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Abstract
In this paper, we focus on the farmer’s risk income when using commodity futures,
when price and output processes are randomly correlated and represented by jump-
diffusionmodels.We evaluate the expected utility of the farmer’swealth and determine
the optimal consumption rate and hedging position at each point in time given the
harvest timing and state variables. We find a closed form for the optimal consumption
and positioning rate in the case of an investor with CARA utility. This result (see
Table 3.3) is a generalization of the result of Ho (J Financ 39:351–376, 1984), which
considers the special case in which price and output are diffusion models.

Keywords Jump-diffusion process · Futures · stochastic dynamic programming ·
Lévy measure · Risk management

JEL Classifications Q14 · Q12 · D81 · G13 · G52

1 Introduction

Among the many individuals or organizations that must address risk in agriculture are:
Farmers, agricultural traders, commercial enterprises that sell to or buy from farmers,
agricultural research personnel, and policy makers and planners.
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Agricultural traders who buy from farmers may well take into account farmers’
willingness to reduce market risks. For example, some of them will be willing to
accept a lower price for their production if the buyer is willing to offer a futures
contract at a guaranteed price.

Buying or selling derivatives can be useful to reduce price risk for both future and
future products. The most important examples are hedging commodities in the futures
market or buying or selling call or put options (see Sakong et al. 1993), depending
on the farmer’s hedging needs (see Anderson and Danthine 1980 and Anderson and
Danthine 1983). For more details on futures hedging under price or production risks,
see Moschini and Hennessy (2001), Harvey Lapan and Moschini (1991), Lapan and
Moschini (1994) and Lioui and Poncet (1996, 2003). It is also important to consider
the risk aversion of farmers (see Morgenstern and Von Neumann 1953 and Lien and
Hardaker 2001 formore details). The absolute risk aversion function canbe categorized
according to its evolution with respect to the increase in wealth, such as increasing
absolute risk aversion (IARA), absolute risk aversion ( CARA), or decreasing absolute
risk aversion (DARA).

Constant risk aversion (CARA) means that preferences remain unchanged when a
constant amount is added to or subtracted from all payments.

Anderson and Danthine (1983), Marcus and Modest (1984), Ho (1984), and Hey
(1987) first develop dynamic hedging models in which producers are assumed to be
able to revise their hedge position during the growth period. Ho (1984) allows hedging
positions to be continuously adjusted over time. Karp (1988) extended Anderson
and Danthine’s models to include stochastic production. Karp (1987) developed a
continuous model similar to that of Ho (1984). Unfortunately, the Ho (1984) paper
assumes that the evolution of commodity prices follows a continuous Brownian-type
diffusion process. In fact, Brownian processes do not really take into account the
occurrence of jumps or strong turbulence in the evolution of the price of commodities.

In this paper,we study a normativemodel of the farmer’s optimal hedging strategy in
relation to his consumption behavior in a continuous time jump-diffusion framework.
Some works, such as Rolfo (1980), have analyzed the farmer’s hedging strategies in
a single-period context. However, as noted in Ho (1984), a one-period model imposes
some fairly restrictive conditions on the individual’s behavior.

Our contribution is to revisit Thomas Ho’s work in the same context, taking into
account jumps in price trends. Under our new assumptions regarding the stochastic
evolution of price and quantity, added to those of Ho (1984), we obtain a coverage
ratio (see the last row of Table 3.3) that is quite different from that found in Ho’s work.

This paper is divided into four sections. The Sect. 2 examines the optimal portfolio
and determines the design of its optimal decisions, the Sect. 3 provides the optimal
hedge ratio, and the Sect. 4 contains the final conclusions and remarks, as well as some
possible orientations for the management of agricultural risks.
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2 Model

2.1 Assumptions

A-1 • The farmer’s optimal behavior is determined in the context of a continuous-
time finite horizon. The harvest time T is assumed to be known.
• At the beginning of the period (the planting season), the farmer makes his
production decision on the quantity of crops, Q bushels, to be produced. At the
end of the period (the harvest season), he sells the entire crop at the current spot
price, P (per bushel), so that his farm income is PQ.

