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Abstract
This paper studies optimal portfolio selection problems in the presence of stochastic
volatility and stochastic interest rate under the mean-variance criterion. The financial
market consists of a risk-free asset (cash), a zero-coupon bond (roll-over bond), and a
risky asset (stock). Specifically, we assume that the interest rate follows the Vasicek
model, and the risky asset’s return rate not only depends on aCox-Ingersoll-Ross (CIR)
process but also has stochastic covariance with the interest rate, which embraces the
family of the state-of-the-art 4/2 stochastic volatility models as an exceptional case.
By adopting a backward stochastic differential equation (BSDE) approach and solving
two related BSDEs, we derive, in closed form, the static optimal (time-inconsistent)
strategy and optimal value function.Given the time inconsistency of themean-variance
criterion, a dynamic formulation of the problem is further investigated and the explicit
expression for the dynamic optimal (time-consistent) strategy is derived. In addition,
analytical solutions to some special cases of our model are provided. Finally, the
impact of the model parameters on the efficient frontier and the behavior of the static
and dynamic optimal asset allocations is illustrated with numerical examples.

Keywords Mean-variance portfolio selection · Vasicek interest rate · CIR process ·
Dynamic optimality · Backward stochastic differential equation

JEL Classification G11 · C61 · C44

1 Introduction

Mean-variance portfolio selection problem is concerned with the trade-off between
profit (expected return) maximization and risk (variance) minimization. The pioneer-
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ing work of Markowitz (1952) laid the foundation for portfolio selection under the
mean-variance criterion in a single-period setting. By applying an embedding tech-
nique and taking advantage of the stochastic linear-quadratic control theory, Li and
Ng (2000) and Zhou and Li (2000) extended Markowitz’s work to a multi-period and
continuous-time setting, respectively. A notable feature of Zhou and Li (2000) is that
the exogenous parameter processes are assumed to be only constants or deterministic
functions. To generalize Zhou and Li (2000)’s results to more realistic environments,
Lim and Zhou (2002) considered a complete market where the model coefficients are
assumed to be uniformly bounded stochastic processes. By exploiting the backward
stochastic differential equation (BSDE) theory (El Karoui et al. 1997), they solved the
mean-variance problem by relating the optimal strategy to the solution to the associ-
ated BSDEs. Lim (2004) went a step forward by extending the results and methods of
Lim and Zhou (2002) to an incomplete market setting under similar model assump-
tions. The uniform boundedness hypothesis, however, precludes the applications of
local volatility and stochastic volatility models to the mean-variance portfolio selec-
tion problem, such as the constant elasticity of variance (CEV) model, Heston model
(Heston 1993), 3/2 model (Lewis 2000), and the state-of-the-art 4/2 model (Grasselli
(2017)). For this reason, many researchers drew on a more general market by relaxing
the uniform boundedness hypothesis in recent years. For example, Shen et al. (2014)
investigated a mean-variance portfolio selection problem under the CEV model, and
explicit solutions were obtained by using a BSDE approach and assuming that themar-
ket price of volatility risk satisfies exponential integrability of infinitely large order.
Shen and Zeng (2015) further considered the optimal investment-reinsurance problem
for a mean-variance insurer in an incomplete market, where the market price of risk
is proportional to a Markovian, affine-form, and square-root factor process. By using
similar techniques, Tian et al. (2021) studied a mean-variance investment-reinsurance
problem when the return rate of the stock follows an Ornstein-Uhlenbeck (OU) pro-
cess. As the literature on the mean-variance portfolio selection problems is abundant,
the above review is not exhaustive. Other relevant works include Chiu and Wong
(2011); Yu (2013); Lv et al. (2016), Sun and Guo (2018); Sun et al. (2020), to name
but only a few.

Although the mean-variance portfolio selection problems have been extensively
investigated in the last decade, two aspects deserve further exploration. First, most
of the preceding literature assumes that the interest rates are constants or determin-
istic functions, which violates the well-documented evidence that the short rates are
stochastic, mainly referred to Vasicek (1977), Cox et al. (1985), and Duffie and Kan
(1996). It is noteworthy that, in the last few years, some research results on the port-
folio optimization problems with stochastic interest rates have been achieved. For
example, Ferland and Watier (2010) considered a portfolio selection problem under
the mean-variance criterion in a complete market with an extended CIR interest rate,
and obtained the optimal strategy by using a BSDE approach. Assuming that the
stochastic interest rate follows the Vasicek model, Shen and Siu (2012) studied an
asset allocation problemwith regime switching in an exponential utility maximization
framework by using the dynamic programming approach. Chang (2015) concerned a
mean-variance problem with random liabilities and Vasicek’s stochastic interest rate,
and solved the problem explicitly for two special cases by using the dynamic program-
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ming approach. Guan and Liang (2014) investigated a defined contribution pension
management problem under power utility in the presence of stochastic interest rates
and stochastic volatility. By using similar methods to Guan and Liang (2014), Guan
and Liang (2015) considered a similar problem under the mean-variance criterion with
an affine-form stochastic interest rate and a stochastic return rate driven by an OU pro-
cess. Recent works on the portfolio selection problems with stochastic interest rates
include Yao et al. (2016); Pan and Xiao (2017), Escobar et al. (2017, 2018), Chang
et al. (2020), and references therein.

Second, the optimal investment strategies derived in most of the aforementioned
literature on the mean-variance portfolio selection problems are time-inconsistent
(Strotz 1956), in the sense that the optimal strategies determined at the initial time
might not be optimal at a future time point since the nonlinear operator within the
objective function under the mean-variance criterion precludes the use of Bellman’s
principle of optimality. In recent years, there has been a growing interest in developing
time-consistent mean-variance approaches. To deal with the time inconsistency under
the mean-variance criterion, Basak and Chabakauri (2010) applied a backward recur-
sion approach starting from the terminal date to determine a time-consistent optimal
strategy. Alternatively, Björk et al. (2017) proposed the Nash equilibrium approach by
imposing a time-consistent constraint on the optimal strategy and derived the equilib-
rium optimal strategy and equilibrium value function by essentially solving an HJB
equation under theMarkovian market settings. Along this approach, readers may refer
to Li et al. (2012), Wei and Wang (2017), and Zhang et al. (2020). Different from the
equilibrium approach, the dynamic optimal approach championed by Pedersen and
Peskir (2017) tackled the time inconsistency of the static optimal (time-inconsistent)
strategy by performing an infinite number of the static optimality over the investment
period, and they, therefore, derived a dynamic optimal (time-consistent) strategy. For
other previous works along this line, one can refer to Pedersen and Peskir (2018),
Zhang (2021a, b), and references therein.

Motivated by the above aspects, in this paper, we study a mean-variance portfolio
selection problem that takes into consideration interest rate and volatility risks within
the framework developed by Pedersen and Peskir (2017). Three primitive assets, one
risk-free asset, one risky asset, and one zero-coupon bond, can be freely traded in the
market. We assume that the stochastic interest rate is described by the Vasicek model.
Inspired by Escobar et al. (2018), the risky asset price exhibits not only stochastic
volatility but also stochastic covariance with the interest rate. As opposed to most of
the above-mentioned literature on the mean-variance portfolio selection problems, the
risky asset’s return rate and volatility are not specifically given. We only assume that
the market price of volatility risk relies on a Cox-Ingersoll-Ross (CIR) process, which
embraces the family of the state-of-the-art 4/2 stochastic volatility models (Cheng
and Escobar 2021) as a particular case. By applying a BSDE approach and solv-
ing the associated BSDE explicitly, closed-form expressions for the static optimal
(time-inconsistent) strategy and optimal value function (efficient frontier) are derived.
Following the methodology of Pedersen and Peskir (2017), we further consider a
dynamic formulation of the mean-variance problem, and the explicit expression for
the dynamic optimal (time-consistent) strategy is obtained by solving an infinite num-
ber of the static optimality over the investment period. Moreover, analytical solutions
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to some special cases of our model are provided. Finally, the economic impact of some
model parameters on the efficient frontier as well as on the static and dynamic optimal
asset allocations is illustrated with numerical examples. To sum up, the main contribu-
tions of this paper are as follows: (1) we consider a mean-variance portfolio selection
problem in an incomplete market with interest rate and volatility risks, where the
stochastic interest rate follows the Vasicek model while the market price of volatility
risk is driven by a CIR process recovering the Hestonmodel, 3/2 model, and 4/2 model
as special cases. (2) Explicit expressions for the static optimal (time-inconsistent)
and dynamic optimal (time-consistent) strategies are obtained by applying a BSDE
approach. (3) The impact of some model parameters on the efficient frontier and the
static and dynamic optimal asset allocations is shown.

The remainder of this paper is structured as follows. Section 2 introduces the finan-
cial market and formulates the mean-variance portfolio selection problems. In Sect. 3,
we explore the solvability of a BSRE and a linear BSDE and obtain the explicit solu-
tions. Section 4 presents both the static and dynamic optimality of the mean-variance
problem, and closed-form solutions to some special cases are recovered. In Sect. 5,
some numerical experiments are implemented to illustrate our theoretical results. Sec-
tion 6 concludes the paper.

2 Formulation of the problem

Let [0, T ] be a fixed andfinite horizon of decisionmaking and (�,F ,F,P) be a filtered
complete probability space satisfying the usual conditions on which are defined three
one-dimensional,mutually independentBrownianmotions

{
W 0

t

}
t∈[0,T ] ,

{
W 1

t

}
t∈[0,T ] ,

and
{
W 2

t

}
t∈[0,T ]. where filtration F := {Ft }t∈[0,T ] is generated by the above three

Brownian motions, and P is a real-world probability measure.

