the potential
of a beta anomaly was also discussed before. Therefore, we briefly investigate this

6 The linearly fitted line comes with a slope of−0.131 and a t-value of−293.5, # of observations is 65,000.
This slope coefficient is reduced to −0.068 (t-val. −68.5) when generalizing to fBM.
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topic using ex-ante cBM betas. Furthermore, since stock momentum [e.g., Carhart
(1997)] is also considered to contradict CAPM’s predictions, we also sort on expected
H as a proxy for believed auto-correlation. Technically, sorting criteria are clustered
into percentiles to generate ten daily return series of monthly re-balanced portfolios;
P1 is the portfolio of the lowest criteria’s percentile and P10 of the highest. The focus
is set upon the τ = 30 ex-ante data, Table 4 delivers the corresponding results of β̃

and H sorted portfolios.
While realized standard deviations are increasing form P1 to P10 at the cBM beta

sorted portfolios, mean realized returns are not. Thus, it is not surprising that Sharpe
ratios are decreasing the higher the portfolio’s β̃. This outcome supports existence of a
beta anomaly. Havingmentioned this, we observe that cBMprediction errors of returns
are moderate for low to mid beta portfolios, but get substantially large for the high
beta ones, which results in weaker R2 within P9-P10. As can be seen in mean 〈β〉− �β,
this mispricing is largely attributable to the fact that expected cBM betas overestimate
future realized returns the greater β̃. When switching from cBM to fBM betas, this
beta-dependent pricing error is still observable (e.g., by increasing residual means or
standard deviations), however, it is substantially less for such. With an focus on P10,
R2 improves from 0.24 to 0.79 when accounting in a stock’s H , hence much of the
anomaly within large beta portfolios can be reduced by generalizing cBM to the more
flexible fBM. Still, as mean residuals are increasing also under fBM, the beta anomaly
cannot be completely explained by the fractal approach. Since fBM assumes normally
distributed returns, another potential risk source an ex-ante distribution showing heavy
tails.7 Economically, fat tails on the left side of the probability distribution pushes a
firm’s credit risk [cp. Schneider et al. (2020)], thus modeling a fractal process from
non-normal probability distributions may further explain the beta related mispricing.

From the observation in Fig. 6 (and the corresponding presumption derived) it is
obvious that the H sorted portfolios will show the reverse pattern of the β̃-sorted ones:
the larger H , the greater the portfolio’s absolute as well as risk adjusted performance.
This clearly demonstrates that there is an economic value associated to implied H .
The increasing mean return from P1 to P10 confirms the way the fractal CAPMmodel
(Eq. 2.17) is defined. Nonetheless, return residuals still seem to relate to the sorting
criteria which also here possibly finds its source in a beta anomaly, as mean ε(β) also
show such a dependence. But again, we find that this relation between return residuals
and sorting criteria is almost half in the fBM than under the cBM predictions. Also
here, cBM R2’s get worse for the adverse portfolios (low H ).

Hence, while previously suggested that H has economic value on a single stock
basis, we further observe that it is not diversified away within portfolios. Actually, on
the sorted portfolios the value of H is even stronger visible. Since sorting on some
specific criteria may induce a bias with respect to the criteria chosen, we run a third
test to confirm robustness.

Statistical Bootstrap The third method to evaluate the validity of fractal CAPM builds
on statistical bootstrapping. Different to portfolio sorts above, at the bootstrapping
approach stocks are chosen randomly. This removes any systematic bias related to the
choice of the sorting criteria. Further, this also allows to generate a substantially higher

7 Actually, this is widely documented, e.g. Bali et al. (2019).
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The value of expected return persistence 469

number of portfolioswhich in turn providesmore predictions thatwe can comparewith
realizations. The technical procedure is as follows, for each τ ∈ {30, 90, 180} we use
a loop algorithm to create 1000 portfolios. The loop pass starts by randomly selecting
50 stocks out of the cross-section that are weighted relative to each other according
to wp to form a portfolio. Since the data covers stocks that file bankruptcy during
the observation horizon, we re-balance wp,t every month such that

∑
wp,t = 1, ∀t

with respect to the initial wp. Note that the number of stocks within a portfolio is
sufficiently high to assume that it is well diversified. Having the portfolio weights one
is now able to compute rolling portfolio betas, expected returns as well as realized
values and complete the loop pass. Repeating the loop passes 1000 times gives 1000
time-series of un-systematically formed portfolios. Table 5 displays the summary
results of predicted versus realized returns of fractal CAPM compared to cBMCAPM.
For all three horizons, mean ε(μp) is closer to zero under fBM than under cBM
predictions, which on the one hand is in line with the conclusion derived from the
systematically sorted portfolios, but also further highlights that fractal CAPM has
a smaller prediction error. However, we find that both, fBM and cBM, significantly
overestimate future realized returns on the 1000 randomly generated portfolios, which
clearly supports existence of further, not implemented risk factors. Nonetheless, we
see that the mean prediction error is around twice as much under cBM than under
fBM, hence the incorporation of expected persistence already accounted in much of
CAPM’s inflexibility. Hence, it follows that the prediction quality as measured by
R2 is larger under the fractal model. Especially at this measure the long-term effects
of persistence get visible: while under fBM R2’s are almost constant for all three
horizons, we observe a decline in such given cBM predictions. Keeping in mind the
variance scaling effect as discussed previously, this pattern looks logical.