A-2 •During the production period (time between the planting and harvest seasons)
the farm income is subject to two sources of uncertainty:

1. the price at which the crop will be sold (Price risk), P.
2. The quantity of the crop which will be sold (output risk) Q.

• At each time t, the farmer forms expectations of the spot price Pt and output
Qt at harvest, and then at the next instant, with more information, the farmer
revises the expectations:
• Pt and Qt are Itô-Lévy processes.

dQt = σQQtdZt . (1)
dPt
Pt−

= σPdωt + (eJ − 1)dNt − λE(eJ − 1)dt (2)

dZtdωt = ρdt, (3)

where σQ and σP are constant instantaneous standard deviations of output
or spot price, ρ is the instantaneous correlation coefficient, dZt and dωt are
standardized Wiener processes, and dNt is a Poisson process with arbitrarily
distributed jump amplitude J . The symbol E in front of (eJ − 1) stands for the
expected value under physical measure and the constant variable λ is the jump
intensity of the Poisson process. The three stochastic processes Nt , ωt and J
are independent of each other. For more details see Zhang et al. (2012) and Ho
(1984).

A-3 There are frictions in the real sector.

i) During the production period, the farmer cannot influence the production level
by further investment (buying more land acreage ) or disinvestment (abandon-
ing land or selling parts of the farm).

ii) Substantial agency costs prevent the farmer from shifting the uncertainty of
farm income to the market by issuing shares.

A-4 • The futures market is assumed to be perfect:

* Participants can trade cheaply and continuously.
* The futures contracts are perfectly divisible.
* The contracts have the settlement date at the time of harvest.
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* Mark-to-market settlements occur continuously over time so that the net
value of the contract always remains zero.

• Each contract calls for a delivery of one bushel. Those holding long posi-
tions promise to take delivery of the underlying crop and make payment at the
futures price of the contract; those holding short positions promise to deliver the
underlying commodity and receive payment at the futures price of the contract
at maturity.
• Let Ft denote the equilibrium settlement price on the contract at time t. Ft is
stochastic, and it is characterized by Ft = Pt for more details see Mahul and
Vermersch (2000). Thus, dFt = dPt .

A-5 The farmer has a cash account: Wt that may be positive (negative) on which
a constant rate of interest r is received (paid). Any net cash flow resulting
from a position in futures contracts or from consumption is deposited into or
withdrawn from this cash account. Therefore, the borrowing rate is equal to the
lending interest rate.

A-6 During the period, at each instant t, the farmer has to determine optimal con-
sumption rate: c∗

t and the futures position: x∗
t such that the expected additive

utility of consumption is maximized.
maxc,x E[∫ T

0 U (c, t)dt + B(YT , T )] with YT = PT QT + WT , where Yt
is the total wealth, Pt Qt is the crop, Wt is the cash account value at time
t , B(., T ) is the terminal utility of wealth and is assumed to be a concave
function, andU (c, t) is an instantaneous utility function for consumption such

that :

{
∂U
∂c > 0
∂2U
∂c2

< 0.

2.2 Objective function and the optimal decisions

• Let xt denote the number of contracts held by the farmer at time t in a short position.
• dFt denotes the variation due to an increase in the settlement price of the futures.
• xtdFt : denotes the amount, in cash, to pay at the clearing corporation by the farmer.
• The change in the farmers cash account is the sum of three cash flows:

– the interest earned from the cash account: rWtdt ,
– the consumption: −ctdt ,
– the mark-to-market settlement of his futures position.