2.1 Financial market

We consider a financial market with interest rate and volatility risks, where a risk-free
asset (cash), a zero-coupon bond, and a risky asset (stock) can be continuously traded.
Assume that the price of the risk-free asset, denoted by S0t , satisfies the following
dynamics:

dS0t = rt S
0
t dt

with initial value S0t0 = s0 at time t0 ∈ [0, T )fixed and given, and that the instantaneous
interest rate rt is governed by the Vasicek model:

drt = (a − brt ) dt − σr dW
0
t , (1)

with initial value rt0 = r0, where b ∈ R
+ is themean-reversion speed, a/b ∈ R

+ is the
long-run level, and σr is the volatility of the interest rate. Suppose that the market price
of interest rate risk is λr ∈ R

+. From Vasicek (1977), the price process Bt (u) of the
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zero-coupon bond with bond maturity u satisfies the following stochastic differential
equation (SDE):

dBt (u) = rt Bt (u) dt + h0(u − t)Bt (u)σr

(
λr dt + dW 0

t

)
, t ≤ u (2)

with boundary condition Bu(u) = 1, where the deterministic function h0(t) is given
by

h0(t) = 1

b

(
1 − e−bt

)
.

We notice that the maturity of the zero-coupon bond Bt (u), u− t , varies continuously
as time t evolves. However, as it is stated in Boulier et al. (2001), there may not exist
zero-coupon bonds with anymaturity in themarket.We, therefore, introduce a rollover
bond with a fixed time-to-maturity K ∈ R

+ into the market. Denote by Bt (K ) the
price of the rollover bond at time t . Then, the rollover bond Bt (K ) is of the form:

dBt (K ) = rt Bt (K ) dt + h0(K )σr Bt (K )
(
λr dt + dW 0

t

)
. (3)

The risky asset price process S1t is related to the risk of interest rate and governed by
the following general stochastic volatility model:

dS1t = S1t
[
μ (t, rt , αt ) dt + ηrσr dW

0
t + σ (t, αt ) dW

1
t

]
, S1t0 = s10 ∈ R

+, (4)

where μ and σ �= 0 are two possibly unbounded and continuous functions and related
to each other via:

μ(t, rt , αt ) − rt = λ
√

αtσ(t, αt ) + λrηrσr

with λ, ηr ∈ R, and αt is an observable stochastic factor process following the CIR
model:

dαt = κ(θ − αt ) dt + σα
√

αt

(
ρ dW 1

t +
√
1 − ρ2 dW 2

t

)
, αt0 = α0 ∈ R

+, (5)

where κ ∈ R
+ is the speed of mean reversion, θ ∈ R

+ is the long-run mean, σα is
the volatility of the factor process αt , and ρ ∈ [−1, 1] is the correlation coefficient
between the risky asset price and factor process. In particular, we posit that the Feller
condition is satisfied, i.e. 2κθ ≥ σ 2

α , so that the factor process αt driving the volatility
of the risky asset price is strictly positive P almost surely, for t ∈ [t0, T ].
Remark 1 Notice that the risky asset price process (4) exhibits not only stochastic
volatility via the function σ and factor process αt (5), but also stochastic instantaneous
correlation ηrσr√

η2r σ
2
r +σ 2(t,αt )

∈ [−1, 1] with the interest rate process rt (1), in which the
parameter ηr measures the impact of the interest rate dynamics on the risky asset
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price, and the specification ηr = 0 corresponds to the case when the interest rate and
risky asset price are uncorrelated. It is also noteworthy that functions μ and σ allow
for more flexibility in modeling the risky asset price. In what follows, we shall see
that the modeling framework includes the family of the state-of-the-art 4/2 stochastic
volatility models, as an exceptional case.

Example 1 (The 4/2 model) If σ (t, αt ) = c1
√

αt + c2√
αt
, μ (t, αt , rt ) = rt + λ(c1αt +

c2) + λrηrσr with constants c1 ≥ 0 and c2 ≥ 0, and αt = Vt , then the risky asset
price process is given by the 4/2 model (Grasselli 2017):

⎧
⎪⎪⎨

⎪⎪⎩

dS1t = S1t

[
(rt + λ(c1Vt + c2) + λrηrσr ) dt +

(
c1
√
Vt + c2√

Vt

)
dW 1

t + ηrσr dW
0
t

]
,

dVt = κ(θ − Vt ) dt + σα

√
Vt

(
ρ dW 1

t +
√
1 − ρ2 dW 2

t

)
,

(6)

where Vt is the instantaneous variance driver process, and parameters c1 and c2
characterize the superposition of the two embedded parsimonious models, the Hes-
ton model (Heston 1993) and 3/2 model (Lewis 2000). More specifically, the case
(c1, c2) = (1, 0) stands for the Heston model, while (c1, c2) = (0, 1) corresponds to
the 3/2 model.

Suppose that the investor has an initial wealth x0 ∈ R
+ at time t0. Denote by two

Markovian controlsπB(t, αt , rt , Xπ
t ) andπS1(t, αt , rt , Xπ

t ) themarket value ofwealth
invested in the rollover bond Bt (K ) and risky asset S1t , respectively, where π :=(
{πB(·)}t∈[t0,T ] ,

{
πS1(·)

}
t∈[t0,T ]

)
represents the investment strategy and Xπ

t is the

associated wealth process. Under a self-financing condition, the wealth of the investor
evolves according to

dXπ
t =

[
rt X

π
t + πB(t, αt , rt , X

π
t )h0(K )σrλr + πS1(t, αt , rt , X

π
t )

(
σ (t, αt ) λ

√
αt

+λrηrσr

)]
dt + (

πB(t, αt , rt , X
π
t )h0(K )σr + πS1(t, αt , rt , X

π
t )ηrσr

)
dW 0

t

+ πS1(t, αt , rt , X
π
t )σ (t, αt ) dW

1
t .

(7)

Throughout the rest of the paper, we denote by Pt0 the probability measure with initial
data (αt0 , rt0 , X

π
t0) = (α0, r0, x0) at time t0 ∈ [0, T ], and Et0 [·] and Vart0(·) denote

the associated expectation and variance, respectively.

Definition 1 (Admissible strategy) Given any fixed initial time t0 ∈ [0, T ), a Marko-
vian investment strategy π is said to be admissible if the following conditions are
met:

1. SDE (7) associated with π has a pathwise unique solution;

2. Et0

[∫ T
0 π2

B(t, αt , rt , Xπ
t ) + π2

S1
(t, αt , rt , Xπ

t ) dt
]

< +∞;
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3. Et0

[∫ T
0 π2

S1
(t, αt , rt , Xπ

t )σ 2(t, αt ) dt
]

< +∞;

4. Et0

[
supt∈[t0,T ] |Xπ

t |4] < +∞.

The set of admissible strategies is denoted by A.

Remark 2 Due to the unboundedness of interest rate process rt and factor process αt

in the meantime, the square integrability condition for the associated wealth process
adopted by some preceding literature, such as Tian et al. (2021), Sun et al. (2020),
and Zhang (2021a, b), is not sufficient to apply the dominated convergence theorem
on the left-hand side of (A10) to exchange the order of limit and expectation. We,
therefore, opt for the fourth-order integrability condition for the wealth process Xπ

t ,
i.e. condition 4 in Definition 1.

2.2 Optimization problems

We consider the investor who wants to trade over the time interval [t0, T ] to minimize
the variance of the terminal wealth, while the expected value is exogenously deter-
mined, i.e., under the mean-variance criterion. Formally, the mean-variance portfolio
selection problem is defined as follows.

Definition 2 The mean-variance portfolio problem is a constrained stochastic opti-
mization problem:

{
min
π∈A

Vart0(X
π
T )

subject to Et0 [Xπ
T ] = ξ,

(8)

where ξ is a fixed and given constant. We denoted by VMV (t0, α0, r0, x0) and π∗ the
optimal value function and optimal investment strategy, respectively.

Considering the time inconsistency of the mean-variance criterion as discussed in
the introduction, it is expected to see that the resulting optimal strategy relies on
the initial value of state variables (t0, α0, r0, x0) and might not be guaranteed to be
optimal at a future time point. To address this problem, we opt for the dynamic optimal
approach introduced by Pedersen and Peskir (2017). For the readers’ convenience, we
now present the definition of dynamic optimality, which is slightly modified from
Definition 2 in Pedersen and Peskir (2017), to adapt to the current context.

Definition 3 (Dynamic optimality) Given any fixed initial time t0 ∈ [0, T ), a Marko-

vian investment strategy πd∗ =:
({

πd∗
B (·)}t∈[t0,T ] ,

{
πd∗
S1

(·)
}

t∈[t0,T ]

)
is referred to as

the dynamic optimality for the mean-variance problem (8) if for every (t, α, r , x) ∈
[t0, T ) ⊗ R

+ ⊗ R ⊗ R and every admissible strategy u ∈ A with u(t, α, r , x) �=
πd∗(t, α, r , x) and Et,α,r ,x [Xu

T ] = ξ , there is a Markovian strategy w satisfying
w(t, α, r , x) = πd∗(t, α, r , x) and Et,α,r ,x,[Xw

T ] = ξ such that

Vart,α,r ,x (X
w
T ) < Vart,α,r ,x (X

u
T ),
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where Et,α,r ,x [Xπ
T ] = E[Xπ

T | αt = α, rt = r , Xπ
t = x] and Vart,α,r ,x (Xπ

T ) =
Et,α,r ,x [(Xπ

T )2] − (Et,α,r ,x [Xπ
T ])2.

Remark 3 According to Pedersen and Peskir (2017), the dynamic optimality πd∗ is
essentially derived by solving the static optimal strategy, i.e., π∗ at each time and
implementing it in an infinitesimally small period of time. In other words, the static
optimality shall be considered in the first place.