As the bootstrapping allowed to create a large number of portfolios, one can now
plot densities of R2’s (see Fig. 7). This picture shows that fBM R2’s are way closer
centered to 100% than cBM ones are. So, also the large-scale bootstrapping method
favors fBM to have better quality in predicting future risk/returns than cBM CAPM
does, confirming that expected persistence empirically matters.

In a nutshell, all three approaches from the empirical analysis indicate that fBM’s
flexibility to count in persistence believes via the variance scaling effect could deliver
better predictions in future realized risks and returns than basic cBM volatilities/betas.
The difference between the two is less for short term-predictions, but gets substantial
the longer the prediction horizon. From that follows, that expected return persistence
does not only have an economic value within the fractal CAPMmodel, but also within
real world empirical data.

5 Conclusion

Expected persistence in equity returns can be captured by releasing the classic Brow-
nian motion assumption to its more general fractal form. The fractal Brownian motion
allows for long-term memory and thus auto-correlation within a process, which can
also be interpreted as stock momentum. Through this generalization, factor based
asset pricing models such as CAPM can incorporate corresponding believes without
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470 W. Schadner, S. Lang

Table 5 Return residuals from bootstrapping: summary statistics of (130) monthly predicted vs. realized
returns of 1000 portfolios per τ

# pf. 1000 1000 1000

τ = 30 τ = 90 τ = 180

Min. Mean Max. Min. Mean Max Min. Mean Max

ε(μp) fBM

Mean −0.011 0.050 0.141 −0.011 0.043 0.145 −0.013 0.040 0.140

SD 0.011 0.016 0.034 0.005 0.010 0.019 0.003 0.007 0.013

R2 0.548 0.858 0.930 0.643 0.863 0.949 0.697 0.889 0.967

cBM

Mean 0.035 0.103 0.216 0.025 0.090 0.199 0.022 0.088 0.203

SD 0.015 0.023 0.042 0.011 0.016 0.028 0.009 0.014 0.027

R2 0.19 0.70 0.86 −0.019 0.621 0.814 −0.756 0.522 0.803

Thus 130,000 ε(μp)t per τ andBM.Oneportfolio consists of 50 randomly chosen stockswhich areweighted
according to some random wp (long only,

∑
wp = 1). All values are annualized for better comparability.

Rows display the descriptive statistics of ε(μp); columns the minimum, average and maximum across
the 1000 portfolios of the respective statistic measure. For example, the mean ε(μp) per portfolio ranges
between−0.01 and 0.14 for τ = 30. Generally, mean ε(μp)’s are closer to zero under fBM than under cBM
predictions, thus fBM seems to be more accurate. This is also observed at R2’s, where fBM outperforms
cBM substantially the larger the prediction horizon. Hence, especially for long-term investments implied
persistence seems to take on a crucial role. The difference in R2’s highlights that H has economic value
which goes beyond classic market risk

Fig. 7 Prediction quality of returns measured by R2: Comparison of cBM vs. fractal CAPM for the horizon
τ = 30. Residuals are computed from 130 monthly return predictions per 1000 portfolios, R2 are then
calculated for each portfolio, thus 1000 R2’s are derived per fBM/cBM. Already in the short time-horizon
one sees that fBM R2’s are mainly concentrated to the right end, being larger than cBM ones. Hence the
claim that fBM is of greater prediction quality than cBMgets visible. In direct comparison, for each portfolio
R2 was larger when using fractal than under cBM CAPM, which comes from the greater flexibility of fBM.
Henceforth, this plot confirms that fractals explain portions of future realized returns which would not be
captured under cBM market risk exposure
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The value of expected return persistence 471

the need of adding an additional risk factor, which obviously helps to reduce the fac-
tor zoo. Upon a theoretical standpoint, it is found that there should be an economic
value attributed to expected return persistence in excess of the market portfolio. On
empirical forward-looking data we discuss how expected persistence can be estimated
out of option prices and compute them for the cross-section of the S&P500. In direct
comparison of standard CAPM versus fractal CAPM, throughout evidence is found
that equity markets do not only show significant patterns of persistence in realized
returns, but also that respective believes have a significant impact upon return pre-
diction. This allows to decompose the market risk factor beta into pure correlation
believes and into the (so far un-noticed) persistence component. Respectively, while
CAPM betas should be 100% correlation risk in its classic notation, we find that on
average solely 80% of the factor loading is attributable to correlation risk—another
20% are actually sourced by (excess) persistence believes. Further, this division varies
largely such that standard CAPM predictions partially lead to very wrong predictions,
especially with respect to high beta stocks. Hence, fractal CAPM nominates itself as a
candidate to explain the low risk/beta anomaly. All those observations together allow
to conclude that expected return persistence has a considerable economic value, both
from a theoretical as well as from an empirical perspective.