• This is summarized by the following budget constraint equation

dWt = (rWt − ct )dt − xtdFt . (4)

• To derive optimal decisions, x∗
t and c∗

t , we use the Bellman stochastic dynamic
programming technique. The objective function

J T (W , F, Q, t) = max
ct ,xt ,t<T

Et

[∫ T

t
U (c, s)ds + B(YT , T )

]

(5)
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where Et is an expectation operator, conditional on W (t) = W , F(t) = F,

Q(t) = Q and cs > 0.
• J T is the solution of Hamilton-Jacobi-Bellmann equation

max
c,x

[d J T +U (c, t)dt] = 0 (6)

satisfying the boundary condition

J T (W , F, Q, T ) = B(FT QT + WT , T ). (7)

• The boundary condition suggests that the optimized derived utility equals to, (at
time T), the terminal utility of wealth, since the consumption equal to zero when
the wealth equal to zero to. This is the initial value to our dynamic programming.
Thus, this problem is a time backward one (see Beckmann and Czudaj 2013 for
further details).

3 Solution

3.1 Evaluation of dynamics dWt, dYt and dJT

Let us evaluate dWt .{
dFt = dPt
Ft = Pt ,

implies

dFt
Ft−

= σFdωt + (eJ − 1)dNt − λE(eJ − 1)dt, (8)

and
dZdω = ρdt . (9)

Substituting dFt into (4), we obtain

dWt = [rWt − ct + xtλFt−E(eJ − 1)]dt − xt Ft−σFdωt − xt Ft−(eJ − 1)dNt (10)

Let us evaluate the dynamic dYt of the wealth farmer Yt .

Yt = Pt Qt + Wt = Ft Qt + Wt (11)

implies

dYt =dFt Qt + dWt

=FtdQt + QtdFt + d[Ft , Qt ] + dWt

=FtdQt + QtdFt + d < Ft , Qt >c +�Fs�Qs + dWt , (12)
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where d < Ft , Qt >c= ρσFσQFt−Qtdt and �Qs = 0, then (12) takes the form:

dYt = [(rWt − ct ) − λ(Qt − xt )E(eJ − 1)Ft− + ρσFσQFt−Qt ]dt
+σF (Qt − xt )Ft−dωt + σQFt−QtdZt

+(Qt − xt )Ft−(eJ − 1)dNt (13)

Let (ω1, ω2) be two independent standard Wiener Processes satisfying: ωt = ω1
t and

Zt = ρω1
t + √

1 − ρ2ω2
t . Thus (13) takes the form:

dYt = [(rWt − ct ) − λ(Qt − xt )E(eJ − 1)Ft + (ρσFσQFt Qt )]︸ ︷︷ ︸
α1

dt

+[(Qt − xt )FtσF + ρσQFt Qt ]︸ ︷︷ ︸
α2

dω1
t + σQFt Qt

√
1 − ρ2

︸ ︷︷ ︸
α3

dω2
t

+(Qt − xt )Ft (e
J − 1)dNt (14)

Deriving d J T , we obtain:

d J T = J Tt dt + J TY α1dt + 1

2
J TY 2(α

2
2dt + α2

3dt)

+λdt
∫

[J T (Yt + (Qt − xt )Ft (e
J − 1)z, t) − J T (Yt , t)]ν(dz), (15)

as Et (dωi
t ) = 0 for i = 1, 2.

Now consider the dynamic programming equation.
Substituting (15) into maxc,x [d J T +U (c, t)dt] = 0, we obtain this following result:

max
ct ,xt

(

J Tt + J TY [(rWt − ct ) − λ(Qt − xt )E(eJ − 1)Ft + (ρσFσQFt Qt )]

+1

2
J T
Y 2
t
F2
t [(Qt − xt )

2σ 2
F + 2ρ(Qt − xt )σFσQQt + σ 2

QQ
2
t ]

+λ

∫
[J T (Yt + (Qt − xt )Ft (e

J − 1)z, t) − J T (Yt , t)]ν(dz) +U (ct )

)

= 0. (16)

As Eq. (16) exists, the optimal decisions (c∗, x∗) satisfy the first order conditions.

3.2 Evaluation of c∗t and x
∗
t

Let us evaluate c∗
t .

The first order condition with respect to c is:

− J TY +Uc(c, t) = 0 (17)
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thus, the optimal consumption rate is determined such that the marginal utility of
consumption equates the marginal derived utility in wealth.
We obtain:

Uc(c
∗, t) = J TY (Y , t). (18)

This result was obtained by Ho (1984) in case of no jump into dynamic processes.
Hence c∗ is determined independently of the hedging decisions:

c∗ =
[
∂U

∂c

]−1 [
∂ J T (Y , t)

∂Y

]

. (19)

Let us evaluate x∗
t .