Since the mean-variance problem (8) involves a convex objective functional, the
associated linear constraint Et0 [Xπ

T ] = ξ can be eliminated by introducing the follow-
ing auxiliary Lagrange dual function:

L(α0, r0, x0;π, θ) := Et0 [(Xπ
T − ξ)2] + 2θEt0 [Xπ

T − ξ ]
= Et0

[
(Xπ

T − (ξ − θ))2
]

− θ2,
(9)

where θ ∈ R is the Lagrange multiplier. According to the Lagrangian duality theorem
(see, for example, Luenberger 1968), problem (8) is equivalent to the following min-
max problem:

max
θ∈R min

π∈A
L(α0, r0, x0;π, θ), (10)

which implies that it remains to first consider the following benchmark problem:

min
π∈A

J (α0, r0, x0;π, γ ) := min
π∈A

Et0

[
(Xπ

T − γ )2
]
, (11)

where γ = ξ − θ ∈ R.

3 Solution to the benchmark problem

In this section, we mainly focus on the benchmark problem (11) using a BSDE
approach. Before introducing the BSDEs associated with the benchmark problem
(11), we present the following auxiliary results on the Vasicek model (1) and CIR
model (5), which are modified from Lemma 4.3 in Benth and Karlsen (2005), Lemma
4.1 inWei andWang (2017), and Theorem 5.1 in Zeng and Taksar (2013), respectively.

Lemma 3.1 For the Vasicek model (1), when c is a constant such that c < b
2σ 2

r (T−t0)
,

the Laplace transform of r2t is well-defined, i.e.,

Et0

[
exp

{
c
∫ T

t0
r2t dt

}]
< +∞.
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Lemma 3.2 For the Vasicek model (1), |rt | has exponential moment of all order, i.e.,

Et0

[

sup
t∈[t0,T ]

ep|rt |
]

< +∞, ∀p ≥ 0.

Lemma 3.3 For the CIR model (5), when c is a constant such that c ≤ κ2/2σ 2
α , the

Laplace transform of αt is well-defined, i.e.,

Et0

[
exp

{
c
∫ T

t0
αt dt

}]
< +∞.

Having reviewed the above preliminary results, we now impose the following assump-
tion to facilitate further discussions:

Assumption 3.4 48σ 2
r T < b and max

{
24λ(λ + σα|ρb(t0)|), (276 + 48

√
33)(λ2 +

σ 2
αb

2(t0))

}
≤ κ2/2σ 2

α , where function b(t) is given by (20) below.

Remark 4 The monotonicity of function b(t) shown in Proposition 3.8 implies that
|b(t)| decreases to 0 as T approaches 0, which indicates the mathematical feasibil-
ity of the assumption above when the investment horizon is small enough. From an
economic point of view, Assumption 3.4 presents an upper bound for the slope λ of
the market price of volatility risk. As stated in Korn and Kraft (2003), when λ is too
large, undertaking volatility risk is rewarded too much by the market, and the optimal
investment strategy might not be uniquely determined. Mathematically speaking, if
the above technical condition is violated, the uniqueness result to the following BSRE
(12) and linear BSDE (13) might not be ensured.

Considering the following BSRE and linear BSDE:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dPt =
{[

−2rt + λ2r + λ2αt

]
Pt + 2λr
0,t + 2λ

√
αt
1,t + 
2

0,t

Pt
+ 
2

1,t

Pt

}

dt

+ 
0,t dW
0
t + 
1,t dW

1
t + 
2,t dW

2
t ,

PT = 1,

Pt >0, for all t ∈ [t0, T ],
(12)

and
{
dYt = (rtYt + Ztλr ) dt + Zt dW

0
t ,

YT = −γ.
(13)

Here, a solution to (12) is a triplet of F-adapted stochastic processes (Pt , 
0,t , 
1,t ,


2,t ); a solution to (13) is a pair of F-adapted stochastic processes (Yt , Zt ). It is
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noteworthy that these two kinds of BSDEs are with unbounded coefficients due to the
unboundedness of the interest rate process rt and factor processαt , and thus, the results
in Lim (2004) and El Karoui et al. (1997) cannot be used in our case. Nevertheless, by
observing that the driver of linear BSDE (13) follows a stochastic Lipschitz continuity
(Bender and Kohlmann 2000), we derive the unique solution to BSDE (13) in the next
lemma.

Lemma 3.5 Suppose that Assumption 3.4 holds true. The unique solution (Yt , Zt ) to
linear BSDE (13) is given by

{
Yt = −γ exp {g(t) + h(t)rt } ,

Zt = −σr h(t)Yt ,
(14)

where functions g(t) and h(t) are given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

g(t) =
(

σ 2
r

2b2
− a + σrλr

b

)
(T − t) +

(
a + λrσr

b2
− σ 2

r

b3

)(
1 − e−b(T−t)

)

+ σ 2
r

4b3

(
1 − e−2b(T−t)

)
,

h(t) = 1

b

(
e−b(T−t) − 1

)
.

(15)

Proof See Appendix A.1. ��
By using the Markovian structures of the interest rate process rt and factor pro-

cess αt , we next manage to derive one explicit solution to BSRE (12) and show its
uniqueness.

Lemma 3.6 One solution (Pt , 
0,t , 
1,t , 
2,t ) to BSRE (12) is given by

Pt = exp {a(t)rt + b(t)αt } φ(t), (16)

and

(
0,t , 
1,t , 
2,t ) = (−σr a(t)Pt , σαρb(t)
√

αt Pt , σα

√
1 − ρb(t)

√
αt Pt ), (17)

where functions a(t), b(t), andφ(t) are solutions to the following ordinary differential
equations (ODEs):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

da(t)

dt
− ba(t) + 2 = 0, a(T ) = 0,

db(t)

dt
− (κ + 2ρσαλ)b(t) +

(
1

2
− ρ2

)
σ 2

αb
2(t) − λ2 = 0, b(T ) = 0,

dφ(t)

dt
+
[
(a + 2σrλr )a(t) + κθb(t) − 1

2
a2(t)σ 2

r − λ2r

]
φ(t) = 0, φ(T ) = 1.

(18)

123



Dynamic optimal mean-variance portfolio… 521

Proof See Appendix A.2. ��
In the next proposition, we derive explicit solutions to ODEs (18), which provides

the closed-form solution to BSRE (12).

Proposition 3.7 The explicit solutions of a(t), b(t), and φ(t) to ODEs (18) are given
as follows:

a(t) = 2

b

(
1 − e−b(T−t)

)
, (19)

and

b(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2

k + 2λρσα

(
e(k+2λρσα)(t−T ) − 1

)
, ρ2 = 1

2
, k + 2λρσα �= 0;

λ2(t − T ), ρ2 = 1

2
, k + 2λρσα = 0;

n1n2(1 − e
√

�(T−t))

n1 − n2e
√

�(T−t)
, ρ2 �= 1

2
, � > 0;

σ 2
α (ρ2 − 1

2 )(T − t)n20
σ 2
α (ρ2 − 1

2 )(T − t)n0 − 1
, ρ2 �= 1

2
, � = 0;

√−�

σ 2
α (2ρ2 − 1)

tan

(

arctan

(
k + 2λρσα√−�

)
−

√−�

2
(T − t)

)

+ n0, ρ2 �= 1

2
, � < 0,

(20)

and

φ(t) = exp

{∫ T

t
(a + 2σrλr )a(s) + κθb(s) − 1

2
a2(s)σ 2

r − λ2r ds

}
, (21)

where �, n0, n1, and n2 are given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

� = (k + 2λρσα)2 − (4ρ2 − 2)σ 2
αλ2, n0 = −(k + 2λρσα)

σ 2
α (2ρ2 − 1)

,

n1 = −(k + 2λρσα) + √
�

σ 2
α (2ρ2 − 1)

, n2 = −(k + 2λρσα) − √
�

σ 2
α (2ρ2 − 1)

.

(22)

Proof See Appendix A.3. ��
The next proposition shows that b(t) is a strictly increasing function over [t0, T ].

In other words, the maximum value of |b(t)| is attained at the initial time t0.

Proposition 3.8 Function b(t) is monotonically increasing over [t0, T ].
Proof See Appendix A.4. ��
Lemma 3.9 Suppose that Assumption 3.4 holds true, then the solution (Pt , 
0,t , 
1,t ,


2,t ) given in (16) and (17) is the unique solution to BSRE (12).
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Proof See Appendix A.5. ��

Having derived the uniqueness results of BSRE (12) and linear BSDE (13), we
now define the following two stochastic exponential processes �0,t and �1,t , for
t ∈ [t0, T ],
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�0,t = exp

{
−
∫ t

t0
(λr − σr a(s)) dW 0

s −
∫ t

t0

1

2
(λr − σr a(s))2 ds

}
,

�1,t = exp

{
−
∫ t

t0
(λ + σαρb(s))

√
αs dW

1
s −

∫ t

t0

1

2
(λ + σαρb(s))2αs ds

}
.

(23)

In the next lemma, we investigate the integrability of �0,t and �1,t , which shall be
used in the Proof of Proposition 3.11 below.

Lemma 3.10 Suppose that Assumption 3.4 holds true. The stochastic exponential pro-
cesses �0,t and �1,t defined in (23) satisfy

Et0

[

sup
t∈[t0,T ]

|�0,t |12 + |�1,t |12
]

< +∞.

Proof See Appendix A.6. ��

Based on the preceding results, we are ready to present the first main result of this
paper, which relates the optimal strategy and optimal value function of the benchmark
problem (11) to the solutions to BSRE (12) and linear BSDE (13).