Appendix

A1. Expected return and horizon

See Figs. 8 and 9.

Fig. 8 Illustration of the expected rate of return 〈μi 〉 as a function of the time to maturity τ . The setting is
as follows: 〈μm 〉 = 5%, r f = 1%, Hm = 0.6 and �H = {−0.2, 0, 0.2}. Under classic Brownian Motion
(i.e., �H = 0), 〈μi 〉 would be constant and thus independent of τ . With the fractal generalization this
independence is removed. As can be seen �H > 0 coerces 〈μi 〉 to grow int the future horizon ahead.
Differently, with �H < 0 the stock’s expected rate of return is believed to decline
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472 W. Schadner, S. Lang

Fig. 9 Histogram of single stock’s H contribution to predicted returns under fractal versus cBM CAPM,
%H = β/β̃ − 1. Three conclusions are worth to mention. First, the contribution varies largely, hence
expected persistence cannot be neglected. Second, contributions are mainly negative, which means that
most stocks have H below the market portfolio’s H . Third, the negativity of %H means that cBM CAPM
will thoroughly overestimate expected risk compared to fractal CAPM

A2. H-contribution

Analysis of individual stock’s expected market risk loading decomposed into classic
BM correlation and into contribution from expected persistence (H-contribution):

A3. R/S analysis

The R/S analysis [cp. Hurst (1956)] is conducted as follows. Say X is the return series
of nT observations for which one wants to compute the Hurst exponent. First, one hast
to compute the sample mean m(X) and the excess of mean series X̄

m(X) = 1
nT

nT∑

i=1

Xi and X̄ = X − m(X) (5.1)

by which the computation of the cumulative deviate series Z is straight forward,

Zt =
t∑

i=1

X̄i t ∈ {1, ..., nT } (5.2)

The range R is then defined as the interval length of Z ,

R = max(Z) − min(Z) (5.3)

and S is simply the sample standard deviation,

S =
√√√√1

n

n∑

i=1

(Xi − m(X))2 (5.4)

such that the R/S series is given by

(R/S)t = Rt

St
(5.5)
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The Hurst exponent is now defined by

〈
R

S

〉
= c nH

T (5.6)

with c as a constant. Taking logs,

log((R/S)t ) = log(c) + H log(t) (5.7)

gives a linear equation that can be fitted to return data by OLS regression, where H
corresponds to the regression’s coefficient.

A4. Expected volatility

As outlined before, option implied volatilities are per construction forward looking
proxies of expected risk. Comparing physically realized returns with expected risk
requires P implied volatilities—comparing physical returns with risk-neutral risk may
delivers biased results. By Black–Scholes market model, volatility is deterministic
such that Girsanov theorem applies and the market risk premium is incorporated via
the drift term. However, by now the academic consensus agrees that volatility itself
is stochastic [e.g., Heston (1993)]. If volatility is stochastic, then it is obvious that
fluctuations in it is another source of risk, causing that investors require a premium
for it. In the context of implied volatilities, this means that if one uses Black–Scholes
formula to compute implied volatilities, the estimates will be derived under the Q

measure. Those estimates are likely to be different from P expected volatilities as
soon as volatility is stochastic. Just like in standard Black–Scholes there is a premium
in the drift term, μ ≥ r f , (μ is the P expected return, r f the Q expected one and
μ−r f

σ̂
is the risk premium), investors require a premium for volatility of volatility such

that σP ≤ σQ. Therefore, σQ equals σP plus some variance risk premium [cp. Buss
and Vilkov (2012)]. Empirically, this means that on average Black–Scholes implied
volatilities slightly over-estimate future realized ones. Figure 10 displays the time-
series of future realized volatility in comparison with Black–Scholes’s expected Q

volatility
Estimation of the expected variance risk premium 〈λv〉 enjoys its own discussion,

for example Bollerslev et al. (2009) or Todorov (2010). Generally it is argued that
〈λv〉 is driven by the economic cycle and/or market phases. Therefore, we suggest it
makes sense to model the variance risk premium relative to the level of σQ. Hence, let
�σ(τ) express the future realized volatility of horizon τ , 〈λv〉 is incorporated by first
computing