Let us write the second condition of first order and derive the optimal position x∗
t .

To do this, we use utility functions defined by: U (c, t) = e−βt V (c) and G(Y , t) =
e−βt L(Y ) where V is the utility function of consumption, L is the utility function of
wealth. The choice ofU and G (as product of two functions with separable variables)
is motivated by the fact that the consumption and wealth processes are Markov.
More, we suppose that these two utility functions are exponential type: V (c) =
− 1

q exp(−qc) and L(y) = − K
q exp(−rqy), where q > 0 and K are positive con-

stants.
Let us evaluate c∗

t in this case.

since ∂L(y)
∂ y = r K exp(−rqy) = −rqL(y) and ∂2L(y)

∂ y2
= r2q2L(y), thus (19) takes

the form:

c∗ = rY − 1

q
log(r K ). (20)

Substituting these two functions into (16), we obtain:

0 = max
ct ,xt

(

V (ct ) − βL(Yt ) − rqL(Yt ) [(rWt − ct )

+ρσFσQFt Qt − λ(Qt − xt )E(eJ − 1)Ft
]

+1

2
r2q2L(Yt )

[
(Qt − xt )

2σ 2
F F

2
t + 2ρ(Qt − xt )σFσQF

2
t Qt + σ 2

QF
2
t Q

2
t

]

+λ

∫ [
e−rq[(Qt−xt )Ft (eJ−1)z]L(Yt ) − L(Yt )

]
ν(dz)

)

. (21)

We divide this term by rqL(Yt ). Since qL(Yt ) < 0, thus the max is replaced by
the min operator and (21) takes the form:

0 = min
ct ,xt

(
V (ct )

rqL(Yt )
− β

rq
−

[
(rWt − ct ) + ρσFσQFt Qt − λ(Qt − xt )E(eJ − 1)Ft

]

+1

2
rq

[
(Qt − xt )

2σ 2
F F

2
t + 2ρ(Qt − xt )σFσQF2

t Qt + σ 2
QF2

t Q
2
t

]

+ λ

rq

∫ [
e−rq[(Qt−xt )Ft (eJ−1)z] − 1

]
ν(dz)

)

. (22)
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Let us evaluate K :
We deduce its value by replacing (ct , xt ) by (c∗

t , x
∗
t ) into (22). So we obtain:

K = 1

r
exp

(

1 − β

r
− q

[
(rWt − rqY ) + ρσFσQFt Qt − λ(Qt − xt )E(eJ − 1)Ft

]

+1

2
rq2

[
(Qt − xt )

2σ 2
F F

2
t + 2ρ(Qt − xt )σFσQF

2
t Qt + σ 2

QF
2
t Q

2
t

]

+λ

r

∫ [
e−rq[(Qt−xt )Ft (eJ−1)z] − 1

]
ν(dz)

)

. (23)

To evaluate x∗
t , we distinguish two case: λ = 0 and λ �= 0.

First case: λ = 0, i.e, the dynamic of price is pure diffusive process.
The condition of first order, i.e, the derivative of second term of Eq. (22) with respect
to x is zero, applying it to (22) we obtain:

rq[(Q − x)σ 2
F F

2 + ρσQσF F
2Q] = 0 (24)

so

x∗
t,P =

(

1 + ρ
σQ

σF

)

Q. (25)

Remark 3.1 The optimal hedge ratio
x∗
t,P
Q = (1 + ρ

σQ
σF

) depends on the correlation ρ

between the two uncertainties, the price P and the quantity Q. If the correlation is
negative, the farmer’s revenue is less uncertain, thus the farmer would not hedge his
entire position in futures market.