Proposition 3.11 Suppose that Assumption 3.4 holds true. For any initial data
(t0, α0, r0, x0) ∈ [0, T ) ⊗ R

+ ⊗ R ⊗ R fixed and given, the optimal investment
strategy, denoted by π∗, of the benchmark problem (11) is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

π∗
S1(t, αt , rt , X

∗
t ) = −

(X∗
t + Yt )

(

1,t
Pt

+ λ
√

αt

)

σ(t, αt )
,

π∗
B(t, αt , rt , X

∗
t ) = −

(X∗
t + Yt )

(

0,t
Pt

+ λr

)
+ Zt + π∗

S1
(t, αt , rt , X∗

t )ηrσr

h0(K )σr
,

(24)

where Yt , Zt , Pt , 
0,t , and 
1,t are given by (14), (16), and (17), respectively. The
optimal value function is given by

J (α0, r0, x0;π∗, γ ) = Pt0
(
x0 + Yt0

)2
, (25)
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and the wealth process X∗
t associated with the optimal strategy (24) evolves as

X∗
t =

(
x0 − γ eg(t0)+h(t0)r0

)
exp

{∫ t

t0
rs − (λ2r − λrσr a(s)) − (λ2 + λσαρb(s))αs ds

}

× �0,t�1,t + γ eg(t)+h(t)rt ,

(26)

where g(t), h(t), a(t), b(t),�0,t , and �1,t are given in (15), (19), (20), and (23),
respectively. Moreover, the optimal strategy given in (24) is admissible.

Proof See Appendix A.7. ��

4 Static and dynamic optimality of the problem

In this section, we derive the static and dynamic optimality of the mean-variance prob-
lem (8). The static optimal investment strategy and optimal value function (efficient
frontier) of problem (8) are obtained by solving (9) and (11) in a backward sequence.

Specifically, based on the relationship between the mean-variance problem (8) and
benchmark problem (11) as shown in (10), we have

VMV (t0, α0, r0, x0)

= max
θ∈R J (α0, r0, x0;π∗, ξ − θ) − θ2

= max
θ∈R

{ [
exp {b(t0)α0 + 2g(t0)} φ(t0) − 1

]
θ2

+ 2 exp {(a(t0) + h(t0))r0 + b(t0)α0 + g(t0)} φ(t0)
(
x0 − ξeg(t0)+h(t0)r0

)
θ

+ exp {a(t0)r0 + b(t0)α0} φ(t0)
(
x0 − ξeg(t0)+h(t0)r0

)2 }
.

(27)

It can be easily checked that the leading coefficient of the above quadratic function of
θ is negative, i.e,

exp {b(t0)α0 + 2g(t0)} φ(t0) < exp

{

−
∫ T

t0

(
a(t)σr

2
− λr

)2

dt

}

≤ 1,

where the strict inequality follows from the negativeness of function b(t) implied by
Proposition 3.8. As such, the maximum of the right-hand side of (27) is attained at

θ∗ = exp {(a(t0) + h(t0))r0 + b(t0)α0 + g(t0)} φ(t0)
(
ξeg(t0)+h(t0)r0 − x0

)

exp {b(t0)α0 + 2g(t0)} φ(t0) − 1
.

(28)

Now we are ready to state our second main result.
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Theorem 4.1 Suppose thatAssumption3.4holds true.Forany initial data (t0, α0, r0, x0)
∈ [0, T ) ⊗R

+ ⊗R⊗R fixed and given, the static optimal investment strategy of the
mean-variance problem (8) is given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π∗
S1

(t, αt , rt , X
∗
t ) = −

(
X∗
t − (ξ − θ∗)eg(t)+h(t)rt

)
(λ + σαρb(t))

√
αt

σ(t, αt )
,

π∗
B (t, αt , rt , X

∗
t ) = − (X∗

t − (ξ − θ∗)eg(t)+h(t)rt )(λr − σr a(t)) + (ξ − θ∗)σr h(t)eg(t)+h(t)rt

h0(K )σr

−
π∗
S1

(t, αt , rt , X∗
t )ηr

h0(K )
,

(29)

where θ∗ is given by (28), and g(t), h(t), a(t), and b(t) are given by (15), (19), and
(20), respectively. The optimal value function (efficient frontier) is given by

VMV (t0, α0, r0, x0) = exp {a(t0)r0 + b(t0)α0} φ(t0)
(
x0 − ξeg(t0)+h(t0)r0

)2

1 − exp {b(t0)α0 + 2g(t0)} φ(t0)
, (30)

and the wealth process X∗
t associated with (29) evolves according to

X∗
t =

(
x0 − (ξ − θ∗)eg(t0)+h(t0)r0

)

exp

{∫ t

t0
rs − (λ2r − λrσr a(s)) − (λ2 + λσαρb(s))αs ds

}

× �0,t�1,t + (ξ − θ∗)eg(t)+h(t)rt ,

(31)

where �0,t and �1,t are given by (23). Moreover, the static optimality (29) is admis-
sible.

Proof Replacing the constant γ in (24) and (26) by ξ − θ∗ leads to the static optimal
strategy (29) and the associated wealth process (31), respectively. Plugging θ∗ given
in (28) back into the right-hand side of (27) yields the optimal value function (30).
Moreover, following the Proof of Proposition 3.11, it is evident that the static optimal
strategy (29) is admissible, i.e., π∗ ∈ A. ��

The next corollary provides the explicit results for one special case of our model,
the 4/2 stochastic volatility model.

Corollary 4.2 (The 4/2 model) Suppose that Assumption 3.4 holds true. If the risky
asset price S1t follows the 4/2 model (6), then the static optimal investment strategy
and optimal value function of the mean-variance problem (8) are, respectively, given
by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π∗
B (t, Vt , rt , X

∗
t ) = − (X∗

t − (ξ − θ∗)eg(t)+h(t)rt )(λr − σr a(t)) + (ξ − θ∗)σr h(t)eg(t)+h(t)rt

h0(K )σr

−
π∗
S1

(t, Vt , rt , X∗
t )ηr

h0(K )
,

π∗
S1

(t, Vt , rt , X
∗
t ) = −

(
X∗
t − (ξ − θ∗)eg(t)+h(t)rt

)
(λ + σαρb(t))

√
Vt

c1
√
Vt + c2√

Vt

,
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and

VMV (t0, v0, r0, x0) = exp {a(t0)r0 + b(t0)v0} φ(t0)
(
x0 − ξeg(t0)+h(t0)r0

)2

1 − exp {b(t0)v0 + 2g(t0)} φ(t0)
.

Proof Plugging the specified parameters of the 4/2 model (6) given in Example 1 into
(29)–(30) leads to the above results. ��

Remark 5 If we further specify (c1, c2) = (1, 0) and (c1, c2) = (0, 1) in Corollary
4.2, explicit solutions to the embedded Heston model and 3/2 stochastic volatility
model are derived, respectively. To the best of our knowledge, there is no existing
literature on the portfolio selection problems reporting the above results for the hybrid
Vasicek-4/2 model under the mean-variance criterion.

As discussed in Sect. 2, the static optimal investment strategy given in Theorem 4.1
is time-inconsistent because it depends on the initial value of the state variables via θ∗,
and thus, the mean-variance investor might deviate from it whenever any new position
at a future time is arrived at. Now, we proceed to derive the dynamic optimality of
the mean-variance problem (8) within the framework championed by Pedersen and
Peskir (2017), which is the third main result of this paper.

Theorem 4.3 Suppose that Assumption 3.4 holds true. For any initial data (t0, α0,

r0, x0) ∈ [0, T ) ⊗ R
+ ⊗ R ⊗ R fixed and given, the dynamic optimal investment

strategy πd∗ of the mean-variance problem (8) is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πd∗
S1 (t, αt , rt , X

d∗
t ) =

(
Xd∗
t − ξeg(t)+h(t)rt

)
(λ + σαρb(t))

√
αt

(exp {b(t)αt + 2g(t)}φ(t) − 1)σ (t, αt )
,

πd∗
B (t, αt , rt , X

d∗
t ) = Xd∗

t (λr − σr a(t) − exp {b(t)αt + 2g(t)}φ(t)h(t)σr )

(exp {b(t)αt + 2g(t)}φ(t) − 1)h0(K )σr

− ξeg(t)+h(t)rt (λr + h(t)σr )

(exp {b(t)αt + 2g(t)}φ(t) − 1)h0(K )σr

− πd∗
S1

(t, αt , rt , Xd∗
t )ηr

h0(K )
,

(32)

where Xd∗
t is the wealth process associated with πd∗ and evolves according to

Xd∗
t = ξeg(t)+h(t)rt + exp

{∫ t

t0

[
λr (λr − exp {b(u)αu + 2g(u)}φ(u)h(u)σr − σr a(u))

exp {b(u)αu + 2g(u)}φ(u) − 1

+ (λ + σαρb(u))λαu

exp {b(u)αu + 2g(u)}φ(u) − 1
+ ru

]
du

}
�2,t�3,t

(
x0 − ξeg(t0)+h(t0)r0

)
,

(33)
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with �2,t and �3,t given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�2,t = exp

{∫ t

t0

(λ + σαρb(u))
√

αu

exp {b(u)αu + 2g(u)}φ(u) − 1
dW 1

u

−1

2

∫ t

t0

(λ + σαρb(u))2αu

(exp {b(u)αu + 2g(u)}φ(u) − 1)2
du

}
,

�3,t = exp

{∫ t

t0

λr − σr a(u) − exp {b(u)αu + 2g(u)}φ(u)h(u)σr

exp {b(u)αu + 2g(u)}φ(u) − 1
dW 0

u

−1

2

∫ t

t0

(λr − σr a(u) − exp {b(u)αu + 2g(u)}φ(u)h(u)σr )
2

(exp {b(u)αu + 2g(u)}φ(u) − 1)2
du

}
.

Furthermore, if the initial data satisfies x0 ≤ ξeg(t0)+h(t0)r0 , then it holds that Xd∗
t ≤

ξeg(t)+h(t)rt , Pt0 almost surely.