λv,t (τ ) = σQ,t (τ ) − �σt (τ )

σQ,t (τ )
and λ̄v(τ ) = 1

nT

nT∑

t=1

λv,t (τ ) t ∈ {1, ..., nT }
(5.8)
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Fig. 10 Time-series ofBlack–Scholes implied volatilitywith targetmaturity of onemonth vs. future realized
volatility of same horizon. On average, risk-neutral implied volatilities (σQ)—as investor expectations—
slightly overestimate future realized ones (�σ ) due to a variance risk premium λ: in mild times, risk averse
investors pay the premium (�σ < σQ); during crises times, realized volatilities overshoot implied ones
(�σ > σQ). Investors form believes about future volatility out of historical data and adjust them for the
current market outlook. Thus, a slight lag pattern can be observed

upon the S&P500 index and then transform Q to P measured expected volatilities by

σP,i,t (τ ) = σQ,i,t (τ )(1 − λ̄v(τ ))
∀t ∈ {1, ..., nT }
∀i ∈ {1, ..., n} (5.9)

such that the same relative variance risk premium is applied among the cross-section
to transform individual risk-neutral σQ’s to physically expected σP’s while keeping
arbitrage-free principles. Estimatedλv,t (τ )’s are positivewithmeanvalues (i.e., λ̄v(τ ))
of 0.050, 0.075 and 0.100 at t-statistics of 1.39, 1.98, 2.63 (τ = 30, 90, and 180 days).
For the rest of the analysis we use solely P expected volatilities (if not mentioned
differently), hence we drop this subscript for simplification purposes.

To briefly motivate the use of implied volatilities instead of historically realized
ones in the context of quantifying expectations, we draw a short comparison between
those to future realized ones. The observed output is highlighted in Fig. 11 and Table 6.
From the table one sees that for short time-horizons the prediction quality between
historical and implied volatilities is almost identical; mean and standard deviations of
residuals do not really differ but implied volatilities realize a slightly better goodness
of fit (R2’s of 0.60 vs. 0.54).8 Hence one could interpret this as option traders use
historical volatilities to form their believes for future realizations. However, with an
increasing horizon, we clearly observe that implied estimates outperform historical
ones, which can be seen upon the R2’s. The fact is while investors typically use
historical volatilities to form believes for the future, they also adjust them for example
to incorporate the current market situation or the mean reverting behavior of variance.
Thismeans that using longer timewindows for historical volatilities causes predictions
to react to slowly to current situations, hence especially in the aftermath of surprises
(like 2009), historical volatilities are bad proxies for future realized risk. Therefore,
it seems plausible that historical volatilities realize a very bad R2 at the τ = 180
horizon, while implied volatilities—where investors adjust for economic phases and
mean reversion—could partially keep its prediction quality. Thus, implied volatilities

8 R2 is the coefficient of determination; R2 = 1− SStot
SSres

, SStot = ∑
t (yt −m(y))2, SSres = ∑

t (yt − ŷ)2

where y is the dependent variable and ŷ the prediction of it. Residuals are defined as ŷ − y.
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Fig. 11 S&P500: Residuals of expectedminus realized volatility as quantified by historical,P andQ implied
volatilities. Both option implied estimates are on average better than the historical one in predicting future
realized volatility. This is mainly attributable to the fact that historical volatilities per se are unable to adopt
for current market phases: While investors indeed use historical volatilities to grasp an idea about future
realizations, they correct them for current market outlooks (e.g. recovery) to adjust their estimates. This is
why implied volatilities deliver on average better estimates for future realizations

Table 6 Volatility analysis of the S&P500: Residuals ε of future realized volatility predicted by expected
volatilities (historical, Q, and P)

τ = 30 τ = 90 τ = 180

Hist. Q P Hist. Q P Hist. Q P

Mean 0.000 0.008 −0.001 0.003 0.014 0.000 0.008 0.024 0.005

Mean |ε| 0.055 0.050 0.047 0.061 0.057 0.052 0.069 0.064 0.054

SD 0.083 0.077 0.077 0.100 0.086 0.086 0.107 0.084 0.083

t-val 0.02 1.12 −0.14 0.36 1.80 0.04 0.81 3.16 0.71

R2 0.54 0.61 0.60 0.19 0.39 0.41 −0.16 0.22 0.30

For short termhorizon, it turns out that historically realized volatilities are almost as goodpredictors as option
implied volatilities are. However, with longer prediction horizon, implied volatilities clearly outperform
historical ones and are thus not only theoretically, but also empirically more appropriate for measuring
expected volatility

are not only theoretically, but also empirically better qualified candidates for expected
risk.
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