Second case: λ �= 0.
As Aït-Sahalia et al. (2009), we choose a Levy measure to obtain a closed form.
Consider the Levy measure defined by: ν(dz) = βe−ηz1I{z≥0}dz where β and η are
strictly positive constant. This measure satisfies

∫
IR min(1, |z|)ν(dz) < ∞

The calculation of integral term into (22) gives:

λ

rq

∫
[e−rq(Qt−xt )Ft (eJ−1)z − 1]ν(dz) = λ

rq

∫ +∞
0

[e−rq(Qt−xt )Ft (eJ−1)z − 1]ce−ηzdz

=λβ

rq

∫ +∞
0

[e−[rq(Qt−xt )Ft (eJ−1)+η]z − e−ηz]dz

=λβ

rq

[ 1

rq(Qt − xt )Ft (eJ − 1) + η
− 1

η

]
. (26)

The second condition of first order applying to (22) give us:

−λE(eJ − 1)Ft − rq(Qt − xt )σ
2
F F

2
t − rqρσFσQF

2
t Qt

+λβ
[ Ft (eJ − 1)

(rq(Qt − xt )Ft (eJ − 1) + η)2

]
= 0. (27)
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(27) is an implicit form of cubic equation in (Qt − xt ) contains xt . Otherwise xt is
solution of (27).
Setting S = (Qt − xt ), (27) takes the form aS3 + bS2 + cS + d = 0 and setting
X = S + b/a

3 , the equation takes the form X3 + pX + q = 0. The discriminant is

� = p3

27 + q2

4 . We solve in case where � < 0 (this implies that p < 0). The equation
has three real solutions. Since we minimize in the objective function , we consider the
smallest solution defined by:

(Qt − x∗
t ) = −b/a

3
+

√−4p

3
cos(

1

3
arccos(−q

√
−27

4p3
− 2π

3
)) (28)

Replacing p and q by its values we obtain:

x∗
t = (1 + 1

3
ρ

σQ

σF
)Q + 
 (29)

where
 = 2η
3rqF + λE(eJ−1)

rqσ 2
F F

(eJ −1)+
(

+ 4
9

ρ2σ 2
QQ2

σ 2
F

+ 8
3

( 2
3 (e

J −1)−1
) ηλE(eJ−1)
r2q2σ 2

F F
2 −

8ηρσQQ
3rqσF F

+( 16
3 − 4

(eJ−1)

) η2

3r2q2F2 + 16ρσQQη

9σFrqF
+ 8λρσQQE(eJ−1)

9rqσ 3
F F

(eJ−1)+ 4λ2E2(eJ−1)
9r2q2σ 4

F F
2 (eJ−

1)3
) 1

2

cos( 13arccos(−q
√−27

4p − 2π
3 )), which depends on the choice of jump compo-

nent.

3.3 Comparison with Ho et al.

Thomas HO et al. Nyassoke et al.

Empirical facts Pure diffusion model Jump-diffusion model

Great and sudden variations in
prices

No price jumps. Generic property of the model

Markets are incomplete; some
risks can not be hedged

Markets are complete Markets are incomplete

Some strategies are better All strategies lead to zero
residual risk depending of
choice of measure

Hedging is obtained by solv-
ing a optimization portfolio
problem

Utility function of wealth CARA type CARA type

Optimal consumption c∗ = [ ∂U
∂c ]−1

[
∂ JT (Y ,t)

∂Y

]

c∗ =
[

∂U
∂c

]−1
[

∂ JT (Y ,t)
∂Y

]

Optimal position x∗
P =

(
1 + ρ

σQ
σF

)
Q x∗

t =
(
1 + 1

3ρ
σQ
σF

)
Q + 
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4 Conclusion

Our continuous-time investment-consumption model determines the optimal instanta-
neous consumption andoptimal hedging position using futures for a farmerwhowishes
to manage income risk (price risk and production uncertainty). We assume that the
price process is a jump-diffusion process, which generalizes Ho (1984) who assumed
a diffusion process for prices. We show that optimal instantaneous consumption is
unchanged in both models. Assuming that the farmer’s preferences for consumption
and wealth are represented by exponential utility functions, we determine a closed
form solution for the optimal hedge ratio. Our principal result is the last line of the
Table 3.3
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