Proof See Appendix A.8. ��
Corollary 4.4 (The 4/2 model) Suppose that Assumption 3.4 holds true. If the risky
asset price S1t follows the 4/2 model (6), then the dynamic optimal investment strategy
πd∗ of the mean-variance problem (8) is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πd∗
S1 (t, Vt , rt , X

d∗
t ) =

(
Xd∗
t − ξeg(t)+h(t)rt

)
(λ + σαρb(t))Vt

(exp {b(t)Vt + 2g(t)}φ(t) − 1)(c1Vt + c2)
,

πd∗
B (t, Vt , rt , X

d∗
t ) = Xd∗

t (λr − σr a(t) − exp {b(t)Vt + 2g(t)}φ(t)h(t)σr )

(exp {b(t)Vt + 2g(t)}φ(t) − 1)h0(K )σr

− ξeg(t)+h(t)rt (λr + h(t)σr )

(exp {b(t)Vt + 2g(t)}φ(t) − 1)h0(K )σr

− πd∗
S1

(t, Vt , rt , Xd∗
t )ηr

h0(K )
,

where the wealth process Xd∗
t satisfies that Xd∗

t ≤ ξeg(t)+h(t)rt , for t ∈ [t0, T ], Pt0
almost surely.

Proof Substituting the specified parameters of the 4/2 model (6) given in Example 1
into (32) yields the results immediately. ��
Remark 6 Setting either (c1, c2) = (1, 0) or (c1, c2) = (0, 1) in Corollary 4.4, we
provide the closed-form expressions for the dynamic optimal strategies under the
Heston model and 3/2 model, respectively.

5 Numerical analysis

This section investigates the impact of the model parameters on the efficient frontier
and the static and dynamic optimal investment strategies. The formula of efficient
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Fig. 1 Impact of parameters λr , a, and ηr on the efficient frontier

frontier is given by (30) and the closed-form expressions for the static and dynamic
optimality are presented in (29) and (32), respectively. We show the case when the
market model is characterized by the hybrid Vasicek-Heston model. Throughout this
section, unless otherwise stated, the values of the parameters modified from Escobar
et al. (2017) are listed below: a = 0.0125, b = 0.266, σr = 0.013, λr = 0.689, ηr =
0.4, λ = 2.234, κ = 2.115, θ = 0.051, σα = 0.505, ρ = −0.514, x0 = 1, r0 =
0.05, v0 = 0.03, T = 1, ξ = 3, K = 20.

5.1 Efficient frontier

In this subsection, we present how the model parameters affect the efficient frontier. In
the following numerical experiments, we vary the value of one parameter with others
fixed and given.

Figure 1 contributes to the impact of parameters λr , a, and ηr on the efficient
frontier. We observe from Fig. 1a that given the fixed expected value of terminal
wealth, the efficient frontier moves downwards as λr increases from 0.689 to 0.889.
Since λr characterizes the market price of interest rate risk, a greater value of λr
implies that the investor can obtain higher returns by investing in the roll-over bond.
As such, the investor can take fewer risks from the market if he wants to gain the
same expected wealth at the terminal date. Figure 1b shows the relationship between
the efficient frontier and parameter a. We find that along with the growth of a, the
variance of terminal wealth decreases. As revealed by (1), parameter a partially depicts
the long-run mean of the short interest rate. As a increases, the return rate of the risk-
free asset becomes higher, while the risk premiums of investing in both the roll-over
bond and the risky asset are not influenced. In such a case, the investor can bear fewer
risks if the same expected terminal wealth is acquired. From Fig. 1c, we find that the
scale parameter ηr has no impact on the efficient frontier. This is consistent with our
intuition that although ηr changes the optimal allocations on the roll-over bond and
risky asset, the optimal risk exposures to the interest rate and volatility risks remain
unchanged. Therefore, the investor undertakes the same investment risks, and he has
the same variance of terminal wealth if he acquires the same expected terminal wealth.
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Fig. 2 Impact of parameters λ, σα, and ρ on the efficient frontier

Figure 2 reveals the relationship between the efficient frontier and parameters λ, σα,

and ρ. From Fig. 2a, we find that the efficient frontier moves down as λ increases from
2.234 to 3.234. λ characterizes the slope of themarket price of volatility risk. So, along
with the growth of λ, the investor can obtain a higher volatility risk premium. In such a
case, the investor can invest less in the risky asset to obtain the same expected terminal
wealth. In Fig. 2b, we vary σα from 0.505 to 0.705, and find that the efficient frontier
moves down. In other words, as σα increases, to derive a fixed expected terminal
wealth, the investor will undertake fewer risks. One explanation is that as the volatility
of volatilityσα increases, the fluctuation of the stochastic volatility becomes larger, and
thus, the return rate of the risky asset ismore likely to increase, which helps the investor
derive the same expected return by investing less in the risky asset and hence bearing
fewer risks. In Fig. 2c, we vary ρ from −0.314 to −0.714, and find that the efficient
frontiermoves down. This can be explained by the fact that as the correlation parameter
ρ approaches −1, the risky asset price and its instantaneous variance become more
negatively correlated. Therefore, the offset between the risk caused by fluctuations of
the risky asset price and its volatility becomes more. Consequently, investing the same
amount in the risky asset reduces the investor’s exposure to volatility risk.

5.2 Static and dynamic optimal strategies

In this subsection, we investigate the impact of some model parameters and the fixed
expected terminal wealth ξ on the behavior of the static and dynamic optimal invest-
ment strategies. For simplicity, we pay attention to the results at time t0 = 0 in the
following numerical experiments. From the definition of dynamic optimality above
(see Definition 3), we know that π∗ = πd∗ at the initial time t0.

Figure 3 illustrates the relationship between the parameters λr , a, and ηr on the
dynamic and static optimal investment strategies. In Fig. 3a, we vary λr from 0.689
to 0.889 and find that the market value of wealth invested in the roll-over bond is
positively correlated with λr , while the investment in the risky asset is negatively
correlated with λr . As the previous section explains, as the market price of interest
rate risk λr increases, the investor can obtain a higher risk premium from investing in
the roll-over bond. It is thus better to allocate more in the roll-over bond to reduce the
overall risks when the same expected terminal wealth is acquired. Figure 3b shows that
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Fig. 3 Impact of parameters λr , a, and ηr on the dynamic and static optimality

Fig. 4 Impact of parameters λ, σα, and ξ on the dynamic and static optimality

the amount of wealth invested in both the roll-over bond and the risky asset decreases
as a increases from 0.125 to 0.25. Indeed, as a becomes larger, the long-run level of
the short rate a/b increases, such that the return rate of the risk-free asset is amplified.
Hence, the investor can undertake fewer risks by investing more in the risk-free asset.
It is shown from Fig. 3c that as ηr increases from 0 to 1, the amount of wealth invested
in the roll-bond is reduced, while the investment in the risky asset remains unchanged.
As a matter of fact, the overall interest rate and volatility risks are not changed when
ηr varies since it only measures the impact of the interest rate dynamics on the risky
asset price. Namely, when ηr becomes larger, the investor faces the same amount of
volatility and interest rate risks, but the interest rate risk can be more easily hedged
against by investing in the risky asset.

Figure 4 shows how the dynamic and static optimal investment strategies change
with respect to the parameters λ, σα, and ξ . From Fig. 4a, we find that as λ increases,
the investor is willing to invest more in the risky asset and less in the roll-over bond.
This can be explained by the fact that λ characterizes the slope of the market price of
volatility risk, and the investor can derive a higher risk premium from the risky asset
as λ becomes larger. In Fig. 4b, we vary σα from 0.505 to 0.905 and find that the
amount of wealth invested in the risky asset becomes larger as σα increases. One of
the possible explanations is that as the volatility of volatility σα increases, it is more
likely for the investor to derive a higher volatility risk premium from the risky asset,
i.e., λ

√
Vt . In such a case, the investor tends to adopt a more aggressive investment
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Fig. 5 Two trajectories of static and dynamic optimality

strategy. In the meantime, since the optimal risk exposure to the interest rate risk is not
affected by the change of σα , the investor can invest less in the roll-over bond to hedge
against the interest rate risk due to the stochastic correlation between interest rate and
risky asset price. Finally, we see from Fig. 4c that the amount of wealth invested in
the roll-over bond and the risky asset has a positive relationship with the expected
terminal value ξ . This is consistent with our intuition that to obtain a greater value
of the expected terminal wealth, the investor has to invest more in both the roll-over
bond and the risky asset such that the overall interest rate and volatility risks can be
hedged against.

To end this subsection, we highlight the difference between static and dynamic
optimality, i.e., π∗ and πd∗. By setting 500 equidistant time points over the investment
horizon [0, 1] and using some Monte Carlo techniques, we simulate two paths of X∗

t
and Xd∗

t , as well as one path of the stochastic process ξeg(t)+h(t)rt , which is referred
to as the bound in Fig. 5. As shown in Fig. 5, the trajectories of two optimal wealth
processes X∗

t and X
d∗
t are significantly different even though the same randomnumbers

are used. In particular, we observe that the dynamic optimal wealth process Xd∗
t is

strictly below the process ξeg(t)+h(t)rt , which is consistent with the theoretical results
derived in Theorem 4.3 above.

6 Conclusion

In this paper, we consider dynamic mean-variance portfolio selection problems in a
stochastic environment. The risks in the market come from the interest rate and the
risky asset. The interest rate follows the Vasicek model while the risky asset’s return
rate not only relies on a CIR process but also exhibits stochastic covariance with the
interest rate. The modeling framework embraces the family of the state-of-the-art 4/2
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stochastic volatilitymodels, as an exceptional case. Given the time inconsistency of the
mean-variance criterion, the problems are investigated in linewith the dynamic optimal
approach. For this, we first address the static optimal (time-inconsistent) strategy
by using a BSDE approach. Under the assumption of some model parameters, the
associatedBSDEs are solved explicitly. Analytical expressions for the static optimality
and optimal value function (efficient frontier) are derived via the explicit solutions to
the BSDEs. By recomputing the static optimality in an infinitesimally small period
of time, we derive, in closed form, the dynamic optimal (time-consistent) strategy.
Moreover, results on the Vasicek-Heston, Vasicek-3/2, and Vasicek-4/2 models are
provided, as particular cases. Finally, the economic impact of some model parameters
on the efficient frontier as well as on the static and dynamic optimal asset allocations is
illustrated with numerical examples. As far as we know, there is no existing literature
on the mean-variance portfolio selection problems considering the time-inconsistent
and time-consistent solutions in the presence of stochastic volatility and interest rate.
So, this study is meaningful from both theoretical and practical perspectives.

Built on the present paper, several potential topics in the futuremay be followed; for
instance, one may extend the current framework with a single risky asset to that with
multiple risky assets. In addition, since it is difficult to estimate the return rate of the
risky asset and interest rate with precision in practice, the investor might be ambiguous
about the financial market. It is thus of interest to explore the mean-variance portfolio
selection problems with stochastic interest rate and volatility under model ambiguity.
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Appendix A

A.1 Proof of Lemma 3.5

Proof We start by introducing the likelihood process L1,t , for t ∈ [t0, T ] from the
following dynamic:

dL1,t = −λr L1,t dW
0
t ,

for which Novikov’s condition is satisfied. Thus, L1,t is an (F,Pt0)-uniformly
integrable martingale, and the equivalent probability measure, denoted by P̃t0 , is well-
defined on FT via the Radon-Nikodym derivative:

dP̃t0
dPt0

∣∣∣FT
= L1,T .
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Let Ẽt0 [·] denote the corresponding expectation under measure P̃t0 . From Girsanov’s
theorem, three processes W̃ 0

t , W̃ 1
t , and W̃ 2

t given by

dW̃ 0
t = λr dt + dW 0

t , dW̃ 1
t = dW 1

t , dW̃ 2
t = dW 2

t

are three standard (F, P̃t0) Brownian motions. Then, linear BSDE (13) can be refor-
mulated as follows:

{
dYt = rtYt dt + Zt dW̃

0
t ,

YT = −γ.
(A1)

Notice that the driver of BSDE (A1) satisfies the stochastic Lipschitz continuity (refer
toDefinition 2 (H2) inBender andKohlmann (2000))withη2t := rt+ε as its coefficient
for any ε ∈ R

+ fixed and given. Setting At := ∫ t
t0

η2s ds and using Hölder’s inequality,

from Assumption 3.4 and Lemma 3.1, we have for some constant β > 3 + √
21

Ẽt0

[
| − γ |2 exp {βAT }

]

≤ c

{
Et0

[
exp

{
−2

∫ T

t0
λr dW

0
t − 2

∫ T

t0
λ2r dt

}]} 1
2

{
Et0

[
exp

{∫ T

t0
(λ2r + 2β|rt |) dt

}]} 1
2

= c

{
Et0

[
exp

{∫ T

t0
(λ2r + 2β|rt |) dt

}]} 1
2

≤ c

{
Et0

[
exp

{
2β
∫ T

t0
|rt |2 dt

}]} 1
2

< +∞,

where the constant c might differ between lines, and the second inequality follows
from the basic result that x2 + 1

4 ≥ x for x ∈ R
+. This shows that the driver and

terminal condition of BSDE (A1) constitute standard data (Definition 2 in Bender and
Kohlmann (2000)). According to Theorem 3 in Bender and Kohlmann (2000), BSDE
(A1) admits a unique solution (Yt , Zt ) such that

Ẽt0,

[∫ T

t0
eβAt |Zt |2 dt

]
< +∞.

Applying Itô’s formula to Yt exp
{
− ∫ t

t0
ru du

}
under measure P̃t0 yields

d

[
Yt exp

{
−
∫ t

t0
ru du

}]
= Zt exp

{∫ t

t0
−ru du

}
dW̃ 0

t , (A2)
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whichmeans Yt exp
{
− ∫ t

t0
ru du

}
is a (F, P̃t0)-local martingale. Moreover, by Lemma

3.1, Burkholder-Davis-Gundy inequality, and Hölder’s inequality, we find that

Yt exp
{
− ∫ t

t0
ru du

}
is, in fact, an (F, P̃t0)-uniformly integrable martingale under

Assumption 3.4, since

Ẽt0

[

sup
t∈[t0,T ]

∣∣∣∣

∫ t

t0
exp

{
−
∫ s

t0
ru du

}
Zs dW̃

0
s

∣∣∣∣

]

≤ cẼt0

⎡

⎣
(∫ T

t0
exp

{
−
∫ t

t0
2ru du

}
Z2
t dt

) 1
2

⎤

⎦

≤ c

(
Ẽt0

[
exp

{
2
∫ T

t0
|rt | dt

}]
+ Ẽt0

[∫ T

t0
Z2
t dt

])

≤ c

{
Et0

[
exp

{∫ T

t0
(λ2r + 4|rt |) dt

}]} 1
2

+ cẼt0

[∫ T

t0
Z2
t dt

]

≤ c

{
Et0

[
exp

(∫ T

t0
4|rt |2 dt

)]} 1
2

+ cẼt0

[∫ T

t0
Z2
t dt

]
< +∞,

where the constant cmight differ between lines. Therefore, from (A2) and the Marko-
vian structure of interest rate process rt , we have the following expectation formulation
for Yt :

Yt =−γ Ẽt0

[
exp

{
−
∫ T

t
rs ds

} ∣∣∣∣ Ft

]
=−γ Ẽt0

[
exp

{
−
∫ T

t
rs ds

} ∣∣∣∣rt

]
=−γ f (t, rt ),

where the deterministic function f (t, r) = Ẽt,r

[
exp

{
− ∫ T

t rs ds
}]

. Observe that the

interest rate process rt has the following P̃t0 dynamic:

drt=(a+σrλr − brt ) dt−σr dW̃
0
t .

Then, from the Feynman-Kac theorem, we find the following partial differential equa-
tion (PDE) governing function f (t, r):

⎧
⎨

⎩

∂ f

∂t
+ (a + σrλr − br)

∂ f

∂r
+ 1

2
σ 2
r

∂2 f

∂r2
− r f = 0,

f (T , r) = 1.

Conjecture that f (t, r) admits the following exponential-affine form, i.e.,

f (t, r) = exp {g(t) + h(t)r}
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with boundary conditions g(T ) = h(T ) = 0. Then, we can decompose the above
PDE into the following two ODEs of g(t) and h(t):

⎧
⎪⎨

⎪⎩

dg(t)

dt
+ (a + σrλr )h(t) + 1

2
σ 2
r h

2(t) = 0, g(T ) = 0,

dh(t)

dt
− bh(t) − 1 = 0, h(T ) = 0.

After some tedious calculations, the closed-form expressions for g(t) and h(t) are
given by (15), and Yt is given by (14). Finally, applying Itô’s formula to Yt under mea-
sure P̃t0 and comparing with the diffusive part of (A1) lead to the explicit expression
for Zt given in (14). ��

A.2 Proof of Lemma 3.6

Proof Applying Itô’s lemma to Pt given by (16) and making use of (17)–(18), we
have

dPt = Pt

[
a(t)a − 2rt + αt

(
2ρσαλb(t) +

(
ρ2 − 1

2

)
σ 2

αb
2(t) + λ2

)

+ κθb(t) + 1

2

(
σ 2

αb
2(t)αt + σ 2

r a
2(t)

) ]
dt − Ptσr a(t) dW 0

t

+ Ptσα
√

αtρb(t) dW
1
t + Ptσα

√
αt

√
1 − ρ2b(t) dW 2

t − Pt

(
(a + 2σrλr )a(t)

+ κθb(t) − 1

2
a2(t)σ 2

r − λ2r

)
dt

=
[ (

−2rt + λ2r + λ2αt

)
− 2σrλr a(t) + 2ρσαλαt b(t) + ρ2σ 2

αb
2(t)αt

+ a2(t)σ 2
r

]
Pt dt − Ptσr a(t) dW 0

t + Ptσα
√

αtρb(t) dW
1
t

+ Ptσα
√

αt

√
1 − ρ2b(t) dW 2

t

=
[(

−2rt + λ2r + λ2αt

)
Pt + 2λr
0,t + 2λ

√
αt
1,t + 
2

1,t

Pt
+ 
2

0,t

Pt

]

dt

+ 
0,t dW
0
t + 
1,t dW

1
t + 
2,t dW

2
t .

This shows that Pt given in (16) satisfies the first equation of BSRE (12). The terminal
condition PT = 1 follows from the boundary conditions a(T ) = b(T ) = 0 and
φ(T ) = 1 given by (18). Finally, considering the canonical exponential expression of
solution to the first-order homogeneous linear equation, we know that φ(t) given in
(18) must have an exponential formulation, which implies from (16) that Pt > 0 over
[t0, T ]. ��
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A.3 Proof of Proposition 3.7

Proof Since the ODE of a(t) in (18) is a first-order linear equation, we can reformulate
it as follows:

da(t)

ba(t) − 2
= dt .

By integrating both sides from t to T upon considering the boundary condition a(T ) =
0, we obtain

a(t) = 2

b

(
1 − e−b(T−t)

)
.

We next consider the ODE of b(t). Reshuffling the terms in (18) yields

db(t)

dt
=
(

ρ2 − 1

2

)
σ 2

αb
2(t) + (κ + 2σαρλ)b(t) + λ2, b(T ) = 0. (A3)

When ρ2 = 1
2 and κ + 2σαρλ = 0, it follows from (A3) that b(t) = λ2(t − T ). When

ρ2 = 1
2 and κ + 2σαρλ �= 0, we have the following linear equation:

db(t) = (κ + 2σαρλ)b(t) dt + λ2 dt,

from which we obtain

b(t) = λ2

k + 2λρσα

(
e(k+2λρσα)(t−T ) − 1

)
.

When ρ2 �= 1
2 , we denote by � = (k + 2λρσα)2 − (4ρ2 − 2)σ 2

αλ2. It follows from
(A3) that

db(t)

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 2
α

(
ρ2 − 1

2

)
(b(t) − n1)(b(t) − n2), � > 0;

σ 2
α

(
ρ2 − 1

2

)
(b(t) − n0)

2 dt, � = 0;

σ 2
α

(
ρ2 − 1

2

)[(
b(t) + k + 2λρσα

σ 2
α (2ρ2 − 1)

)2

+ −�

σ 4
α (2ρ2 − 1)2

]

, � < 0,

where n0, n1, and n2 are given by (22). After some tedious calculations, we derive the
explicit expressions for b(t) presented in (20). Finally, noticing the boundary condition
that φ(T ) = 1 and substituting a(t) and b(t) back into the ODE of φ(t), we have the
closed-form solution of φ(t) given in (21). ��
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A.4 Proof of Proposition 3.8

Proof Differentiating (21) with respect to t yields

db(t)

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2e(k+2λρσα)(t−T ), ρ2 = 1

2
, k + 2λρσα �= 0;

λ2, ρ2 = 1

2
, k + 2λρσα = 0;

4λ2�e
√

�(T−t)

σ 4
α (2ρ2 − 1)2

1

(n1 − n2e
√

�(T−t))2
, ρ2 �= 1

2
, � > 0;

σ 2
α

(
ρ2 − 1

2

)
n20

(
σ 2
α (ρ2 − 1

2 )(T − t)n0 − 1
)2 , ρ2 �= 1

2
, � = 0;

−�

2σ 2
α (2ρ2 − 1)

sec2
(

arctan

(
k + 2λρσα√−�

)
−

√−�

2
(T − t)

)

, ρ2 �= 1

2
, � < 0;

It is obvious that db(t)
dt > 0 holds for the first three cases. As for the last two cases,

we see that ρ2 > 1
2 must hold when � ≤ 0. ��

A.5 Proof of Lemma 3.9

Proof Observing that Pt given in (16) is positive, we can apply Itô’s lemma to log(Pt )
and find that

d log(Pt ) =
[
−2rt + λ2r + λ2αt + 2λr


0,t

Pt
+ 2λ

√
αt


1,t

Pt

+1

2


2
0,t

P2
t

+ 1

2


2
1,t

P2
t

− 1

2


2
2,t

P2
t

]

dt

+ 
0,t

Pt
dW 0

t + 
1,t

Pt
dW 1

t + 
2,t

Pt
dW 2

t .

(A4)

Now, we introduce the likelihood process L2,t from the following dynamic:

dL2,t = −2λr L2,t dW
0
t − 2λ

√
αt L2,t dW

1
t ,

which can be easily shown to be an (F,Pt0)-uniformly integrable martingale by the
Novikov’s condition and Assumption 3.4. Thus, we can define an equivalent proba-
bility measure P̂t0 on FT via the following Radon-Nikodym derivative:

dP̂t0
dPt0

∣∣∣FT
= L2,T .

From Girsanov’s theorem, the following three processes Ŵ 0
t , Ŵ 1

t , and Ŵ 2
t :

dŴ 0
t = 2λr dt + dW 0

t , dŴ 1
t = 2λ

√
αt dt + dW 1

t , dŴ 2
t = dW 2

t
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are standard Brownian motions under measure P̂t0 . Then, BSDE (A4) of(
log(Pt ),


0,t
Pt

,

1,t
Pt

,

2,t
Pt

)
can be rewritten as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d log(Pt ) =
[

−2rt + λ2r + λ2αt + 1

2


2
0,t

P2
t

+ 1

2


2
1,t

P2
t

− 1

2


2
2,t

P2
t

]

dt + 
0,t

Pt
dŴ 0

t

+ 
1,t

Pt
dŴ 1

t + 
2,t

Pt
dŴ 2

t ,

log(PT ) = 0.

(A5)

Suppose that there exists another solution, denoted by (P̂t , 
̂0,t , 
̂1,t , 
̂2,t ), to BSRE
(12). It follows from (A5) that the following difference process

(� log(Pt ),�
0,t ,�
1,t ,�
2,t )

:=
(

log(Pt ) − log(P̂t ),

0,t

Pt
− 
̂0,t

P̂t
,

1,t

Pt
− 
̂1,t

P̂t
,

2,t

Pt
− 
̂2,t

P̂t

)

must solve the following BSDE:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d� log(Pt )=
[
1

2

(

2
0,t

P2
t

− 
̂2
0,t

P̂2
t

)

+ 1

2

(

2
1,t

P2
t

− 
̂2
1,t

P̂2
t

)

− 1

2

(

2
2,t

P2
t

− 
̂2
2,t

P̂2
t

)]

dt

+ �
0,t dŴ
0
t + �
1,t dŴ

1
t + �
2,t dŴ

2
t ,

� log(PT ) = 0.

(A6)

We now introduce another likelihood process L3,t from the dynamic:

dL3,t = −
0,t

Pt
L3,t dŴ

0
t − 
1,t

Pt
L3,t dŴ

1
t + 
2,t

Pt
L3,t dŴ

2
t .

By using the explicit expressions for Pt and (
0,t , 
1,t , 
2,t ) given in (16) and (17),
Hölder’s inequality, Proposition 3.8, and Assumption 3.4, we find that Novikov’s
condition is satisfied for L3,t , i.e.,

Êt0

[

exp

{
1

2

∫ T

t0


2
0,t

P2
t

+ 
2
1,t

P2
t

+ 
2
2,t

P2
t

dt

}]

= Et0

[
L2,T exp

{
1

2

∫ T

t0
σ 2
r a

2(t) + σ 2
αb

2(t)αt dt

}]

≤
{
Et0

[
exp

{∫ T

t0
−4λr dW

0
t −

∫ T

t0
4λ

√
αt dW

1
t −

∫ T

t0

(
8λ2r + 8λ2αt

)
dt

}]} 1
2
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×
{
Et0

[
exp

{∫ T

t0
4λ2r + σ 2

r a
2(t) + (4λ2 + σ 2

αb
2(t))αt dt

}]} 1
2

= c

{
Et0

[
exp

{∫ T

t0
(4λ2 + σ 2

αb
2(t))αt dt

}]} 1
2

< +∞,

where c is a positive constant. Thus, the equivalent probability measure P̄t0 is well-
defined on FT via

dP̄t0
dP̂t0

∣∣∣FT
= L3,T .

Accordingly, the standard Brownian motions W̄ 0
t , W̄ 1

t , W̄ 2
t under P̄t0 are given as

follows due to the Girsanov’s theorem:

dW̄ 0
t = dŴ 0

t + 
0,t

Pt
dt, dW̄ 1

t = dŴ 1
t + 
1,t

Pt
dt . dW̄ 2

t = dŴ 2
t − 
2,t

Pt
dt .

(A7)

Plugging (A7) into (A6) yields the following quadratic BSDE of (� log(Pt ),�
0,t ,

�
1,t ,�
2,t ):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d� log(Pt ) =
[
−1

2
(�
0,t )

2 − 1

2
(�
1,t )

2 + 1

2
(�
2,t )

2
]
dt

+ �
0,t dW̄
0
t + �
1,t dW̄

1
t + �
2,t dW̄

2
t ,

� log(PT ) = 0.

(A8)

It is easy to check that quadratic BSDE (A8) satisfies all regularity conditions in
Kobylanski (2000). Then according to Theorem 2.3 and Theorem 2.6 in Kobylanski
(2000), we know that BSDE (A8) admits unique solution (0, 0, 0, 0), which, in turn,
reveals

(
Pt , 
0,t , 
1,t , 
2,t

) = (P̂t , 
̂0,t , 
̂1,t , 
̂2,t ).

Hence, we can conclude that (Pt , 
0,t , 
1,t , 
2,t ) given in Lemma 3.5 is the unique
solution to BSRE (12). ��

A.6 Proof of Lemma 3.10

Proof For any given constant p > 1, it is straightforward to see that the following
equation of k

p = k

2
√
k − 1
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admits two positive solutions:

k1 = 2p
√
p(p − 1) + p(2p − 1), k2 = −2p

√
p(p − 1) + p(2p − 1),

where the first solution satisfies k1 > 1. In particular, we have k1 = 276 + 48
√
33

when p = 12. By Assumption 3.4 and Proposition 3.8, we have

Et0

[
exp

{
(138 + 24

√
33)

∫ T

t0
(λ + σαρb(t))2αt dt

}]
< +∞.

Then, according to Theorem 15.4.6 in Cohen and Elliott (2015), we have

Et0

[

sup
t∈[t0,T ]

|�1,t |12
]

≤ 12

11

{
Et0,α0,r0,x0

[
exp

{
(138 + 24

√
33)

∫ T

t0
(λ + σαρb(t))2αt dt

}]}
√

276+48
√
33−1

276+48
√
33

< +∞.

By using the same technique, we also have Et0

[
supt∈t0,T |�0,t |12

]
< ∞. ��

A.7 Proof of Proposition 3.11

Proof For any admissible strategy π ∈ A, applying Itô’s formula to Pt (Xπ
t +Yt )2 and

completing of squares, we have

dPt (X
π
t + Yt )

2

= Pt
{[

πB(t, αt , rt , X
π
t )h0(K )σr + πS1(t, αt , rt , X

π
t )ηrσr

+Zt + (Xπ
t + Yt )

(

0,t

Pt
+ λr

)]2

+
[
πS1(t, αt , rt , X

π
t )σ (t, αt ) + (Xπ

t + Yt )

(

1,t

Pt
+ λ

√
αt

)]2}

dt

+
[
(Xπ

t + Yt )
2
0,t + 2(Xπ

t + Yt )Pt
(
πB(t, αt , rt , X

π
t )h0(K )σr

+πS1(t, αt , rt , X
π
t )ηrσr + Zt

)]
dW 0

t

+
[(
Xπ
t + Yt

)2

1,t + 2(Xπ

t + Yt )PtπS1(t, αt , rt , X
π
t )σ (t, αt )

]
dW 1

t

+ (
Xπ
t + Yt

)2

2,t dW

2
t .

(A9)

Due to the continuity of Yt , Zt , 
0,t , 
1,t , 
2,t , Pt , πB(t, αt , rt , Xπ
t ), πS1(t, αt , rt ,

Xπ
t ), Xπ

t and σ(t, αt , rt , Xπ
t ), the stochastic integrals on the right-hand side of (A9)

are (F,Pt0)-local martingales. Hence, there exists a localizing sequence, denoted by
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{τn}n∈N, such that τn ↑ +∞, Pt0 almost surely as n → +∞, and when stopped by
such a sequence, the aforementioned local martingales are (F,Pt0)-martingales. Then,
integrating both sides of (A9) from t0 to τn ∧ T and taking expectations, we obtain

Et0
[
PT∧θn (X

π
T∧θn

+ YT∧θn )
2
]

= Et0

[ ∫ T∧θn

t0
Pt

(
πS1(t, αt , rt , X

π
t )σ (t, αt ) + (Xπ

t + Yt )

(

1,t

Pt
+ λ

√
αt

))2
dt

]

+ Et0

[ ∫ T∧θn

t0
Pt

(
πB(t, αt , rt , X

π
t )h0(K )σr + πS1(t, αt , rt , X

π
t )ηrσr + Zt

+ (Xπ
t + Yt )

(

0,t

Pt
+ λr

))2
dt

]
+ Pt0 (x0 + Yt0 )

2.

(A10)

For the term within the expectation on the left-hand side of (A10), we have from (14),
(16), and Proposition 3.8 that

PT∧θn (X
π
T∧θn

+ YT∧θn )
2

≤ c

(

φ2
b sup
t∈[t0,T ]

e2a(t0)|rt | + sup
t∈[t0,T ]

|Xπ
t |4 + γ 2e2gb sup

t∈[t0,T ]
e2hb|rt |

)

,
(A11)

where c is a positive constant, and φb, gb, and hb denote the bound of continuous
functions φ(t), g(t), and h(t) over [t0, T ], respectively. Then, from Definition 1 and

Lemma 3.2, we know the family
{
PT∧θn (X

π
T∧θn

+ YT∧θn )
2
}

n∈N is integrable, and

thus, sending n to infinity and applying the dominated convergence theorem andmono-
tone convergence theorem to the left-hand and right-hand side of (A10), respectively,
we have

Et0

[
(Xπ

T − γ )2
]

≥ Pt0
(
x0 + Yt0

)2
. (A12)

In particular, the right-hand side of (A12) is attained when we opt for the investment
strategy given in (24). In other words, the strategy (24) is the optimal strategy for the
benchmark problem (11).

In the remaining part of this proof, we aim to show that the optimal strategy (24)
is admissible. Denote the wealth process (7) associated with the strategy (24) by X∗

t .
Then, we find that

d(X∗
t + Yt )

X∗
t + Yt

=
[
rt − λr

(

0,t

Pt
+ λr

)
− λ

√
αt

(

1,t

Pt
+ λ

√
αt

)]
dt

−
(


0,t

Pt
+ λr

)
dW 0

t −
(


1,t

Pt
+ λ

√
αt

)
dW 1

t .

(A13)

Solving the linear SDE (A13) and using the explicit expressions for Yt , 
0,t , 
1,t ,

and Pt , we obtain (26). Moreover, by (26), Lemmas 3.1–3.3, Assumption 3.4, Lemma
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3.10, and Hölder’s inequality, we have

Et0

[

sup
t∈[t0,T ]

|X∗
t |4
]

≤ c

{
Et0

[
exp

{
24(λ2 + λσα|ρb(t0)|)

∫ T

t0
αt dt

}]
+ Et0

[
exp

{
24
∫ T

t0
r2t dt

}]

+Et0

[

sup
t∈[t0,T ]

|�0,t |12
]

+ Et0

[

sup
t∈[t0,T ]

|�1,t |12
]

+ Et0

[

sup
t∈[t0,T ]

e4hb|rt |
]}

< +∞,

(A14)

where c is a positive constant and hb denotes the bound of h(t) over [t0, T ]. Finally,
from (A14) and the explicit expressions for the optimal investment strategy given in
(24), it is easy to verify that

Et0

[∫ T

t0
(π∗

S1(t, αt , rt , X
∗
t ))

2(σ 2(t, αt ) + 1) + (π∗
B(t, αt , rt , X

∗
t ))

2 dt

]
< +∞.

(A15)

Hence,we can conclude from (A13)–(A15) that the optimal strategy (24) is admissible.
��

A.8 Proof of Theorem 4.3

Proof Identifying t0, α0, r0, and x0 with t, αt , rt , and X∗
t in (29), respectively, we

can write a candidate for the dynamic optimality of problem (8), which is given
by (32). We claim that the candidate solution (32) is dynamic optimal for prob-
lem (8). Indeed, for any initial data (t, α, r , x) ∈ [t0, T ) ⊗ R

+ ⊗ R ⊗ R, we
can take any other admissible strategy u ∈ A such that Et,α,r ,x [Xu

T ] = ξ and
u(t, α, r , x) �= πd∗(t, α, r , x). Additionally, we set w = π∗, in which the ini-
tial data (t0, α0, r0, x0) is replaced by (t, α, r , x). In other words, it holds that
w(t, α, r , x) = π∗(t, α, r , x) = πd∗(t, α, r , x) �= u(t, α, r , x) when the initial data
is (t, α, r , x). Then, by the continuity of the feedback controls u and w, there exists
a ball Bε := [t, t + ε] ⊗ [α − ε, α + ε] ⊗ [r − ε, r + ε] ⊗ [x − ε, x + ε] such that
w(t̃, α̃, r̃ , x̃) �= u(t̃, α̃, r̃ , x̃) for any (t̃, α̃, r̃ , x̃) ∈ Bε when ε is small enough such
that t + ε ≤ T . Replacing (t0, α0, r0, x0) and γ in (A10) by (t, α, r , x) and ξ − θ̃∗,
where θ̃∗ is given by

θ̃∗ = exp {(a(t) + h(t))r + b(t)α + g(t)}φ(t)
(
ξeg(t)+h(t)r − x

)

exp {b(t)α + 2g(t)}φ(t) − 1
,

we observe that w = π∗ is the unique continuous function such that the
minimum within the expectations on the right-hand side of (A10) is attained,
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Pt,α,r ,x almost surely, which indicates that by setting the exiting time τε =
inf
{
t ∧ T | (t, αt , rt , Xu

t ) /∈ Bε

}
, it holds that for t̃ ≤ τε

Pt̃

[(
uS1(t̃, αt̃ , rt̃ , X

u
t̃ )σ (t̃, αt̃ ) + (Xu

t̃ + Yt̃ )

(

1,t̃

Pt̃
+ λ

√
αt̃

))2

+
(
uB(t̃, αt̃ , rt̃ , X

u
t̃ )h0(K )σr

+ uS1(t̃, αt̃ , rt̃ , X
u
t̃ )ηrσr + Zt̃ + (Xu

t̃ + Yt̃ )

(

0,t̃

Pt̃
+ λr

))2]

≥ ζ, Pt,α,r ,x − a.s.,

where ζ ∈ R
+. In other words, replacing (t0, α0, r0, x0) and γ in (A10) by (t, α, r , x)

and ξ − θ̃∗, respectively, we find that

Et,α,r ,x

[
(Xu

t − (ξ − θ̃∗))2
]

≥ ζEt,α,r ,x [τε − t] + ea(t)r+b(t)αφ(t)
(
x − (ξ − θ̃∗)eg(t)+h(t)r

)

>ea(t)r+b(t)αφ(t)
(
x − (ξ − θ̃∗)eg(t)+h(t)r

)

=Et,α,r ,x [(Xw
T − (ξ − θ̃∗))2],

where the strict inequality follows from the fact that τε > t holds Pt,α,r ,x almost surely
due to the path-wise continuity of the state variables. This result, in turn, leads to

Vart,α,r ,x (X
u
T ) = Et,α,r ,x

[
(Xu

T )2
]

− ξ2

= Et,α,r ,x [(Xu
T − (ξ − θ̃∗))2] − (θ̃∗)2

> Et,α,r ,x [(Xw
T − (ξ − θ̃∗))2] − (θ̃∗)2

= Vart,α,r ,x (X
w
T ),

by which we can conclude that the candidate solution presented in (32) is the dynamic
optimality of the mean-variance problem (8).

Substitute the dynamic optimal strategy (32) into the wealth process (7) and denote
by Kt = Xd∗

t + ξ
γ
Yt . Then, we have the following linear SDE of Kt :

dKt =
[
rt + λr (λr − σr a(t) − exp {b(t)αt + 2g(t)}φ(t)h(t)σr )

exp {b(t)αt + 2g(t)}φ(t) − 1

+ (λ + σαρb(t))λαt

exp {b(t)αt + 2g(t)}φ(t) − 1

]
Kt dt

+ (λ + σαρb(t))
√

αt

exp {b(t)αt + 2g(t)}φ(t) − 1
Kt dW

1
t

+ λr − σr a(t) − exp {b(t)αt + 2g(t)}φ(t)h(t)σr
exp {b(t)αt + 2g(t)}φ(t) − 1

Kt dW
0
t ,
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with Kt0 = x0 − ξeg(t0)+h(t0)r0 . Solving the above SDE explicitly, we obtain (33).
Particularly, when the initial data satisfies x0 ≤ ξeg(t0)+h(t0)r0 , from (33), we see that
Xd∗
t ≤ ξeg(t)+h(t)rt , for t ∈ [t0, T ], Pt0 almost surely.

��
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